
A Q-Values Learned via UDS

Proposition A.1. For a policy π, let Q̂πUDS(·, ·, i) denote the fixed point of Eqn. 6. Then, Q̂πUDS(s,a)

lower-bounds the Q-function Q̂πSharing All that would be obtained had we used the true rewards.

Proof. Note that Q̂πUDS(s,a) at iteration k+ 1 is defined in Eq. 6, which we restate it for convenience:

Q̂k+1
UDS(s,a, i)← r̂(s,a, i)+γEs′∼P̂ (s′|s,a),π(a′|s′,i)

[
Q̂kUDS(s′,a′, i)

]
−α

(
π(a|s, i)
π̂β(a|s, i)

− 1

)
,(8)

whereas Q̂πSharing All(s,a) at iteration k + 1 is defined as

Q̂k+1
Sharing All(s,a, i)← r(s,a, i) + γEs′∼P̂ (s′|s,a),π(a′|s′,i)

[
Q̂kSharing All(s

′,a′, i)
]

(9)

− α
(
π(a|s, i)
π̂β(a|s, i)

− 1

)
. (10)

Assume Q̂0
Sharing All = Q̂0

UDS, i.e. same Q-value initialization and Q̂kSharing All ≥ Q̂kUDS. Using such
induction hypothesis and the fact that r̂(s,a, i) ≤ r(s,a, i) for all s,a, we can conclude that
Q̂πUDS(s,a) ≤ Q̂πSharing All(s,a). Therefore, UDS learns the Q-value that lower-bounds the Q-values
learned data sharing all tasks with the ground-truth rewards.

B Details of UDS and CUDS
In this section, we include the details of training UDS and CUDS in Appendix B.1 as well as details
on the environment and datasets used in our experiments in Appendix B.2. Finally, we discuss the
compute information of UDS and CUDS in Appendix B.3. For additional details, please see our
anonymous website: https://sites.google.com/view/uds-cuds/.

B.1 Details on the training procedure
Our practical implementation of UDS optimizes the following objectives for the Q-functions and the
policy:

Q̂k+1 ← arg min
Q̂

Ei∼[N]

[
β
(
Ej∼[N]

[
Es∼Dj ,a∼µ(·|s,i)

[
Q̂(s,a, i)

]
−Es,a∼Dj

[
Q̂(s,a, i)

]])
+

1

2
Ej∼[N],(s,a,s′)∼Dj

[(
Q̂(s,a, i)−

(
r(s,a, i)1{j=i} + γQ(s′,a′)

))2
]]
,

and π ← arg max
π′

Ei∼[N]

[
Ej∼[N],s∼Dj ,a∼π′(·|s,i)

[
Q̂π(s,a, i)

]]
,

Similarly, CUDS optimizes the following objectives for training the critic and the policy with a soft
weight:
Q̂k+1 ← arg min

Q̂
Ei∼[N]

[
β
(
Ej∼[N]

[
Es∼Dj ,a∼µ(·|s,i)

[
wCUDS(s,a; j → i)Q̂(s,a, i)

]
−Es,a∼Dj

[
wCUDS(s,a; j → i)Q̂(s,a, i)

]])
+

1

2
Ej∼[N],(s,a,s′)∼Dj

[
wCUDS(s,a; j → i)

(
Q̂(s,a, i)−

(
r(s,a, i)1{j=i} + γQ(s′,a′)

))2
]]
,

and π ← arg max
π′

Ei∼[N]

[
Ej∼[N],s∼Dj ,a∼π′(·|s,i)

[
wCDS(s,a; j → i)Q̂π(s,a, i)

]]
,

where β is the coefficient of the CQL penalty on distribution shift, µ is an action sampling distribution
that covers the action bound as in CQL. We follow all the CQL hyperparameters used in [80].

To compute the weight wCUDS(s,a; j → i) := σ
(

∆(s,a;j→i)
τ

)
, we pick τ , i.e. the temperature term,

using the exponential running average of ∆(s,a; j → i) with decay 0.995 for each task following

15

https://sites.google.com/view/uds-cuds/

[80]. Following [80] again, we clip the automatically chosen τ with a minimum and maximum
threshold, which we directly use the values from [80]. We use [1, 50] and [10,∞] as the minimum
and maximum threshold for the multi-task Meta-World and AntMaze domains respectively whereas
the vision-based robotic manipulation domain does not require such clipping.

Following the training protocol in [80], for experiments with low-dimensional inputs, we use a
stratified batch with 128 transitions for each task to train the Q-functions and the policy. We also
balance the numbers of transitions sampled from the original task and the number of transitions
drawn from other task data. Specifically, for each task i, we sample 64 transitions from Di and the
remaining 64 transitions from ∪j 6=iDj→i. In CUDS, for each task i ∈ [N], we only apply wCUDS to
data shared from other tasks on multi-task Meta-World environments and multi-task vision-based
robotic manipulation tasks while we also apply the relabeling weight to transitions sampled from the
original task dataset Di with 50% probability in the multi-task AntMaze domain.

Regarding the choices of the architectures, for state-based domains, we use 3-layer feedforward
neural networks with 256 hidden units for both the Q-networks and the policy. We condition the
policy on a one-hot task ID, which is appended to the input state. In domains with high-dimensional
image inputs, we adopt the multi-headed convolutional neural networks used in [30, 80]. We use
images with dimension 472× 472× 3, extra state features (grobot_status, gheight) and the one-hot task
vector as the observations similar [30, 80]. Following the set-up in [29, 30, 80], we use Cartesian
space control of the end-effector of the robot in 4D space (3D position and azimuth angle) along with
two binary actions to open/close the gripper and terminate the episode respectively to represent the
actions. For more details, see [29, 30].

