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A. Proof of Theorem 1
ΦF is equivaraint to SE(3) iff ∀g ∈ SE(3) : (ΦF ◦
ρX (g))(f) = (ρY(g) ◦ ΦF )(f).

Proof. Using the definition
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B. Relation to concurrent work
Previous works have also achieved (piecewise) equivariance
by averaging over a frame [13, 17]. While Xiao et al. [17]
only explore this idea to obtain global rotation equivari-
ance, Puny et al. [13] propose a more general framework
based on the same idea. The concurrent work of Atzmon et
al. [3] uses this idea to achieve piecewise (local) equivari-
ance by applying frame averaging for partitions of individ-
ually transforming regions. In these works, the same frame

is used for each point in the point cloud (global) or par-
titions (piecewise/local) for the symmetrization of, e.g., a
neural network by transforming their (partitions’) domain.
For Atzmon et al. [3], a partition prediction network is nec-
essary since simply increasing the number of partitions to
reduce partition errors limits the expressivity of the result-
ing equivariant point network; when each point belongs to
one partition, the only shared equivariant function is con-
stant. In contrast, this work is based on group convolutions,
where point convolutions in a neural network are lifted to
the SE(3) group so the kernel can detect rotated patterns.
In this context, the concept of equivariant frames is used to
define a point-specific grid on SE(3) to solve the convolu-
tion integral over the SE(3) group efficiently. Since we cre-
ate point-specific frames, we avoid the need to group points
into regions that can rotate jointly. The locality of the fea-
tures created by the proposed convolution operator is deter-
mined by the point neighborhoods used for feature aggrega-
tion. Stacking several layers of such convolution operators
results in a network capable of detecting local equivariant
features up to features equivariant to the accumulated re-
ceptive field among the layers. Using efficient SE(3) equiv-
ariant convolutions to construct a network, while it can po-
tentially overfit to global features, provides a more general
framework than applying symmetrization of the network for
constructed regions.

C. Pose estimation
Additionally, we evaluate our convolutions in the pose esti-
mation task. In this task, the model aims to recover the rel-
ative rotation between two point clouds of the same shape.

Dataset. We follow Zhu et al. [20] and use the airplane
category from the ModelNet40 dataset for this task, com-
posed of 626 models in the training set and 100 in the test
set. As Zhu et al. [20], we also sample the surface of the
shapes with 1024 points to generate the point clouds, which
are randomly rotated to form a pair.

Experimental setup. Existing methods such as EPN [5]
and E2PN [20] rely on the discretization of the SO(3) group
to achieve equivariance. Therefore, their pose estimation
network must predict an assignment between the two dis-
crete sets of rotations plus a displacement to cover the full
SO(3) space. Our convolutions, on the other hand, do not
rely on a discrete sampling of the SO(3) space and work di-
rectly in continuous space. Therefore, our models only need
to predict an assignment between the 4 reference frames,
which can be framed as a contrastive learning problem.



Table 1. Error in degrees of different methods on the task of pose
estimation on ModelNet40.

Metrics # samp. Mean(◦) Median(◦) Max(◦)

EPN [5] 1.10 1.36 7.06
E2PN [20] 1.20 0.96 6.71

Ours
4 4.4× 10−5 6.7× 10−5 2× 10−3

2 4.9× 10−5 6.7× 10−5 2× 10−3

1 4.9× 10−5 6.7× 10−5 2× 10−3

Main results. Table 1 presents the results of this ex-
periment. We can see that our model, thanks to operating
in continuous space, can achieve an angular error orders of
magnitude smaller than the existing methods for any num-
ber of samples used in the layers of the network.

D. Dataset details

Shape classification. The ModelNet40 dataset [16] is
composed of synthetic CAD models from 40 different
classes. The dataset is divided into two splits, where 9, 843
objects are used for training and 2, 468 for testing. Since
each model is composed of multiple faces, we sample 4, 096
points using farthest point sampling on the surface.

Semantic segmentation: human body parts. For train-
ing, we use the train split of DFAUST [4] used in [2, 6] and
follow Feng et al. [9] to create 15, 430 point clouds by sam-
pling 4, 096 points across the mesh surface. The PosePrior
dataset [1] consists of challenging poses significantly diver-
gent from those executed in DFAUST, which we use to test
our model for generalization to unseen, out-of-distribution
poses. Following the procedure of the train set, we derive
3, 760 point clouds with 4, 096 points each from this dataset
for testing.

