
A Training details519

We trained 24 networks of each of the three types. The versions differed in the size of the neighborhood520

(4, 8, 12, or 20 neighbors), the amount of noise added (↵ 2 0, 0.1, 0.2), and the used loss (position or521

factor loss).522

The parameters we trained were:523

• all weights of the underlying network524

• the logit transform of p for each relative position of two neighbors525

• the logarithms of the diagonal entries of C for each relative position of neighbors526

We trained models using the standard stochastic gradient descent implemented in pytorch [56] with527

a learning rate of 0.001, a momentum of 0.9 and a slight weight decay of 0.0001. To speed up528

convergence we increased the learning rate by a factor of 10 for the parameters of the prediction, i.e.529

C and p. For the gradient accumulation for the position based loss, we accumulate 5 repetitions for530

the pixel model and 10 for the linear model and for predseg1. Each repetition contained 10 random531

negative locations. Batch size was set to fit onto the smaller GPU type used in our local cluster. The532

resulting sizes are listed in Table 2533

A.1 Architecture details534

The pixel model was implemented as a single Identity layer.535

The linear model was implemented as a single 50⇥ 11⇥ 11 convolutional layer.536

The Predseg1 model was implemented as a sequential model with 4 processing steps separated by537

subsampling layers (1⇥ 1 convolutional layers with a stride > 1). The first processing step was a538

3⇥ 3 convolutional layer with 3 channels followed by subsampling by a factor of 3. The second step539

was a 11⇥ 11 convolutional layer with 64 features followed by subsampling by a factor of 2. The540

third and fourth steps were residual processing blocks, i.e. two convolutional layers with a rectified541

linear unit non-linearity between them whose results were added to the inputs. They had 128 and 256542

features respectively and were separated by another subsampling by a factor of 2.543

A.2 Added noise544

To prevent individual features dimensions from becoming perfectly predictive, we added a small545

amount of Gaussian noise to the feature maps before applying the loss. To yield variables with mean546

0 and variance 1 after adding the noise we implemented this step as:547

fnoise =
p
1� ↵2 + ↵✏ (13)

where ↵ 2 [0, 1] controls the noise variance and ✏ is a standard normal random variable.548

Adding this noise did not change any of our results substantially and the three versions with different549

amounts of noise (↵ = 0, 0.1 or 0.2) performed within 1� 2% in all performance metrics.550

A.3 Training duration551

Networks were trained in training jobs that were limited to either 48 hours of computation time or 10552

epochs of training. As listed in table 2, we used a single such job for the pixel models, 7 for the linear553

models and 9 for the predseg1 models. Most larger networks were limited by the 48 hour limit, not554

by the epoch limit.555

A.4 Used computational resources556

The vast majority of the computation time was used for training the network parameters. Computing557

segmentations for the BSDS500 images and evaluating them took only a few hours of pure CPU558

processing.559

15



Table 2: Training parameters and training time for the different networks. Networks were trained
on single V100 (32GB) or RTX8000 (48GB) GPUs depending on availability. Training times were
approximately read out from the computation logs. # of training jobs indicates how many 48 hour
jobs we started for each model.

Model batch size training time (hh:mm per epoch) # training jobs
4 8 12 20

pixel (position loss) 32 0:30 1:00 1:30 2:30 1
pixel (factor loss) 32 0:45 1:20 2:00 3:15 1

linear (position loss) 6 10:20 20:20 30:15 50:00 7
linear (factor loss) 6 4:00 7:50 11:30 19:00 7

predseg1 (position loss) 16 4:05 7:45 11:25 18:40 9
predseg1 (factor loss) 24 2:20 4:40 6:45 11:10 9

Networks were trained on an internal cluster using one GPU at a time and 6 CPUs for data loading.560

We list the training time per epoch in table 2. If every job had run for the full 48 hours we would have561

used (1 + 7 + 9) ⇥ 24 ⇥ 2 = 816 days of GPU processing time, which is a relatively close upper562

bound on the time we actually used.563

16