B.2 Details on the environment and the datasets
In this subsection, we include the discussion of the details the environment and datasets used for
evaluating UDS and CUDS. Note that all of our environment and offline datasets are from prior
work [80]. We will nonetheless discuss the details to make our work self-contained. We acknowledge
that all datasets with low-dimensional inputs are under the MIT License.

Multi-task Meta-World domains. We use the door open, door close, drawer open and
drawer close environments introduced in [80] from the public Meta-World [78] repo1. In this
multi-task Meta-World environment, a door and a drawer are put on the same scene, which ensures
that all four tasks share the same state space. The environment uses binary rewards for each task,
which are adapted from the success condition defined in the Meta-World public repo. In this case, the
robot gets a reward of 1 if it solves the target task and 0 otherwise.

We direct use the offline datasets constructed in [80], which are generated by training online SAC
policies for each task with the dense reward defined in the Meta-World repo for 500 epochs. The
medium-replay datasets use the whole replay buffer of the online SAC agent until 150 epochs while
the expert datasets are collected by the final online SAC policy.

Multi-task AntMaze domains. Following [80], we use the antmaze-medium-play and
antmaze-large-play datasets from D4RL [20] and partitioning the datasets into multi-task datasets
in an undirected way defined in [80]. Specifically, the dataset is randomly splitted into chunks with
equal size, and then each chunk is assigned to a randomly chosen task. Therefore, under such a
task construction scheme, the task data for each task is of low success rate for the particular task it
is assigned to and it is imperative for the multi-task offline RL algorithm to leverage effective data
sharing strategy to achieve good performance. In AntMaze, we also use a binary reward, which
provides the agent a reward of +1 when the ant reaches a position within a 0.5 radius of the task goal,
which is also the reward used default by Fu et al. [20]. The terminal of an episode is set to be true
when a reward of +1 is observed.

Multi-task image-based robotic picking and placing domains. Following [30, 80], we use sparse
rewards for each task. That is, reward 1 is assigned to episodes that meet the success conditions and 0
otherwise. The success conditions are defined in [30]. We directly use the dataset used in [80]. Such
a dataset is collected by first training a policy for each individual task using QT-Opt [29] until the
success rate reaches 40% and 80% for picking tasks and placing tasks respectively and then combine
the replay buffers of all tasks as the multi-task offline dataset. The dataset consists of a total number
of 100K episodes with 25 transitions for each episode.

1The Meta-World environment can be found at the open-sourced repo https://github.com/
rlworkgroup/metaworld

16

https://github.com/rlworkgroup/metaworld
https://github.com/rlworkgroup/metaworld

Environment Tasks Oracle Success Rate of the Shared data
drawer open 47.4%
door close 99.2%

Meta-World drawer open 0.1%
drawer close 91.6%%
average 59.5%

medium maze (3 tasks) average 4.3%
AntMaze large maze (7 tasks) average 1.6%

Table 5: Success rate of the data shared from other tasks to the target task determined by the ground-truth
multi-task reward function.

Environment Tasks UDS UDS-5% relabel success UDS-50% relabel success UDS-90% relabel success

drawer open 51.9%±25.3 0.0%±0.0% 57.3%±18.9% 73.3%±8.6%
door close 12.3%±27.6% 0.0%±0.0% 0.0%±0.0% 0.0%±0.0%

Meta-World drawer open 61.8%±16.3% 19.4%±27.3% 61.0%±12.7% 56.3%±20.3%
drawer close 99.6%±0.7% 66.0%±46.7% 99.7%±0.5% 100.0%±0.0%
average 56.4%±12.8% 21.4% ±16.1% 54.3% ±2.0% 57.4%±3.3%

Table 6: Performance of UDS under different actual success rates of the relabeled data.

B.3 Computation Complexity

We train UDS and CUDS on a single NVIDIA GeForce RTX 2080 Ti for one day on the state-based
domains. For the vision-based robotic picking and placing experiments, it takes 3 days to train it on
16 TPUs.

C Additional details on the quality of data shared from other tasks
We present the success rate of the data shared from other tasks to the target task computed by the
oracle multi-task reward function in both the multi-task Meta-World and AntMaze domains in Table 5.
Note that the success rate of drawer close and door close are particularly high since for other
tasks, the drawer / door is initialized to be closed and therefore the success rate of other task data
for these two tasks are almost 100% as defined by the success condition in the public Meta-World
repo. Apart from these two particularly high success rates, the success rates of the shared data are
consistently above 0% across all tasks in both domains. This fact suggests that UDS and CUDS are
not relabeling with the ground truth reward where the relabeled data are actually all failures but rather
performs the conservative bellman backups on relabeled data that is shown to be effective empirically.

To better understand the performance of UDS under different relabeled data quality, we evaluate the
UDS under different success rates of the data relabeled from other tasks in the multi-task Meta-World
domain. Specifically, we filter out data shared from other tasks to ensure that the success rates of
the relabeled data are 5%, 50% and 90% respectively. We compare the results of UDS on such data
compositions to the performance of UDS in Table 1 where the success rate of relabeled data is 59.6%
as shown in Table 5. The full results are in Table 6. UDS on relabeled data with 50% and 90%
success rates achieves similar results compared to original UDS whereas UDS on relabel data with
5% success rate is significantly worse. Hence, UDS can obtain good results in settings where the
relabeled data is of high quality despite incurring high reward bias, but is not helpful in settings where
the shared data is of low quality and does not offer much information about solving the target task.

