
Published as a conference paper at ICLR 2024

SOLVING CHALLENGING MATH WORD PROBLEMS
USING GPT-4 CODE INTERPRETER WITH CODE-
BASED SELF-VERIFICATION

Aojun Zhou1∗
Ke Wang1∗

Zimu Lu1∗
Weikang Shi1

∗
Sichun Luo3∗

Zipeng Qin1

Shaoqing Lu 4 Anya Jia 5 Linqi Song3 Mingjie Zhan1†‡
Hongsheng Li1,2‡

1MMLab, The Chinese University of Hong Kong 2Shanghai Artificial Intelligence Laboratory
3City University of Hong Kong 4CSUST 5Tufts University
{aojunzhou, zmjdll}@gmail.com hsli@ee.cuhk.edu.hk

ABSTRACT

Recent progress in large language models (LLMs) like GPT-4 and PaLM-2
has brought significant advancements in solving math problems. In particular,
OpenAI’s latest version of GPT-4, known as GPT-4 Code Interpreter, shows
remarkable performance on challenging math datasets. In this paper, we explore
the effect of code on enhancing LLMs’ reasoning capability by introducing
different constraints on the Code Usage Frequency of GPT-4 Code Interpreter.
We found that its success can be primarily attributed to its powerful skills in
generating and executing code, evaluating the execution result, and rectifying
its solution when receiving unreasonable outputs. Based on this, we propose
a novel prompting method, explicit code-based self-verification (CSV). This
method employs a zero-shot prompt on the GPT-4 Code Interpreter to encourage
it to use code to self-verify its answers. In instances where the verification state
is "False", the model will automatically amend its solution. Furthermore, we
recognize that the states of the verification result indicate the confidence of a
solution, which can improve the effectiveness of majority voting. With GPT-4
Code Interpreter and CSV, we achieve an impressive zero-shot accuracy of various
mathematical problem-solving benchmarks.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020; OpenAI, 2023; Anil et al., 2023) have shown
impressive success in various tasks. However, they still fall short in mathematical reasoning, often
producing nonsensical or inaccurate content and struggling with complex calculations. Previous
works to tackle these challenges include the Chain-of-Thought (CoT) (Wei et al., 2022) framework,
which enhances LLMs’ logical reasoning abilities by generating intermediate reasoning steps.
Additionally, PAL (Gao et al., 2023) uses the Python interpreter to improve computational accuracy.

Recently, OpenAI has unveiled an improved version of GPT-4, namely the GPT-4 Code Interpreter1

or GPT4-Code, which is good at providing natural language reasoning, alongside step-by-step
Python code. Notably, it can generate and execute code incrementally, and subsequently present
the execution results back to the LLM. This mechanism has shown promising results in solving
mathematical problems. Our initial experiments show that GPT4-Code achieved an impressive
zero-shot accuracy of 69.69% on the challenging MATH dataset (Hendrycks et al., 2021), marking
a significant improvement of 27.5% over GPT-4’s performance (42.2%).

While GPT4-Code has demonstrated proficiency in solving math problems, there has been a notable
absence of systematic analysis focusing on understanding and further enhancing its mathematical
problem-solving abilities. A critical distinction between GPT4-Code and its predecessor, GPT-
4, lies in GPT4-Code’s ability to automatically generate and execute code. Therefore, this paper

∗Equal contribution.
†Project leader.
‡Corresponding author.
1https://chat.openai.com/?model=GPT4-Code-interpreter

1

https://chat.openai.com/?model=GPT4-Code-interpreter

Published as a conference paper at ICLR 2024

presents pilot experiments investigating GPT4-Code’s code generation and execution mechanism
using specific code-constrained prompts. The analysis reveals that GPT4-Code’s strong performance
is not solely due to its code generation and execution abilities but also its capacity to adjust
its problem-solving strategies based on feedback from code execution—a process we term self-
debugging (akin to (Chen et al., 2023b)), examples illustrated in Appendix E. Due to this clever
mechanism, there is an increased frequency of code usage. Hence, we introduce Code Usage
Frequency to differentiate these unique prompting strategies to quantitatively analyze the impact
of code-constrained prompts on GPT4-Code for mathematical problem-solving. The step-by-step
code generation and self-debugging mechanisms highlight the critical role of code in mathematical
problem-solving. Nevertheless, the self-debugging mechanism only verifies the correctness of
code while lacking the verification of the reasoning steps and the final answer, which has been
demonstrated to be of vital importance to solve math problems of LLMs (Cobbe et al., 2021;
Lightman et al., 2023).

We therefore ask the question: can we fully exploit the code generation and self-debugging
mechanisms in GPT4-code, so that it can automatically verify and correct its solutions, without
extra assistance from other models or users?

To answer this question, we propose a simple yet effective prompting technique termed the explicit
code-based self-verification (CSV), which guides GPT4-Code to generate additional code that
verifies the answer and adjusts the reasoning steps if there’s a flaw in reasoning. Unlike previous
methods that rely on external language models for verification (Lightman et al., 2023; Cobbe
et al., 2021), our approach leverages GPT4-Code’s inherent strengths. This approach offers two
key benefits: (1) When the verification indicates an answer is False, GPT4-Code can rectify its
prior solution and provide an improved alternative. (2) Solutions verified as True tend to be more
reliable, akin to human problem-solving. However, even if a solution is self-verified as False, we do
not directly abandon it. Instead, we propose a weighted majority voting strategy that incorporates
the code-based solution verification results, as opposed to relying exclusively on the frequency of
answers. We assign different weights to the solutions according to their verification states, reflecting
the solutions’ varying levels of reliability. In alignment with the Code Usage Frequency analysis
from our pilot experiments, our explicit code-based self-verification prompt boosts GPT4-Code’s
accuracy in mathematical problem-solving with increased code usage.