Semantic segmentation: scene understanding. We fol-
low the standard train and validation split of ScanNet [7]
and use color [r, g, b] as input point features in addition to
the 3D coordinates.

E. Implementation details

In this section, implementation details are given, and the ar-
chitecture of the network used is introduced. Classification,
pose estimation, and segmentation tasks share the same en-
coder structure, yet a decoder is used to provide point-wise
predictions for the latter.

Frame computation. To compute the local PCA for each
point in the point cloud, we select 16 neighbors using k

nearest neighbors (kNN). We compute the covariance ma-
trix from the points and define the frame from the axes of
PCA; Tab. 5 shows an ablation of k.

Rotation representation. To represent the relative rota-
tions between neighboring points that we give as input to
the learnable kernel, we use the 6D representation proposed
by Zhou et al. [19]. However, other viable representations,
such as quaternions or rotation matrices, could be used.

E.1. Network architecture

For our experiments, our model uses ResNetFormer
blocks [18] as the main computational blocks in the encoder
and an FPN decoder [10] for tasks requiring per-point pre-
dictions. The different point cloud resolutions are computed
using Cell Averaging [15]. In our convolution operation,
we define our kernel as a single layer Multi-Layer Percep-
tron (MLP) with 32 hidden neurons and GELU activation
functions. The output of our network is several feature vec-
tors for each point that correspond to the sampled rotations.
We use mean pooling as the projection layer Eq. (4) to get
the final output feature per point, but any other pooling can
be used.

E.1.1 Encoder

The input point cloud is transformed into n down-scaled
versions of itself using the Cell Average (CA) method [15].
For the first down-scaling, the size of the voxel cells used in
the CA algorithm is a hyper-parameter, d, which is then se-
quentially doubled for each of the following down-scaling
steps. The initial features are obtained with a patch en-
coder similar to the one used in vision transformers [8]. The
patch encoder allows us to extract features from a smaller
cell size, which usually increases the model’s performance
as more points are available while keeping computational
costs within limits. We use one additional level with two
convolutions for the patch encoder for the classification and
segmentation task on DFAUST; for ScanNet20, we skip the
patch encoder. The (extracted) initial features are further
processed with a set of Metaformer blocks [18] before being
transferred down to the next down-scaled point cloud via a
convolution operation. This procedure is iterated until we
reach the final down-scaled point cloud. For pose estima-
tion and classification, we use n = 5 and mean-aggregation
of features in the case of classification. The aggregated fea-
ture vector is then passed through a linear layer to perform
the final prediction. For the segmentation task on DFAUST
and ScanNet20, the features of each level of the encoder
serve as input to the decoder, with n = 4 and n = 5, re-
spectively.



Metaformer blocks. We incorporate the block design de-
fined by Yu et al. [18] into our architecture, replacing the
attention module of transformers with our point convolu-
tion. Each block consists of two residual blocks. In the first
one, feature updates are computed using point convolution,
while in the second one, updates are determined through a
point-wise MLP with two layers. In this MLP, the initial
layer doubles the feature count, while the second layer re-
duces it to the desired output number.

E.1.2 Decoder

Our Decoder architecture is based on the feature pyramid
network proposed by Kirillov et al. [10]. The input to the
decoder is the feature map of the down-scaled point cloud
for which a stepwise up-sampling with our point convolu-
tions is employed, progressing from the lowest level to the
first down-scaled point cloud. To enhance information and
gradient flow, we incorporate skip connections, where fea-
tures from both the encoder and decoder are summed, pro-
ducing a distinct feature map for each down-scaled point
cloud. Subsequently, each feature map is up-sampled to
the initial down-scaled point cloud through a singular up-
sampling operation. The resulting n feature maps are then
aggregated through summation. If applicable, this feature
map is put through a patch decoder, inverting the patch en-
coder operation. Finally, it is up-sampled to the intended
prediction positions by a final convolution and processed
by a one-layer MLP to obtain the point-wise predictions.