D Empirical Results of UDS and CUDS in more general dense reward
settings

In this section, we evaluate UDS and CUDS in the dense reward setting in order to test if UDS and
CUDS work in more general reward settings and are not limited to binary rewards. We pick the multi-
task walker environment as used in prior work [80], which consists of three tasks, run forward,
run backward and jump. The reward functions of the three tasks are r(s, a) = vx − 0.001 ∗ ‖a‖22,
r(s, a) = −vx − 0.001 ∗ ‖a‖22 and r(s, a) = −‖vx‖ − 0.001 ∗ ‖a‖22 + 10 ∗ (z − init z) respectively
where vx denotes the velocity along the x-axis and z denotes the z-position of the half-cheetah and
init z denotes the initial z-position. In UDS and CUDS, we relabel the rewards routed from other

17

Environment Tasks / Dataset type CUDS (ours) UDS (ours) No Sharing CDS (oracle) Sharing All (oracle)

run forward / medium-replay 880.1±108.8 665.0±84.9 590.1±48.6 1057.9±121.6 701.4±47.0
walker2d run backward / medium 717.8±78.3 689.3±16.3 614.7±87.3 564.8±47.7 756.7±76.7

jump / expert 1487.7±177.6 1036.0±247.1 1575.2±70.9 1418.2±138.4 885.1±152.9
average 1028.6±76.8 796.7±106.3 926.6±37.7 1013.6±71.5 781.0±100.8

Table 7: Results for multi-task walker experiment with dense rewards. CUDS and UDS are able to outperform
No Sharing while attaining competitive results compared to CDS and Sharing All with oracle rewards. This
suggests that CUDS and UDS are able to solve more general problems where rewards are not binary.

Environment Tasks CUDS (ours) UDS (ours COMBO [81]

door open 61.3%±7.9% 51.9%±25.3% 0.0%±0.0%
door close 54.0% ±42.5% 12.3%±27.6% 1.1%±1.6%

Meta-World drawer open 73.5%±9.6% 61.8%±16.3% 15.7%±15.2%
drawer close 99.3%±0.7% 99.6%±0.7% 85.7%±13.3%
average 71.2% ± 11.3% 56.4%±12.8% 25.6%±6.2%

Table 8: On the multi-task Meta-World domain, we compare CUDS and UDS to the model-based offline RL
method COMBO [81] that trains a dynamics model on all of the data and performs model-based offline training
using the learned model. CUDS and UDS are able to outperform COMBO by a large margin.

tasks with the minimum reward value in the offline dataset of the target task. As shown in Table 7,
CUDS and UDS outperform No Sharing by a large margin while also performing comparably to CDS
and Sharing All. Therefore, CUDS and UDS are not limited to settings with binary rewards but are
able to be applied to more general cases, in particular, environments with dense rewards.

E Comparisons of CUDS and UDS to Multi-Task Model-Based Offline RL
Approaches

In this section, we compare CUDS and UDS to a recent, state-of-the-art model-based offline RL
method COMBO [81] in the Meta-World domain. We adapt COMBO to the multi-task offline setting
by learning the dynamics model on data of all tasks combined and and performing vanilla multi-task
offline training without data sharing using the model learned with all of the data. As shown in Table 8,
CUDS and UDS indeed outperform COMBO in the average task success rate. The intuition behind
this is that COMBO is unable to learn an accurate dynamics model for tasks with limited data as in
our Meta-World setting.

18

F Theoretical Analysis of UDS and CUDS
In this section, we will theoretically analyze UDS and CUDS to understand when these approaches
can perform well. We will first discuss our notation, then present our theoretical results, then discuss
the intuitive explanations of these results, and finally, provide proofs of the theoretical results.

F.1 Notation and Assumptions

Let πβ(a|s) denote the behavior policy for task i (note that index i was dropped from πβ(a|s; i)
for brevity). The dataset, Di is generated from the marginal state-action distribution of πβ , i.e.,
D ∼ dπβ (s)πβ(a|s). We define dπD as the state marginal distribution introduced by the dataset D
under π. For our analysis, we will abstract offline RL algorithms into a generic constrained policy
optimization problem [35]:

π∗(a|s) := arg max
π

JD(π)− α

1− γ
D(π, πβ). (11)

JD(π) denotes the average return of policy π in the empirical MDP induced by the transitions
in the dataset, and D(π, πβ) denotes a divergence measure (e.g., KL-divergence [27, 70], MMD
distance [34] or DCQL [35]) between the learned policy π and the behavior policy πβ . Let DCQL(p, q)
denote the following distance between two distributions p(x) and q(x) with equal support X :

DCQL(p, q) :=
∑
x∈X

p(x)

(
p(x)

q(x)
− 1

)
.

Unless otherwise mentioned, we will drop the subscript “CQL” from DCQL and use D and DCQL in-
terchangeably. Prior works [35, 80] have shown that the optimal policy π∗i that optimizes Equation 11
attains a high probability safe-policy improvement guarantee, i.e., J(π∗i) ≥ J(πβ)− ζi, where ζi is:

ζi = O
(

1

(1− γ)2

)
E
s∼d

π∗
i
Di

[√
DCQL(π∗i , πβ)(s) + 1

|Di(s)|

]
− α

1− γ
D(π∗i , πβ). (12)

The first term in Equation 12 corresponds to the decrease in performance due to sampling error and
this term is high when the single-task optimal policy π∗i visits rarely observed states in the dataset
Di and/or when the divergence from the behavior policy πβ is higher under the states visited by
the single-task policy s ∼ dπ

∗
i

Di . We will show that UDS and CUDS enjoy safe policy improvement.
In our analysis, we assume r(s,a) ∈ [0, 1]. Finally, as discussed in Section 3, let Deff

i denote the
relabeled dataset for task i, which includes both Di and the transitions from other tasks relabeled
with a 0 reward.