Empirical study demonstrates the effectiveness of our proposed pipeline on the MATH, GSM8K, and
MMLU-Math datasets using GPT4-Code. Our method achieves an impressive accuracy of 84.3%
on the MATH dataset, greatly outperforming the base GPT4-Code and previous SOTA methods.

This paper’s main contributions can be summarized in three key aspects:

• This study provides the first systematic analysis of code generation, execution, and self-
debugging’s role in mathematical problem-solving. Our findings reveal that GPT4-Code’s
impressive mathematical problem-solving proficiency is primarily attributed to its step-by-
step code generation and dynamic solution refinement based on code execution outcomes.

• We introduce the innovative explicit code-based self-verification (CSV) prompt, which
leverages GPT4-Code’s advanced code generation mechanism. This prompt guides the
model to verify the answer and then reevaluate its solution with code. CSV not only extends
the verification to the logic behind problem-solving but also improves the efficacy of the
majority voting method by integrating the verification states.

• We have demonstrated the superior performance of GPT4-Code and the proposed
CSV pipeline through extensive quantitative experiments on a variety of challenging
mathematical reasoning datasets.

2 RELATED WORK

Chain-of-Thought Reasoning. The Chain-of-Thought (CoT) prompting approach proposed
by (Wei et al., 2022) shows the multi-step reasoning capabilities of LLMs. (Kojima et al., 2022)
implements Zero-shot-CoT, which can serve as a strong zero-shot baseline. Further research extends
the reasoning capabilities of CoT by applying majority voting (Wang et al., 2023), choosing complex
few-shot examples and outputting results (Fu et al., 2022), breaking down the problem (Zhou et al.,
2023), or even using Tree-of-Thoughts (Yao et al., 2023). Similar to Zero-shot-CoT, our method
applies "step by step"-like prompts to regularize GPT4-Code’s use of code. Additionally, We
enhance majority voting by leveraging the results of CSV as voting weights.

2

Published as a conference paper at ICLR 2024

Question

Q: The greatest common divisor of positive integers m and n is 6.
The least common multiple of m and n is 126. What is the least
possible value of m+ n? A: 60

(a) Model output

Prompt 1: You are not allowed to use
any code. The problem: {Q}.
For any two positive integers m and
n, the product of their GCD and LCM
is equal to the product of the two
numbers.
GCD(m,n) · LCM(m,n)

= m · n

Given that GCD(m,n) = 6 and
LCM(m,n) = 126:

6 · 126 = m · n

Solving this gives us m · n = 756.
Now, we need to find the pair of factors
of 756 that add up to the smallest sum.
The pairs of factors of 756 are (1,756),
(2,378),..., (12,63), (14,54), (18,42),
(21,36), (27,28).
We can see that the pair (21,36) gives
the smallest sum, which is 21+36 =
57.
So, The least value of m + n is 57.

Therefore, the solution is 57 .✗

(b) Model output

Prompt 2: You can use code only 1 time. The
problem: {Q}
For any two positive integers m and n, their gcd and
lcm satisfy:

m · n = gcd(m,n) · lcm(m,n)

In this problem, we’re given that gcd(m,n) = 6 and
lcm(m,n) = 126:

m · n = 6 · 126
We use the fact that m and n are integers to generate
possible pairs (m,n). After we have the pairs
(m,n), we can find the pair that minimizes m + n.

import sympy as sp
gcd,lcm = 6,126; product = gcd * lcm
pairs = [(d, product // d) for d in sp.div(product) if
d <= product // d]
min_pair = min(pairs, key=sum)
min_pair, sum(min_pair)
»> ((27, 28), 55)

The pair (m,n) that min m + n is (27, 28), and

the minimum possible value of m + n is 55 .✗

(c) Model output

BasePrompt: The problem: {Q},
One important property relating GCD and LCM is
that

GCD(m,n) × LCM(m,n) = m × n

In this problem, we can get
6 × 126 = m × n

Let’s compute the right hand side of the equation first.

gcd,lcm = 6, 126; gcd * lcm
»> 756

The product of m and n is 756. Since the GCD of
m and n is 6, both m and n must be multiples of
6. So we need to find all the factors of 756 that are
multiples of 6.

[(i, m_times_n // i) for i in range(6,
int(m*n**0.5) + 1, 6) if m*n % i == 0]
»> [(6, 126), (12, 63), (18, 42)]

The pairs of factors of 756 that are multiples of 6 are:
1. (6, 126) 2. (12, 63) 3. (18, 42)
We want to find the pair with the least sum.

sums = [(pair, sum(pair)) for pair in factor_pairs]
min(sums, key=lambda x: x[1])
»> ((18, 42), 60)

The pair with the smallest sum is (18, 42), and the

sum is 60.So, the least possible value is 60 . ✓

Figure 1: Example from the 277th number theory problem in the MATH dataset: (a) Prompt 1 generates
text-only reasoning steps. (b) Prompt 2 generates intermediate text reasoning steps and post-hoc code, akin
to PAL (Gao et al., 2023). (c) Base prompt without code usage constrain. Details of the three prompts are
presented in Sec. 3.1. (For more examples, see Tab. 10 and Tab. 11 in Appendix H.)

Solving Math Problems with Code. Large language models have been found to be less accurate
in performing arithmetic calculations (Cobbe et al., 2021; Lewkowycz et al., 2022; Gao et al., 2023;
Lu et al., 2022). Consequently, previous works have attempted to solve math problems with the
assistance of code. The GSM8K dataset (Cobbe et al., 2021) uses calculation annotations to extract
all arithmetic calculations solved by an external calculator: the Python eval function. Program-
Aided Language model (PAL) (Gao et al., 2023) and Program of Thoughts (PoT) (Chen et al.,
2022) obtain the answer by generating and executing Python code. Although they can improve
computational accuracy, many generated codes get wrong answers due to the lack of verification.
Our approach not only utilizes the ability of GPT4-Code to generate codes and refine codes that fail
to run, but also uses CSV to enhance the accuracy of the answers.