F. Experimental setup
In all experiments, we use AdamW [12] as optimizer with
a weight decay value of 1−4 and OneCycleLr [14] as learn-
ing rate scheduler. Moreover, we employ drop residual
paths depending on the depth of the layer [11] and gradi-
ent clipping for gradient norms exceeding 100. We used
label smoothing with a parameter of 0.2 to prevent overfit-
ting. All models were trained on a single NVIDIA GeForce
RTX 3090. The experiment-specific setup is given below.

Classification. For the point cloud classification experi-
ments on ModelNet40, we use the encoder architecture ex-
plained in Appendix E.1.1 with the number of blocks and
the number of features for each level equal to [2, 3, 4, 6, 4]
and [32, 64, 128, 256, 512], respectively. The initial grid
resolution was d = 0.05 and a maximum drop rate of 0.2.
All models were trained for 500 epochs using a batch size
of 12, with a learning rate of 0.01 and an initial and final di-
vision factor of 100 and 10000. We used jitter coordinates,
mirroring, and random scale augmentation during training.

Pose estimation. For the pose estimation experiment on
the airplane category of ModelNet40, we use the same

model as for classification. Note that the projection layer
is omitted for this experiment since equivariance instead of
invariance is needed. The model using all four frame el-
ements was trained for 500 epochs with a batch size of 8.
Using only 2 or 1 element takes longer for the model to
converge; we trained for 2k and 4k epochs with batch sizes
of 16 and 64, respectively.

Segmentation. For the segmentation task on the
DFAUST dataset, we again used the encoder architecture
introduced in Appendix E.1.1 with two blocks per level and
a number of features equal to [32, 64, 128, 256]. We trained
all models with a batch size of 32 for 150 epochs. The
maximum learning rate was 0.005, with an initial division
factor of 10 and 1000 as the final factor. Jitter coordinates
are used as augmentation during training; the initial grid
resolution was d = 0.05, and a maximum drop rate of 0.5.
To get the point-wise prediction, the decoder architecture
of Appendix E.1.2 was employed.

For the segmentation task on the ScanNet20 dataset,
we used the same encoder and decoder architecture as for
DFAUSt, described in Appendix E.1.1 and Appendix E.1.2,
but used five levels with [2, 3, 4, 6, 4] blocks and [64, 128,
192, 256, 320] feature dimensions. The initial grid resolu-
tion was d = 0.1, and all models were trained using 250
batches for 600 epochs using standard augmentations such
as jitter coordinates, mirroring, random scaling, elastic dis-
tortion, and translation.

Projection layer. Our proposed method provides features
for each sample of the SO3 group; if four samples are used,
four features per point result. Hence, we must aggregate
those features to get to the final point-wise prediction or
before averaging in the classification task to get the point-
wise invariant feature vectors. We use mean-pooling over
the features corresponding to the same coordinates.

G. Additional qualitative results
Figure 1 and Fig. 2 provide additional qualitative results.

H. Additional ablations
In this section, we provide ablation experiments to evalu-
ate the robustness of our approach against the number of
neighbors used in the PCA computation and against noise
and point density. Further, we provide results for allowing
different numbers of samples to be used for the approxi-
mation of the SO(3) integral during training, called sample
mixing. Finally, we discuss the effect of stochastic sampling
of the point-specific grid on SE(3).

Sample mixing. To achieve the best results with mini-
mal training and inference time, we explored sample mix-



Figure 1. Additional Qualitative results. Global equivariant methods such as VN, or FA struggle with out-of-distribution models,
especially up-side down models. Our method, on the other hand, achieves almost perfect predictions. Lastly, MC also achieves good
performance but falls behind our method, as seen in the leftmost columns when looking at the left upper arm prediction.

ing. Instead of always using the same amount of samples
of SO3 elements, the number of samples used changes per
step/forward pass and is chosen with the following proba-
bility. 1 sample is used with a probability of 50%, 2 sam-
ples with a 35% and 4 with a 15% probability. Table 2 and

Tab. 3 show the results for the classification and segmenta-
tion tasks, respectively. We can see that training with sam-
ple mixing and testing with one sample equals or exceeds
the performance of training with one sample only for MC
and Ours. Further, the results are more stable concerning



Figure 2. Additional Qualitative results. Global equivariant methods such as VN, or FA struggle with out-of-distribution models. Our
method, on the other hand, achieves almost perfect predictions. Lastly, as seen in all three examples, MC also achieves good performance
but falls behind our method.

different numbers of samples used during testing than when
training with a fixed number of samples. Sample mixing is
thus a viable option when limited resources are available.
Moreover, training with larger batch sizes becomes feasible
by further allowing different numbers of samples not only
between but also within batches. Table 4 shows the num-
ber of minutes each epoch approximately takes during train-
ing with the mixing strategy, 1, 2, and 4 samples. Sample
mixing with the proposed probabilities takes, on average, as
long as training with two samples while delivering a more
robust approximation of the integral.