Assumptions. To prove our theoretical results, following prior work [35, 80] we assume that the
empirical rewards and dynamics concentrate towards their mean.

Assumption F.1. ∀ s,a, the following relationships hold with high probability, ≥ 1− δ

|r̂(s,a)− r(s,a)| ≤ Cr,δ√
|D(s,a)|

, ||P̂ (s′|s,a)− P (s′|s,a)||1 ≤
CP,δ√
|D(s,a)|

.

Similar to prior work [35, 80], we also make a coverage assumption, i.e., we assume that each
state-action pair is observed in the dataset Di, but the rewards and transition dynamics are stochastic,
so, the occurrence of each state-action pair does not trivially imply good performance. To relax this
assumption, we can extend our analysis to function approximation (e.g., linear function approxima-
tion [10]), where such a coverage assumption is only required on all directions of the feature space,
and not all state-action pairs. This would not significantly change the analysis, and hence we opt for
the simple but illustrative analysis in a tabular setting here.

F.2 Theoretical Results

We first provide a performance guarantee for UDS which is then used to show that under certain
conditions on the sizes of the labeled Di and the effective dataset, Deff

i , UDS attains a better policy
improvement guarantee than naïve no sharing. We first briefly discuss a novel component of our
proof technique, then present the theoretical results, and then interpret it.

19

F.2.1 Our Proof Technique
While there are several techniques to provide guarantees for offline RL algorithms, we will build
on the line of safe-policy improvement bounds, previously used in Kumar et al. [35], Yu et al. [80].
However, naïvely applying these guarantees to our UDS setting will give rise to very weak bounds,
since a number of these guarantees utilize a bound on the value difference of the policy in the
empirical MDP and the actual MDP (term (i)) as shown below:

J(π)− J(πβ) := J(π)− Ĵ(π)︸ ︷︷ ︸
(i)

+ Ĵ(π)− Ĵ(πβ)︸ ︷︷ ︸
(ii)

+ Ĵ(πβ)− Ĵ(πβ)︸ ︷︷ ︸
(iii)

.

Typically, term (i) depends on the sampling error on states that are visited by the learned policy π,
and decays to 0 with infinite samples, but UDS can learn quite pessimistic Q-values due to the reward
labeling procedure. However, this may not affect the policy performance since the relative ordering
of actions might still be the same. This is not accounted for in any prior analysis we are aware of.

Therefore, we introduce a novel analysis tool that, rather than decomposing J(π)− J(πβ) naïvely
using the return in the empirical MDP, decomposes it using the return of the policy π in the best
empirical MDP that still produces the policy π as its optimal policy. One simple way to obtain this
best empirical MDP is via affine transformations on the reward function that preserve optimality. So,
for strengthening our bound, we shall compute the bound similar to the above equation for different
affine transformations of the reward and pick the one that gives the tightest bound.

Formally, let g(·) be an affine function: g(x) = u · x+ v for some u > 0, u ∈ R and v ∈ R. Then
our decomposition looks like:

J(π)− J(πβ) := J(π)− g
(
Ĵ(π)

)
︸ ︷︷ ︸

(i)

+ g
(
Ĵ(π)

)
− g

(
Ĵ(πβ)

)
︸ ︷︷ ︸

(ii)

+ g
(
Ĵ(πβ)

)
− J(πβ)︸ ︷︷ ︸

(iii)

,

Then, to obtain a strong lower bound on J(π) − J(πβ), we can first bound each of the terms for
a given choice of g = (u, v), and then take the supremum over u and v. This is reflected in the
performance guarantee we present next.

F.2.2 Performance Guarantee for UDS
Proposition F.1 (Policy improvement guarantee for UDS). Let π∗UDS denote the policy learned by
UDS for a given task i, and let πeff

β (a|s, i) denote the behavior policy for the combined dataset for
task i, Deff

i . Then with high probability ≥ 1− δ, π∗UDS is a ζ-safe policy improvement over πeff
β , i.e.,

J(π∗UDS) ≥ J(πeff
β)− ζ, where ζ is:

ζ = min
u>0,v

ζu,v

ζu,v =
1

1− γ

∣∣∣∣Es,a∼d
πβ

Deff
i

[1− f(s,a)]− v
∣∣∣∣︸ ︷︷ ︸

(a): reward bias, but modified for the best u

− αu

1− γ
D(π∗UDS, π

eff
β)︸ ︷︷ ︸

(b): policy improvement

+
2CP,δγ

(1− γ)2

√DCQL(π∗UDS, π
eff
β)(s) + 1

|Deff
i (s)|

︸ ︷︷ ︸

(c): dynamics sampling error

+
2uCr,δ
(1− γ)

Es,a∼dπDi

[
f(s,a)√
|Di(s,a)|

]
︸ ︷︷ ︸

(d): reward sampling error, but scaled down

,

where we use the notation f(s,a) := |Di(s,a)|
|Deff
i (s,a)| .