Self-Verification. Previous studies train an additional verifier to verify the correctness of final
answers (Cobbe et al., 2021) or intermediate steps (Lightman et al., 2023; Li et al., 2023). (Weng
et al., 2023) showed the self-verification abilities of LLMs by generating and ranking multiple
answers. Furthermore, Self-refine proposed by (Madaan et al., 2023) iteratively refines its output
through self-generated feedback. Self-debug (Chen et al., 2023b) prompts the LLM to debug its
own prediction for code generation. Unlike these methods that require LLMs to give verification
feedback in natural language, our method applies generated codes to verify the answers and votes
on different answers based on the verification results, thus improving the accuracy of the verification.

3 METHOD

We first conduct a pilot experiment with GPT4-Code on the challenging MATH dataset (Hendrycks
et al., 2021). Remarkably, it achieves an accuracy of 69.69%, significantly surpassing the previous
state-of-the-art performance of 53.9% (Zheng et al., 2023). Encouraged by the compelling
performance of GPT4-Code, we strive to systematically explore and analyze its underlying code
mechanisms. In Sec. 3.1, we illustrate, via our code-constrained prompts design, that GPT4-Code’s
robust performance in solving math problems derives not only from its ability to generate accurate
step-by-step code, but also from its self-debugging mechanism. In Sec. 3.2, we aim to leverage
GPT4-Code’s self-debugging strengths to further improve its mathematical problem-solving ability.

3

Published as a conference paper at ICLR 2024

1 2 3 4
Prompts

0

20

40

60

80
A

cc
ur

ac
y

60.80
67.58 69.69

73.54

(a)

Level 1 Level 2 Level 3 Level 4 Level 5
Levels

0

20

40

60

80

100

A
cc

ur
ac

y

(b)

Base Prompt
Prompt 1
(You are not allowed to use any code.)

Verification Prompt
(Please verify your answer using code interpreter by yourself.)
Prompt 2
(You can use code only 1 time.)

Code Usage Frequency

3.0

2.0

1.5

1.0

0.5

0.1

Figure 2: Performance on MATH dataset of different levels by applying different prompts to adjust the
frequency of code usage. (a) Comparison of overall accuracy between the four prompts. (b) Code Usage
Frequency is in proportion to accuracy in all five levels, and this phenomenon is especially apparent when the
problems are relatively complicated (i.e., with higher levels). The red points denoting Prompt 1 show that the
model still occasionally uses code, especially when the problem is very difficult. However, even then, the Code
Usage Frequency is negligible.

3.1 PILOT EXPERIMENTS ON ANALYZING CODE USAGE OF GPT4-CODE

To explore the impact of code on GPT4-Code’s mathematical skills, we adopt a straightforward
approach by constraining GPT4-Code’s uasge of code through thoughtfully constructed prompts.
Specifically, we introduce two code-constrained prompts and a base prompt for comparison:

• Prompt 1. No code usage is allowed: With this prompt, GPT4-Code is prohibited from
using code. This prompts GPT4-Code to rely solely on Natural Language (NL) reasoning
chain, resembling solutions in the CoT framework (Wei et al., 2022). The resulting
sequence of reasoning steps is depicted as CNL, with an example given in Fig. 1 (a).

• Prompt 2. Code can be used only once: In this prompt setting, GPT4-Code is permitted
to employ code within a single code block to generate the solution, mirroring the PAL
approach introduced by (Gao et al., 2023). We denote this sequence as CSL, representing a
series of Symbolic Language (SL), such as Python. An example is shown in Fig. 1 (b).

• Base Prompt. GPT4-Code is prompted to tackle the problem without any restrictions
on code usage. This prompt leads to GPT4-Code’s usual performance, which can be
denoted as C = ((c1NL, c1SL), (c2NL, c2SL), . . .), representing a list of reasoning steps,
each consisted of both natural language and code, with an example shown in Fig. 1 (c).

Apart from the specific example in Fig. 1, we introduce Code Usage Frequency to record the number
of code executions for different prompts. The results of the experiments using these prompts are
shown in Fig. 2 (b). This figure illustrates a positive correlation between the better performance of
GPT4-Code and the higher Code Usage Frequency. More specifically,

Prompt 1 v.s. Prompt 2. Prompt 1 results in almost negligible code usage, while Prompt 2 results in
approximately 1 time’s code usage. Prompt 2 yields an accuracy gain of 6.78 percent over Prompt 1.
This suggests that the Python code chains CSL can improve computational capability more than the
natural language chains CNL. This observation is consistent with the findings in previous Python-
based prompting methods (Gao et al., 2023; Chen et al., 2022). However, employing code only once
comes with an inherent drawback – the model lacks the ability to self-debug when the code output
triggers an error or produces an implausible outcome.

Prompt 2 v.s. Base Prompt. The Base Prompt consistently produces solutions that entail multiple
instances of code usage, resulting in a large Code Usage Frequency. Additionally, the Base Prompt’s
accuracy of 69.69% represents a 2.11% improvement over Prompt 2’s 67.58%. These improvements
in Code Usage Frequency and accuracy might be attributable to two unique advantages: (1)
Generating code in brief and frequent segments, divided among natural language reasoning steps,
tends to result in higher accuracy. (2) The model possesses the capability to evaluate the results of

4

Published as a conference paper at ICLR 2024

Question

Q: What is the smallest positive integer
solution to (100,000,000

x4) < 1?
A: 101

(a) Example: w/o self verification

Breaking this down into subproblems, the first step is to rearrange the
inequality to isolate x.
We can do this by multiplying both sides of the inequality by x4 and
then taking the fourth root of both sides.
This gives us x > 4√100000000.
Let’s solve for x.

import math
root = math.pow(100000000, 1/4)
»> 100

Since 100 is already a positive integer, the smallest positive integer

solution to the inequality 100,000,000

x4 < 1 is x = 100.