PCA computation. We also analyze the effect of the re-
ceptive field used to compute the PCA for each point on the
final performance of the network using one sample to es-
timate the integral over SO(3). We can see in Tab. 5 that
using a low number of neighboring points makes the re-
sulting frames noisy and hampers the model’s performance,
becoming similar to the results of MC using a random
grid. However, with 16 neighbors, the PCA computation
becomes robust, and we do not see significant improvement
when we increase this receptive field.

Robustness to noise and density. We experimented with
the robustness of our model w.r.t. noise and density vari-
ations in the input point cloud. Results on the DFAUST
dataset using two samples are reported in Tab. 6 and Tab. 7,

respectively. We can see that our model is robust against
increased levels of noise and reduced point density dur-
ing testing. However, if the noise increases significantly
(0.015 std. dev.) or the number of points is reduced sub-
stantially (1024 points), the PCA computation is affected,
and the model’s performance decreases. This can be easily
solved by training the model with high noise levels or with
a reduced number of points as shown in Tab. 6 and Tab. 7,
where the model achieves similar performance to the model
trained without point corruptions.

Effects of stochastic sampling One of the main contribu-
tions of our work is to sample one or two LRF stochastically
during training. How the learning is affected by this sam-
pling boils down to how noisy the gradient estimation for
the kernel parameters is. If this gradient were computed for
a single point, the gradient would be noisy. However, this
noise is significantly reduced since the gradient is computed
as the expectation over multiple samples, multiple points,
and multiple point clouds in the batch. In our experiments,
models trained with 1 LRF or 2 LRF during training per-
form only marginally worse than those trained with 4. Dur-
ing testing, sampling 1 or 2 LRF can result in noisy predic-
tions. However, these predictions remain equivariant since
the same sampling of LRF will produce the same results for
random SO(3) rotations.



Table 2. Results for mixing the number of used samples throughout training for the classification task on the ModelNet40 dataset.

Method # samp. I / I I / SO(3) SO(3) / SO(3)

train ↓/ test → 1 2 4 1 2 4 1 2 4

MC mix 84.9 85.7 85.9 78.1 77.9 77.51 86.9 86.8 86.6

Ours mix 87.2 86.9 87.0 86.3 86.2 86.3 88.4 88.5 88.4

STD 90.7 12.3 87.5

Table 3. Results for mixing the number of used samples throughout training for the segmentation task on the DFAUST dataset.

Method # samp. mAcc mIoU

train ↓/ test → 1 2 4 1 2 4

MC mix 93.8 93.7 93.7 88.7 88.6 88.5

Ours mix 94.0 94.1 94.1 89.2 89.3 89.3

STD 85.3 74.5

Table 4. Time of 1 epoch in minutes during training with different
numbers of samples on the DFAUST dataset.

# samp. mix 1 2 4

time (min) 6.1 3.6 6.1 15.0

Table 5. Effect of the k chosen for the kNN operation in the PCA
computation on the model’s performance with one frame element
on the ModelNet40 dataset.

4 8 16 32 64

80.6 83.1 85.5 85.4 85.9

Table 6. Robustness w.r.t. noise variations.

Noise

train test mAcc mIoU

0.005
0.005 94.8 90.6
0.010 93.9 90.0
0.015 38.6 25.1

0.015 0.015 93.2 88.2

I. Limitations

Although the proposed convolution operation is local equiv-
ariant via the restricted receptive field, when multiple layers
are combined in a deep network, the whole model does not
become local equivariant and remains global equivariant.
However, from the experiments presented in ??, where the
network aims to perform local predictions, our model shows

Table 7. Robustness w.r.t. density variations.

Point Density

train test mAcc mIoU

4096
4096 94.5 89.7
2048 93.3 87.7
1024 30.4 20.1

1024 1024 92.7 86.8

robustness to such scenarios, indicating that the model re-
lies on local features to perform the predictions.
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