A proof of Proposition F.1 is provided in Appendix F.3. To intuitively interpret the various terms that
appear, we note that term (b) corresponds to the standard policy improvement that arises as a result
of using an offline RL algorithm, term (c) corresponds to sampling error that arises as a result of
performing offline RL on the dynamics induced by a finite dataset, but note that this term depends
on the size of the effective dataset, Deff

i and not only the labeled dataset Di for the task. Term (a)
corresponds to the bias incurred as a result of labeling various transitions with a 0 reward in the data,
and term (d) corresponds to the sampling error in the reward function, under the assumption of a
stochastic reward function.

20

F.2.3 How does UDS compare to No Sharing?

In the setting when no data is shared across tasks, we attain the guarantee shown in Equation 12.
Comparing Proposition F.1 to this guarantee, we note that under some scenarios, UDS yields a tighter
bound compared to No Sharing. Two such scenarios are given by:

1. Long-horizon tasks: Consider a scenario where tasks have a long horizon H = 1
1−γ and

|Deff
i (s)| = H2|Di(s)|. In this case, dynamics sampling error term (term (c)) consists of

one less factor of H when UDS is utilized, compared to when it is not. Since the dynamics
sampling error grows quadratically in the horizon, whereas other terms grow linearly, a
reduction in this term by increasing sample size (i.e., denominator) can lead to a stronger
guarantee for UDS than No Sharing. This reasoning does not even consider term (d), which
can be trivially upper-bounded by the corresponding term for No Sharing, even though UDS
reduces this term as well.

2. The fraction f(s,a) is identical for all state-action pairs in the labeled Di, i.e., the un-
labeled dataset consists of equal proportions state-action pairs as the labeled dataset.
Consider an extreme case when the unlabeled dataset consists of the trajectories in the
labeled dataset such that f(s,a) = c0 for all state-action tuples, just not annotated with
rewards. In this case, reward bias takes on a constant value across all the transitions in the
dataset, and by virtue of utilizing u and v in our bound in Proposition F.1, we note that the
overall effect of this reward bias disappears, since v can compensate for this bias.

F.2.4 Extension to CUDS

Finally, we extend Proposition F.1 to a performance guarantee for CUDS by integrating the technique
above with the analysis from Yu et al. [80]. To analyze CUDS, we consider the abstract model of
the conservative data sharing scheme developed by Yu et al. [80]. This model suggests that CUDS
approximates the following optimization in the empirical MDP generated by the relabeled dataset:

(π∗(a|s, i), π∗β(a|s, i)) := arg max
π,πβ∈Πrelabel

ĴDeff (π)− α

1− γ
D(π, πβ). (13)

Now, utilizing Proposition F.1 and Proposition 5.1 from Yu et al. [80], we obtain the following
guarantee for CUDS:
Corollary F.1. Let π∗CUDS(a|s, i) be the optimal policy found by CUDS (Equation 13) and let
π∗β(a|s, i) denote the behavior policy that optimizes Equation 13 for task i ∈ [N]. Then, with high
probability ≥ 1− δ, π∗CUDS is a ζ-safe policy improvement over π∗β , i.e., J(π∗CUDS) ≥ J(π∗β)− ζCUDS,
where ζCUDS is given by:

ζCUDS = min
u>0,v

ζu,v

ζu,v =
1

1− γ

∣∣∣∣Es,a∼d
πβ

Deff
i

[1− f(s,a)]− v
∣∣∣∣︸ ︷︷ ︸

(a): reward bias

− αu

1− γ
D(π∗CUDS, π

∗
β)︸ ︷︷ ︸

(b): policy improvement

+
2CP,δγ

(1− γ)2

√DCQL(π∗CUDS, π
∗
β)(s) + 1

|Deff
i (s)|

︸ ︷︷ ︸

(c): dynamics sampling error

+ +
2uCr,δ
(1− γ)

Es,a∼dπDi

[
f(s,a)√
|Di(s,a)|

]
︸ ︷︷ ︸

(d): reward sampling error, but scaled down

.

Proof. The proof of this proposition follows directly from the proof of Proposition F.1 with the
exception that this argument must be applied against the optimized behavior policy π∗β .

Comparing the bounds for CUDS and UDS. We now interpret the bound in Corollary F.1 com-
paratively against the bound in Proposition F.1. First note that since the abstract model of CUDS
(Equation 13) optimizes the behavior policy π∗β , we first note from Equation 14 of Yu et al. [80] that
for any other behavior policy π′,

D(π∗CUDS, π
∗
β) ≤ D(π∗CUDS, π

′). (14)

21

This means that the numerator of the sampling error term (term (c)) is smaller when CUDS is
utilized as compared to when UDS is utilized. In addition, since CUDS relabels unlabeled data
from Equation 13, this scheme also increases the dataset size, increasing the denominator of term
(c). On the other hand, note that while UDS increases the denominator |Deff

i |, it may also increase
the distributional shift D(π∗, πeff

β) appearing in the numerator of the sampling error term. Our
practical version of CUDS (Equation 2), which approximates Equation 13 by relabeling only the top
k percentile of the unlabeled data based on the objective in Equation 2, gives us a control over the
effective dataset size after relabeling |Deff

i |, while still ensuring a reduced value of D(π∗, π∗β), and is
thus expected to reduce ζ compared to UDS.

Intuitively, note that the bounds in Proposition F.1 and Corollary F.1, guarantee safe-policy improve-
ment over different base policies πeff

β vs π∗β . Intuitively, we would expect that J(π∗β) ≥ J(πeff
β) in

practice, especially for a large α, since CUDS optimizes the behavior policy towards high return,
compared to simply relabeling all unlabeled transitions. Therefore, CUDS not only reduces ζ com-
pared to UDS, but also, in practice, is expected to improve over π∗β , which performs better than πeff

β .
Thus, we would expect CUDS to be better in practice compared to UDS.