The final answer is 100 . ✗

(b) Example: w/ self verifications

We can firstly change the inequality into x > 4√100000000.
Then let’s evaluate the fourth root of 100,000,000.

import math
root = math.pow(100000000, 1/4)
smallest_integer = math.ceil(root)
»> (100.0, 100)

Thus, the smallest positive integer x is 100. Let’s verify this solution.

verification = 1e8 / (smallest_integer ∗∗ 4) < 1
»> False

The smallest integer x should be the next integer greater than 100,
not 100 itself.
Let’s calculate that next integer.

smallest_integer = 100 + 1
verification = 1e8 / (smallest_integer ∗∗ 4) < 1
»> (101, True)

Upon substituting x = 101 back, it holds true, which verifies our

solution. The final answer is 101 . ✓

Figure 3: Question from the 712th intermediate algebra problem in the MATH dataset. (a) Without self-
verification, the model generates a wrong answer. (b) With self-verification, the model corrects the error and
generates the correct answer. The CSV prompt: Solve the problem using code interpreter step by step, even in
every sub-step. And following your answer, please verify it using code interpreter by yourself.

code execution and make corrections to solution steps if the outcomes contain bugs or are deemed
illogical, as illustrated in Tab. 8 and Tab. 9 (Appendix E).

From these observations, it is plausible to enhance and build upon the favorable attributes of GPT4-
Code to further improve its precision in tackling math problems.

3.2 EXPLICIT CODE-BASED SELF-VERIFICATION PROMPTING

Inspired by the observations on Code Usage Frequency analysis, we seek to harness the capabilities
of GPT4-Code. These capabilities include the model’s aptitude for generating accurate code,
evaluating the outcomes of code execution, and automatically adjusting reasoning steps of solutions
when needed. Our objective is to utilize these strengths to augment solution verification.

To achieve this objective, we propose the technique termed as explicit code-based self-verification
(CSV). This method prompts GPT4-Code to explicitly validate its answer through code generation.
By implementing this prompt, we introduce an extra verification stage to the solution C,
referred to as V. The verification result V can be classified as True, False, or Uncertain.
An Uncertain classification indicates that GPT4-Code encountered difficulties in identifying an
effective method for answer verification, thereby abstaining from delivering a definitive verification
result. Leveraging GPT4-Code’s inherent autonomous capabilities, we can formulate the proposed
prompting as:

C → V =


True → final answer
False → Cnew → V → · · · → True → final answer
Uncertain → final answer

An example is presented in Fig. 3 (b). Incorporated with CSV, the model becomes capable of using
code to verify answers, then reviewing and adjusting how it arrived at the solution if the verification
result is False, aiming at obtaining the correct answer. The different types of verification code can
be seen in Tab.16, Tab.17, Tab.18, and Tab.19 (Appendix J). Upon refining and correcting the initial
solution, we anticipate a notable increase in accuracy. It is worth noting that both the verification
and rectification stages are code-based. This inevitably results in increased Code Usage Frequency,
akin to the aforementioned analysis, which will be further demonstrated in subsequent experiments.

We perform experiments with CSV, and these results can be found in Fig. 2. The experiment here is
conducted with GPT4-Code on MATH (Hendrycks et al., 2021). In Fig. 2 (b), the accuracy achieved

5

Published as a conference paper at ICLR 2024

Reasoning Code Reasoning & Code

Verification Answer

Verification-guided
weighted majority
voting

Question: Given that the repetend in the decimal representation of
1

19
contains 18

digits, find the 39th digit in the decimal representation.

𝑤𝑇 = 1
𝑤𝑈 = 0.5

𝑤𝐹 = 0.2

Given that the sequence
repeats every 18 digits, the
39th digit will be the same as
the 3rd. So, we need to find
the 3rd digit in the decimal

representation of
1

19

Code execution……

The 3rd digit in the decimal

representation of
1

19
 is 2.

Now let’s verify if this
solution is equal to the 39th

digit.

The verification result is True.
Therefore, our final solution
is

Verified: True

2

If we calculate the first few

decimal places of
1

19
, we will

see a pattern emerge. Let's
calculate this using Python.

Code execution……

The 39th digit will be the
same as the 21st, which is
actually the 3rd digit in our
calculated sequence. Let's
find this digit.

given the repeating nature
of the decimal

representation of
1

19
, we can

confidently state that the
39th digit will indeed be

2

Since the decimal
representation repeats every
18 digits, the 39th digit will be
the same as the 21st digit.

The result is 0. Now let’s
verify the answer.

Code execution……

Code execution……

The pattern of 18 repeating
digits is
"052631578947368421". The
21st digit, which is the same
as the 39th digit, is '5', not ‘0’.
The verification result is False,
Our final result is

Verified: False

5

5ⅹ

Candidate answers:

2 √Majority voting:
Verification-guided
weighted majority
voting:

True Uncertain False
2: 4 (3, 1, 0)

5: 6 (1, 1, 4)

𝑠𝑐𝑜𝑟𝑒 2 = 1 × 3 + 0.5 × 1 + 0.2 × 0 = 3.5

𝑠𝑐𝑜𝑟𝑒 5 = 1 × 1 + 0.5 × 1 + 0.2 × 4 = 2.3

Code execution……

Code execution……

Verified: Uncertain

example

(a) (b)

(ii) CSV

Majority
Voting

(i) SC CoT

𝑤𝑇 𝑤𝑈 𝑤𝐹

Output Output

Input Input

… … … … … …

4 < 6 3.5 > 2.3

Figure 4: (a) Illustration of the Naive majority voting (Wang et al., 2023) and our Verification-guided weighted
majority voting. (b) The full pipeline of the proposed Verification-guided Weighted Majority Voting (VW-
voting) framework. We detect the self-verification state of each solution and classify them into three states:
True, Uncertain, and False. According to the state of the verification, we assign each solution a different
weight and use the classified result to vote the score of each possible answer. (For more examples, see Tab. 12
and Tab. 13 in Appendix G.)

with our proposed CSV prompt consistently surpasses that of the Base Prompt across all designated
difficulty levels2. Meanwhile, the Code Usage Frequency receives a clear increase.

Before the advent of GPT4-Code, prior frameworks (Lightman et al., 2023; Cobbe et al., 2021)
relied on an external Large Language Model (LLM) and well-constructed few-shot prompts for
natural language verification. In contrast, GPT4-Code’s robust capabilities enable our approach to
depend solely on a straightforward prompt, thereby operating in a zero-shot manner. This enables
GPT4-Code to autonomously verify and independently rectify its solutions using the advanced code
execution mechanism, thereby eliminating the need for customized few-shot examples.

Given that CSV can effectively verify problem-solving answers, we can naturally integrate the
verification states into majority voting, akin to the methodology embraced in self-consistency
CoT (Wang et al., 2023). Answers deemed True through verification are generally more trustworthy,
reflecting the problem-solving approach seen in human cognition (Newell & Simon, 1972; Wang
& Chiew, 2010). This improved reliability can be leveraged in the widely-used majority voting
process. To exploit this insight, we introduce verification-guided weighted majority voting, which
assigns different weights to the states of the verification process.

In practice, it sometimes occurs that once an answer is confirmed as False, no additional verification
is conducted, yielding a False verification state. We allocate corresponding weights these states of
True, Uncertain, False: wT, wU, and wF, respectively.

Similar to the Self-consistency with CoT (CoT-SC) (Wang et al., 2023) in Fig. 4 (a)(ii), our
framework can sample k paths. For simplicity, we extract pairs of final answers and their
corresponding verification results from k solutions, represented as (vi, ai), i = 1, 2, . . . , k, where vi

and ai denote the i-th final answer and final verification result, respectively.

So the voting score for each candidate answer a can be expressed as:

Score(a) =
∑
{vi}

wv(#{i | ai = a and vi = v}), v ∈ {True,Uncertain,False}, (1)

2Human-perceived easier problems are categorized under Level-1 difficulty as per (Hendrycks et al., 2021).

6

Published as a conference paper at ICLR 2024

Table 1: Accuracy (%) on MATH dataset. VW-voting is an abbreviation for Verification-guided Weighted
Majority Voting. Voting is an abbreviation for Naive Majority Voting. (Overall: The results across various
MATH subtopics)

Code-based Intermediate Precalculus Geometry Number Counting & PreAlgebra Algebra Overall
Verification Algebra – – Theory Probability – – MATH

GPT-4 (OpenAI, 2023) ✗ - - - - - - - 42.20

GPT-3.5(CoT) (Zheng et al., 2023) ✗ 14.6 16.8 22.3 33.4 29.7 53.8 49.1 34.12
GPT-4 (Complex CoT) (Fu et al., 2022) ✗ 23.4 26.7 36.5 49.6 53.1 71.6 70.8 50.36
GPT-4 (PHP) (Zheng et al., 2023) ✗ 26.3 29.8 41.9 55.7 56.3 73.8 74.3 53.90

GPT4-Code (baseline) ✗ 50.1 51.5 53.4 77.2 70.6 86.3 83.6 69.69

GPT4-Code + CSV ✓ 56.6 53.9 54.0 85.6 77.3 86.5 86.9 73.54
Improvement +6.5 +2.4 +0.6 +8.4 +6.7 +0.2 +3.3 +3.85
GPT4-Code + Voting (k=16, baseline) ✗ 63.3 64.1 61.7 89.1 84.6 90.8 92.9 79.88

GPT4-Code + CSV + Voting (k=16) ✓ 72.7 66.5 64.5 93.1 88.8 91.2 95.3 83.54
Improvement +9.4 +2.4 +2.8 +4.0 +4.2 +0.4 +2.4 +3.66
GPT4-Code + CSV + VW-Voting (k=16) ✓ 74.4 67.8 64.9 94.1 89.0 91.6 95.6 84.32
Improvement +11.1 +3.7 +3.2 +5.0 +4.4 +0.8 +2.7 +4.44

Here, a represents a candidate answer, v denotes the state of verification, and wv is an element from
the set {wT, wU, wF}. Each wv signifies the degree of confidence associated with its corresponding
verification state. Finally, we select the answer with the highest score from all candidate answers.

It should be noted that when wv = 1 for all wv ∈ {wT, wU, wF}, Eq. 1 becomes equivalent to
the naive majority voting employed in Self-Consistency with CoT (CoT-SC) (Wang et al., 2023).
Typically, we set wT > wU > wF, which means that an answer verified true has greater confidence
than the one with an uncertain state of verification, while an answer verified false has the lowest
degree of confidence. An example of the calculation process within verification-guided weighted
majority voting is illustrated in Fig. 4.

4 EXPERIMENTS

Datasets and Baseline. We evaluate GPT4-Code using CSV on three datasets: MATH (Hendrycks
et al., 2021), GSM8K (Cobbe et al., 2021), and MMLU-Math (Hendrycks et al., 2020). We primarily
compare our code-based self-verification (CSV) approach to standard zero-shot prompting using
GPT4-Code to validate the effectiveness of the self-verification ability. To more comprehensively
evaluate the zero-shot capabilities of both GPT4-Code and GPT4-Code with CSV in mathematical
reasoning tasks, we also compare our method with the state-of-the-art few-shot in-context-learning
method using GPT-4 from PHP (Zheng et al., 2023) and Model selection (Zhao et al., 2023).