F.3 Proof of Proposition F.1

As mentioned in the beginning of Section F.2.1, to strengthen the conventional safe policy improve-
ment bound, we instead utilize a different form of loss decomposition of the improvement of the
learned policy relative to the behavior policy with the affine transformation g:

J(π)− J(πβ) := J(π)− g
(
Ĵ(π)

)
︸ ︷︷ ︸

(i)

+ g
(
Ĵ(π)

)
− g

(
Ĵ(πβ)

)
︸ ︷︷ ︸

(ii)

+ g
(
Ĵ(πβ)

)
− J(πβ)︸ ︷︷ ︸

(iii)

.

Now we will discuss how to bound each of the terms: terms (i) and (ii) correspond to the divergence
between a transformed empirical policy return and the actual return. While usually, this difference
depends on the sampling error and distributional shift, in our case, it additionally depends on the
reward bias induced on the unlabeled data and the transformation g. We first discuss the terms that
contribute to this reward bias.

Bounding the reward bias. Denote the effective reward of a particular transition (s,a, r, s′) ∈ Deff
i ,

as r̂eff
i , which considers contributions from both the reward r̂(s,a) observed in dataset Di, and the

contribution of 0 reward from the relabeled dataset:

r̂eff
i (s,a) =

|Di(s,a)| · r̂(s,a) + |Deff
i (s,a) \ Di(s,a)| · 0

|Deff
i (s,a)|

(15)

Define f(s,a) := |Di(s,a)|
|Deff
i (s,a)| for notation compactness. Equation 15 and the form of the reward

transformation g(x) = u · x+ v can then be used to derive the following difference against the true
rewards:

ur̂eff
i (s,a) + v − r(s,a) = uf(s,a) (r̂(s,a)− r(s,a)) + (1− uf(s,a)) · (0− r(s,a)) + v (16)

≤ uf(s,a) · Cr,δ√
|Di(s,a)|

− (1− f(s,a)u) · r(s,a) + v (17)

≤ uf(s,a) · Cr,δ√
|Di(s,a)|

,

where the last step follows from the fact that the ground-truth reward r(s,a) ∈ [0, 1] and the fact that
v will be chosen to minimize this upper bound. Now, we lower bound the reward bias as follows:

ur̂eff
i (s,a) + v − r(s,a) = uf(s,a) · (r̂(s,a)− r(s,a)) + (1− f(s,a)u) · (−r(s,a)) + v (18)

≥ −uf(s,a) · Cr,δ√
|Di(s,a)|

− (1− f(s,a)u) + v,

where the last step follows from the fact that r(s,a) ≤ 1. To highlight the significance of this reward
transformation, note that in the last step, if ∀s,a, f(s,a) = c0, then the best reward transformation
would choose v = 1− c0, and that completely eliminates the excess bias induced in the bound.

22

Upper bounding g
(
Ĵi(π)

)
− Ji(π). Next, using the upper and lower bounds on the reward bias,

we now derive an upper bound on the difference between the value of a policy computed under the
empirical MDP and the actual MDP. To compute this difference, we follow the following steps

g
(
Ĵi(π)

)
− Ji(π) =

1

1− γ
∑
s,a

(
d̂πDeff

i
(s)π(a|s)g

(
r̂eff
i (s,a)

)
− dπi (s)π(a|s)r(s,a)

)
(19)

≤ 1

1− γ
∑
s,a

d̂πDeff
i

(s)π(a|s)
(
g
(
r̂eff
i (s,a)

)
− r(s,a)

)
︸ ︷︷ ︸

:=∆1

+
1

1− γ
∑
s,a

(
d̂πDeff

i
(s)− dπ(s)

)
π(a|s)r(s,a)︸ ︷︷ ︸

:=∆2

Following Kumar et al. [35] (Theorem 3.6), we can bound the second term ∆2 using:

|∆2| ≤
γCP,δ
1− γ

Es∼d̂π
Deff
i

(s)

[√
|A|√

|Deff(s)|

√
D(π, π̂eff

β)(s) + 1

]
. (20)

To upper bound ∆1, we utilize the reward upper bound from Equation 16:

∆1 =
∑
s

d̂πDeff
i

(s)

(∑
a

π(a|s)
(
ur̂eff
i (s,a) + v − r(s,a)

))
(21)

≤
∑
s

d̂πDeff
i

(s)
∑
a

uf(s,a)
Cr,δ√
|Di(s)|

π(a|s)√
π̂β(a|s)︸ ︷︷ ︸

=∆′1

. (22)

Combining the results so far, we obtain, for any policy π:

Ji(π) ≥ g
(
Ĵi(π)

)
− |∆2|

1− γ
− |∆

′
1|

1− γ
. (23)

Lower bounding g
(
Ĵi(π)

)
− Ji(π). To lower bound this quantity, we follow the step shown in

Equation 19, and lower bound the term ∆2 by using the negative of the RHS of Equation 20, and
lower bound ∆1 by upper bounding its absolute value as shown below:

|∆1| =

∣∣∣∣∣∑
s

d̂πDeff
i

(s)

(∑
a

π(a|s)
(
ur̂eff
i (s,a) + v − r(s,a)

))∣∣∣∣∣ (24)

≤
∑
s

d̂πDeff
i

(s)
∑
a

uf(s,a)
Cr,δ√
|Di(s)|

π(a|s)√
π̂β(a|s)︸ ︷︷ ︸

=∆′1

+

∣∣∣∣∣∑
s

d̂πDeff
i

(s)
∑
a

π(a|s) · (1− f(s,a)u)− v

∣∣∣∣∣ .
(25)