Prompt. The proposed prompt is presented in the caption of Fig. 3.

4.1 PERFORMANCE ON MATH

The MATH dataset (Hendrycks et al., 2021) is recognized as the most challenging math word
problem dataset, as also highlighted by Chen et al. (Chen et al., 2023a). Most of our experiments
and the corresponding analyses are performed on the MATH benchmark. Tab. 1 compares
the performance of the GPT4-Code against other models. GPT4-Code reaches 69.69% on
MATH (Hendrycks et al., 2020), largely surpassing the previous state of the art result (53.90%),
which shows that GPT4-Code exhibits strong abilities in solving math problems and is used as our
baseline. On top of GPT4-Code, our method further improves its accuracy, raising the result to
73.54% after adding explicit code-based self-verification. GPT4-Code with naive majority voting
reaches an accuracy of 79.88%, which we set as the baseline for methods that used voting. When
using code-based self-verification with majority voting, the accuracy is 83.34%, while adding both
explicit code-based self-verification and verification-guided weighted majority voting reaches an
accuracy of 84.32%. Note that this astonishingly high result is based on the strong abilities of the
base model GPT4-Code, and our method amplifies its good qualities of GPT4-Code, with the ability
to verify solutions.

Note that although adding CSV can improve the performance of every individual subject, the extent
of improvement varies, from 8.4% to only 0.2%. In particular, the Geometry problem only has an
increased accuracy of 0.6%, even though the original accuracy is only 53.4%, which is low among
the subjects. This discrepancy may be attributed to the fact that solving geometry problems often
requires multi-modality (Chen et al., 2023a), a concept beyond the scope of this paper.

7

Published as a conference paper at ICLR 2024

Table 2: Performance on GSM8K dataset.

Method Sampled paths Accuracy(%)

GPT-3.5 (5-shot) (OpenAI, 2023) – 57.1
GPT-4 (5-shot CoT) (OpenAI, 2023) – 92.0
GPT-4 (PHP) (Zheng et al., 2023) 40 96.5
GPT-4 (Model selection) (Zhao et al., 2023) 15 96.8

GPT4-Code – 92.9
GPT4-Code + Voting 5 94.9
GPT4-Code + CSV – 94.5
GPT4-Code + CSV + VW-Voting 5 97.0

Table 3: Performances on MMLU-Math dataset.

Method Sampled paths Accuracy(%) Few-shot

Goper (Rae et al., 2021) - 30.6 5-shot
Chinchilla (Hoffmann et al., 2022) - 35.7 5-shot
Llama-2(70B) (Touvron et al., 2023) - 47.1 5-shot
Galactica (Taylor et al., 2022) - 41.3 zero-shot

GPT4-Code - 87.5 zero-shot
GPT4-Code + Voting 5 92.1 zero-shot
GPT4-Code + CSV - 89.2 zero-shot
GPT4-Code + CSV + VW-Voting 5 94.5 zero-shot

0 1 2 3
Code Usage Frequency

40

50

60

70

80

90

100

Ac
cu

ra
cy

(a) Level
Level 1
Level 2
Level 3
Level 4
Level 5
Overall

0 1 2 3
Code Usage Frequency

40

50

60

70

80

90

Ac
cu

ra
cy

(b) Subject

Overall
number_theory
precalculus
algebra
prealgebra
intermediate
algebra
counting and
probability
geometry

Figure 5: The four points on each curve correspond to results using Prompt 1, Prompt 2, Base Prompt and
Proposed Prompt, respectively. (a) The accuracy of different levels at various code usage frequencies. (b) The
accuracy of different subjects at various code usage frequencies.

4.2 PERFORMANCE ON GSM8K AND MMLU-MATH

In addition to the challenging MATH dataset, we have also performed our method on other reasoning
datasets such as GSM8K (Cobbe et al., 2021), MMLU-Math (Hendrycks et al., 2020). The
corresponding results can be viewed in Tab. 2 and Tab. 3. When integrated on top of GPT-4-code,
our method outperforms other methods, achieving state-of-the-art results across all datasets. Other
subjects in MMLU benchmarks are provided in Appendix D. A comparative analysis of our results
with those of previous state-of-the-art techniques and open-source models are also provided.

Tab. 2 illustrates that verification-guided majority voting is an effective framework to reduce
the number of sampled paths, compared to GPT-4 with model selection (Zhao et al., 2023) and
PHP (Zheng et al., 2023). Tab. 3 presents a comparison of our model’s performance with existing
models (Hoffmann et al., 2022; Taylor et al., 2022; Touvron et al., 2023) on the MMLU-Math
dataset. The open-source models remain significantly outpaced by their closed-source counterparts.

4.3 CODE USAGE FREQUENCY OF PROPOSED PROMPTS

Analogous to the approach taken in Sec. 3.1, we gather data to elucidate the correlation between
accuracy and Code Usage Frequency across various dimensions - prompts (proposed CSV prompt
and prompts used in pilot experiments), subjects, and difficulty levels. As shown in Fig. 5, the
model’s behavior is in line with our expectations when adding the code-based verification prompts.
Each line in Fig. 5 has an obvious trend of going upwards, suggesting a possible positive correlation
between Code Usage Frequency and accuracy. The performance gain when using more code is
more obvious in the higher difficulty levels, while in lower levels, the performance gain is not
very prominent, as shown in Fig. 5 (a). The Code Usage Frequency increases with the increase of
difficulty levels. This shows that the harder math problems require more frequent code usage, which
implies that invoking code multiple times might be an important reason why GPT4-Code have such
an advantage in solving difficult math problems. There is a similar trend in Fig. 5 (b).

4.4 ABLATION STUDY AND DISCUSSION

Comparisons between Natural Language and Code-based Self-Verification. To underscore the
significance of code in the self-verification stage, we employed a distinct natural language self-
verification, where GPT4-Code is directed to verify the solution through natural language instead of
relying on code-based verification, as presented in Tab. 4. The accuracy achieved with this method
was slightly lower than that of the Base Prompt. Moreover, we observed a decline in accuracy

8

Published as a conference paper at ICLR 2024

Table 4: Comparison Self-verification with/without explicit code-based prompt (Overall:The results across
various MATH subtopics (Hendrycks et al., 2021))

Verification Intermediate Precalculus Geometry Number Counting & PreAlgebra Algebra Overall
Method Algebra – – Theory Probability – – –

GPT4-Code Without Verification 50.1 51.5 53.4 77.2 70.6 86.3 83.6 69.69

Interpreter Natural Language 52.6 48.7 50.8 79.9 72.5 83.1 82.6 69.29
+2.5 -2.8 -2.6 +2.7 +1.9 -3.2 -1.0 -0.40

Code-based 56.6 53.9 54.0 85.6 77.3 86.5 86.9 73.54
+6.5 +2.4 +0.6 +8.4 +6.7 +0.2 +3.3 +3.85

Precision Recall Accuracy

Different Metrics

0

20

40

60

80

100

Va
lu

e

95.88

79.11
73.54

(a)
Precision
Recall
Accuracy

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sampled Reasoning Paths

70

72

74

76

78

80

82

84

A
cc

ur
ac

y

(b)

1/0/0

0.5/0.5/1

1/0.5/0.2

1/1/1
(Majority Voting)

Figure 6: (a). The average precision, recall, and accuracy of five sampled paths on the MATH dataset. (b).
The Acc on MATH in response to the number of sampled reasoning paths when the weight is set to different
values.

for four of the seven subtopics, indicating that relying solely on natural language self-verification,
which appears to have a negative impact on the accuracy, is less reliable than using code-based
self-verification. Examples of natural language self-verification can be seen in Tab. 14 and Tab. 15
(Appendix F). In contrast, code-based verification enhances accuracy across all seven subtopics
when compared to the Base Prompt.

Analysis of Verification-guided Weighted Majority Voting. We initially compiled the confusion
matrix (TP/TN/FP/FN), capturing solutions with self-verification that matches the True and False
states mentioned in Eq. 1 from five distinct sampled paths. The details are presented in Appendix A.
From this data, we computed Precision, Recall, and Accuracy (Solutions in the True state are seen
as positive). The results are presented in Fig. 6 (a). We note that Precision exceeds Accuracy by
22.34% (increasing from 73.54% to 95.88%), whereas Recall surpasses Accuracy by 5.57% (rising
from 73.54% to 79.11%). In particular, the average Precision registered at 95.88%. This implies
that the Accuracy has the potential to become much higher if more solutions reach the verified True
state before giving the final answer.

Hyper-parameters ablation in Verification-guided Weighted Majority Voting. We also
performed ablation studies on the hyper-parameter wv ∈ {wT, wU, wF} in Eq. 1. As shown in Fig 6
(b). When the hyper-parameter setting satisfied wT > wU ≥ wF, the performance of the verification-
guided weighted majority voting consistently surpassed that of the naive majority voting methods
across all sampled paths. In contrast, when we set the hyper-parameter (wT = 0.5, wU = 0.5, wF =
1), the performance under this configuration was worse than the naive majority voting. Therefore,
our proposed method, verification-guided weighted majority voting, is easy to tune and robust.

5 CONCLUSION

In this paper, we begin with pilot experiments on GPT4-Code to explore how its use of code impacts
its performance in mathematical reasoning. By analyzing Code Usage Frequency and accuracy, we
determine that GPT4-Code’s skill in solving math problems can be largely attributed to its ability
to generate and execute code, as well as its effectiveness in adjusting and rectifying solutions when
confronted with implausible execution outputs. Expanding on this understanding, we introduce the
ideas of explicit code-based self-verification and verification-guided weighted majority voting, with
the goal of enhancing GPT4-Code’s mathematical capabilities. We hope this work could shed light
on math problem-solving in open-source LLMs, especially when advanced code usage is involved.

9

Published as a conference paper at ICLR 2024

6 ACKNOWLEDGMENTS

This project is funded in part by National Key R&D Program of China Project 2022ZD0161100,
and in part by General Research Fund of Hong Kong RGC Project 14204021.

REFERENCES

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report.
arXiv preprint arXiv:2305.10403, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks, 2022.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang, and
Tony Xia. Theoremqa: A theorem-driven question answering dataset, 2023a.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug, 2023b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. arXiv preprint arXiv:2210.00720, 2022.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Xiaodong
Song, and Jacob Steinhardt. Measuring massive multitask language understanding. ArXiv,
abs/2009.03300, 2020. URL https://api.semanticscholar.org/CorpusID:
221516475.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Advances in Neural Information Processing Systems,
volume 35, pp. 22199–22213, 2022.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving
quantitative reasoning problems with language models. Advances in Neural Information
Processing Systems, 35:3843–3857, 2022.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
language models better reasoners with step-aware verifier. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5315–
5333, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

10

https://api.semanticscholar.org/CorpusID:221516475
https://api.semanticscholar.org/CorpusID:221516475

Published as a conference paper at ICLR 2024

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter
Clark, and Ashwin Kalyan. Dynamic prompt learning via policy gradient for semi-structured
mathematical reasoning. arXiv preprint arXiv:2209.14610, 2022.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2303.17651, 2023.