This gives rise to the complete lower bound:

g
(
Ĵi(π)

)
≥ Ji(π)− |∆2|

1− γ
− 1

1− γ

∣∣∣∣∣∑
s,a

d̂πDeff
i

(s)π(a|s)(1− f(s,a)u)− v

∣∣∣∣∣− ∆′1
1− γ

. (26)

Policy improvement term (ii). Finally, the missing piece that needs to be bounded is the policy
improvement term (ii) in the decomposition of g (J(π))− g (J(πβ)). Utilizing the abstract form of
offline RL (Equation 11, we note that term (ii) is lower bounded as:

term (ii) ≥ αu

1− γ
D(π, πβ). (27)

Putting it all together. To obtain the final expression of Proposition F.1, we put all the parts together,
and include some simplifications to obtain the final expression. The bound we show is relative to the

23

effective behavior policy πeff
β . Applying Equation 26 for term (i) on policy π, Equation 27 for term

(ii), and Equation 23 for the behavior policy πeff
β , we obtain the following:

J(π)− J(πeff
β) = J(π)− g

(
Ĵ(π)

)
+ g

(
Ĵ(π)

)
− g

(
Ĵ(πeff

β)
)

+ g
(
Ĵ(πeff

β)
)
− J(πeff

β)

≥ − 2γCP,δ
(1− γ)2

Es∼d̂π
Deff
i

(s)

[√
|A|√

|Deff(s)|

√
D(π, π̂eff

β)(s) + 1

]
− 2uCr,δ

1− γ
Es,a∼d̂π

Deff
i

[
f(s,a)√
|Di(s,a)|

]

− 1

1− γ

∣∣∣∣Es,a∼d
πβ

Deff
i

[1− f(s,a)u]− v
∣∣∣∣︸ ︷︷ ︸

:=∆3

+
αu

1− γ
D(π, πeff

β).

Note that in the second step above, we upper bound the quantities ∆′1 and ∆2 corresponding to πeff
β

with twice the expression for policy π. This is because the effective behavior policy πeff
β consists of a

mixture of the original behavior policy π̂β with the additional data, and thus the new effective dataset
consists of the original dataset Di as its part. Upper bounding it with twice the corresponding term
for π is a valid bound, though a bit looser, but this bound suffices for our interpretations.

Finally to finish the proof, we can take the supremum over the best choice of (u, v). Thus, we obtain
the desired bound in Proposition F.1.

G Empirical analysis of the reason that CUDS and UDS work
In this section, we perform an empirical study on the Meta-World domain to better understand the
reason that UDS and CUDS work well. Our theoretical analysis suggests that UDS will help the
most on domains with limited data or narrow coverage or low data quality. To test these conditions in
practice, we perform empirical analysis on two domains as follows.

G.1 Meta-World Domains

We first choose the door open task with three different combinations of dataset size and data quality
of the task-specific data with reward labels:

• 2k transitions with the expert-level performance (i.e. high-quality data with limited
sample size and narrow coverage)

• 2k transitions with medium-level performance (i.e. medium-quality data with limited
sample size and narrow coverage)

• a medium-replay dataset with 152k transitions (i.e. medium-quality data with sufficient
sample size and broad coverage).

We share the same data from the other three tasks, door close, drawer open and drawer close
as in Table 1, which are . As shown in Table 9, both UDS and CUDS are able to outperform No
Sharing in the three settings, suggesting that increasing the coverage of the offline data as suggested
by our theory does lead to performance boost in wherever we have limited good-quality data (expert),
limited medium-quality data (medium) and abundant medium-quality data (medium-replay). It’s
worth noting that UDS and CUDS significantly outperform No Sharing in the limited expert and
medium data setting whereas in the medium-replay setting with broader coverage, CUDS outperforms
No sharing but UDS fails to achieve non-zero success rate. Such results suggest that UDS and CUDS
can yield greater benefit when the target task doesn’t have sufficient data and the number of relabeled
data is large. The fact that UDS is unable to learn on medium-replay datasets also suggests that data
sharing without rewards is less useful in settings where the coverage of the labeled offline data is
already quite broad.

G.2 D4RL Hopper Data Quality + Coverage Diagnostic Study

To further understand the sensitivity of UDS to the data coverage and the data quality of both target
task data (i.e. with reward labels) and relabeled data (i.e. without reward labels), we perform another
empirical study using the hopper environment from the D4RL [20] benchmark. We consider the
following 6 different combinations varying the quality and amount of the labeled and unlabeled
datasets:

24

Environment Dataset type / size CUDS (ours) UDS (ours No Sharing

expert / 2k transitions 67.6% 58.8% 31.3%
Meta-World door open medium / 2k transitions 67.3% 74.2% 27.6%

medium-replay / 152k transitions 30.0% 0.0% 14.8%

Table 9: We perform an empirical analysis on the Meta-World door open task where we use varying data
quality and dataset size target task door open. We share the same dataset from the other three tasks in the
multi-task Meta-World environment, door close, drawer open and drawer close to the target task. The
numbers are averaged over three random seeds. CUDS and UDS are able to outperform No Sharing in most of
the settings except that UDS fails to achieve non-zero success rate in the medium-replay dataset with a large
number of transitions. Such results suggest that CUDS and UDS are robust to the data quality of the target task
and work the best in settings where the target task has limited data.

1. 10k labeled data from hopper-expert + unlabeled 1M data hopper-random (i.e., high-
quality + narrow labeled data, low-quality + broad unlabeled data)

2. 10k labeled data from hopper-expert + unlabeled 1M data from hopper-medium (i.e.,
high-quality + narrow labeled data, medium-quality + narrow unlabeled data)

3. 10k labeled data from hopper-medium + unlabeled 1M data from hopper-random (i.e.,
medium-quality + narrow labeled data, low-quality + broad unlabeled data)

4. 10k labeled data from hopper-medium + unlabeled 1M data from hopper-expert (i.e.,
medium-quality + narrow labeled data, high-quality + narrow unlabeled data)

5. 10k labeled data from hopper-random + unlabeled 1M data from hopper-medium (i.e.,
low-quality + broad labeled data, medium-quality + narrow unlabeled data)

6. 10k labeled data from hopper-random + unlabeled 1M data from hopper-expert (i.e.,
low-quality + broad labeled data, high-quality + narrow unlabeled data)

Results. In cases (1) and (2), adding the unlabeled random or medium data, should increase coverage,
since the labeled data only consists of expert transitions. Moreover, the induced reward bias due to
incorrect labeling of rewards on the medium unlabeled data should not hurt, since the 10k expert
transitions retain their correct labels, and the medium/random data should only serve as negatives.
Therefore, we expect the benefits of coverage to outweigh any reward bias, and as shown in Table 10,
we find that UDS does help.

In cases (4), (5) and (6), when the relabeled data is better compared to the labeled data (i.e., expert or
medium), we find that even if the rewards on these transitions are incorrect, behavior regularization
properties induced by offline RL algorithms allow UDS to attain better performance than no sharing
by utilizing the unlabeled data.

In case (3), we find that UDS hurts compared to No Sharing. This is because the target task data
as well as unlabeled data are both low-medium quality and medium data already provides decent
coverage (not as high as random data, but not as low as expert data). Therefore, in this case, we
believe that the addition of unlabeled data neither provides trajectories of good quality that can help
improve performance, nor does it significantly improve coverage, and only hurts by incurring reward
bias. We therefore believe that UDS may not help in such cases where the coverage does not improve,
and added data is not so high quality.

G.3 Summary of empirical analysis

Given our results in Table 9 and Table 10, we summarize the applicability of UDS under different
scenarios in Table 11 below.

25

Environment Labeled dataset type / size Unlabeled dataset type / size UDS (ours) No Sharing
expert / 10k transitions random / 1M transitions 90.8 77.1
expert / 10k transitions medium / 1M transitions 87.6 77.1

D4RL hopper [20] medium / 10k transitions random / 1M transitions 9.8 28.7
medium / 10k transitions expert / 1M transitions 106.1 28.7
random / 10k transitions medium / 1M transitions 51.9 9.6
random / 10k transitions expert / 1M transitions 97.0 9.6

Table 10: We perform an empirical analysis on the hopper environment from the D4RL [20] benchmark to test
the sensitivity of UDS under the data quality and data coverage for both the labeled task data and unlabeled
data. The numbers are averaged over three random seeds. UDS outperforms No Sharing in 5 out of 6 settings,
suggesting that UDS is robust in different combinations of data quality and coverage of both labeled and
unlabeled data. Note that UDS fails in the setting where the labeled data is of medium data quality and the
unlabeled data is random, suggesting that sharing data in settings where the labeled data is limited and of low
quality and the unlabeled data is also of poor quality is not useful.

Scenarios UDS Intuition
L: limited + high-quality + narrow, U: abundant + low-quality + broad X increase coverage
L: limited + high-quality + narrow, U: abundant + medium-quality + narrow X more negatives
L: limited + medium-quality + narrow, U: abundant + low-quality + broad × reward bias outweighs high coverage
L: abundant + medium-quality + broad, U: abundant + medium-quality + broad × reward bias outweighs high coverage
L: limited + medium-quality + narrow, U: abundant + high-quality + narrow X increase data quality
L: limited + low-quality + broad, U: abundant + medium-quality + narrow X increase data quality
L: limited + low-quality + broad, U: abundant + high-quality + narrow X increase data quality

Table 11: Summary of scenarios where UDS is expected to work and where it is not expected to work. L
denotes the characteristics of labeled data, U denotes characteristics of unlabeled data. Limited/Abundant refers
to the relative amount of data available (note that these are not absolute numbers and hard to precisely quantify
without access to the problem domain, but a highly skewed ratio of the amount of labeled and unlabeled data
might help characterize it as limited/abundant). High-quality/medium-quality/low-quality refers to the actual
performance of the behavior policy generating the datasets. Narrow/broad refers to the relative state coverage of
the datasets that we study.

26

	Q-Values Learned via UDS
	Details of UDS and CUDS
	Details on the training procedure
	Details on the environment and the datasets
	Computation Complexity

	Additional details on the quality of data shared from other tasks
	black Empirical Results of UDS and CUDS in more general dense reward settings
	black Comparisons of CUDS and UDS to Multi-Task Model-Based Offline RL Approaches
	black Theoretical Analysis of UDS and CUDS
	black Notation and Assumptions
	black Theoretical Results
	black Our Proof Technique
	black Performance Guarantee for UDS
	black How does UDS compare to No Sharing?
	black Extension to CUDS

	black Proof of Proposition F.1

	black Empirical analysis of the reason that CUDS and UDS work
	black Meta-World Domains
	black D4RL Hopper Data Quality + Coverage Diagnostic Study
	black Summary of empirical analysis