A. Newell and H.A. Simon. Human Problem Solving. ACS symposium series. Prentice-Hall,
1972. ISBN 9780134454030. URL https://books.google.com.hk/books?id=
h03uAAAAMAAJ.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song,
John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom
Hennigan, Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne
Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri,
Saffron Huang, Jonathan Uesato, John F. J. Mellor, Irina Higgins, Antonia Creswell, Nathan
McAleese, Amy Wu, Erich Elsen, Siddhant M. Jayakumar, Elena Buchatskaya, David Budden,
Esme Sutherland, Karen Simonyan, Michela Paganini, L. Sifre, Lena Martens, Xiang Lorraine
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki
Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, N. K. Grigorev, Doug
Fritz, Thibault Sottiaux, Mantas Pajarskas, Tobias Pohlen, Zhitao Gong, Daniel Toyama, Cyprien
de Masson d’Autume, Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan
Clark, Diego de Las Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew G. Johnson,
Blake A. Hechtman, Laura Weidinger, Iason Gabriel, William S. Isaac, Edward Lockhart, Simon
Osindero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem W. Ayoub, Jeff Stanway, L. L.
Bennett, Demis Hassabis, Koray Kavukcuoglu, and Geoffrey Irving. Scaling language models:
Methods, analysis & insights from training gopher. ArXiv, abs/2112.11446, 2021. URL
https://api.semanticscholar.org/CorpusID:245353475.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for
science. arXiv preprint arXiv:2211.09085, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Yingxu Wang and Vincent Chiew. On the cognitive process of human problem solving. Cognitive
Systems Research, 11(1):81–92, 2010. ISSN 1389-0417.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=_VjQlMeSB_J.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Kang Liu, and Jun Zhao. Large language
models are better reasoners with self-verification, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of Thoughts: Deliberate problem solving with large language models, 2023.

Xu Zhao, Yuxi Xie, Kenji Kawaguchi, Junxian He, and Qizhe Xie. Automatic model selection with
large language models for reasoning. arXiv preprint arXiv:2305.14333, 2023.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, and Yu Li. Progressive-hint prompting
improves reasoning in large language models. arXiv preprint arXiv:2304.09797, 2023.

11

https://books.google.com.hk/books?id=h03uAAAAMAAJ
https://books.google.com.hk/books?id=h03uAAAAMAAJ
https://api.semanticscholar.org/CorpusID:245353475
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J

Published as a conference paper at ICLR 2024

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting
enables complex reasoning in large language models, 2023.

12

Published as a conference paper at ICLR 2024

APPENDIX

A EXPLANATION OF CONFUSION MATRIX

A confusion matrix is a specific table layout that allows visualization of the performance of an
algorithm. It’s particularly useful for classification problems, and we utilize it to analyze the
performance of our verification process.

The matrix itself is a two-dimensional grid, 2x2, for the binary classification of verification results.
Each row of the matrix represents the instances in a predicted class, which is determined by the
verification results given by the language model, while each column represents the instances in an
actual class, which is determined by the actual correctness of the answer given by the model. Tab. 5
shows how the matrix looks for our verification process:

Table 5: Confusion Matrix of Verification

Answer Correct Answer Wrong

Verification True TP FP
Verification False FN TN

Here’s what the four terms mean:

• True Positive (TP): The cases in which the model’s verification result is ‘True’, and the
answer is actually correct.

• True Negative (TN): The cases in which the model’s verification result is ‘False’, and the
answer is actually wrong.

• False Positive (FP): The cases in which the model’s verification result is ‘True’, but the
answer is actually wrong.

• False Negative (FN): The cases in which the model’s verification result is ‘False’, but the
answer is actually correct.

This matrix is very helpful for measuring more than just straightforward accuracy, based on which
Precision and Recall are two important metrics. They are defined in Eq. 2 and their meanings are as
follows:

• Precision is the fraction of relevant instances among the retrieved instances. It is a measure
of the accuracy of the classifier when it predicts the positive class.

• Recall is the fraction of the total amount of relevant instances that were actually retrieved.
It is a measure of the ability of a classifier to find all the positive instances.

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(2)

In other words, precision answers the question "What proportion of verified TRUE answers was
actually correct?" while recall answers "What proportion of actual correct answers was verified
TRUE?" Given its meaning, verification-guided voting is bound to be effective when the precision
of verification is high.

13

Published as a conference paper at ICLR 2024

B PYTHON PACKAGE USAGE ANALYSIS

Tab. 6 outlines the usage of various Python packages in our experiments. Among them, we found
that the sympy package is utilized most frequently, highlighting its central role in the computational
tasks performed.

Table 6: Python package usage frequency on MATH dataset.

All Correct Correct per code Wrong Wrong per code c/w per code

sympy 0.4168 0.3907 0.3323 0.4724 0.3194 104%
math 0.1590 0.1638 0.1393 0.1493 0.1009 138%
numpy 0.0284 0.0241 0.0205 0.0383 0.0259 79%
fractions 0.0094 0.0110 0.0094 0.0058 0.004 238%
itertools 0.0034 0.0029 0.0025 0.0045 0.0031 80%
cmath 0.0034 0.0026 0.0022 0.0052 0.0035 63%
scipy 0.0016 0.0009 0.0007 0.0032 0.0022 34%
matplotlib 0.0010 0.0003 0.0003 0.0026 0.0018 14%
functools 0.0004 0.0003 0.0003 0.0007 0.0004 57%
collections 0.0004 0.0006 0.0005 0.0000 0.0000 NaN
statistics 0.0002 0.0003 0.0003 0.0000 0.0000 NaN

Table 7: Performance of CSV on GSM8K and MATH based on CodeLlama-7B and CodeLlama-34B.

GSM8K Accuracy (%) MATH Accuracy (%)

CodeLlama-7B 17.44 6.56

CodeLlama-7B + CSV 20.85 10.18

CodeLlama-34B 28.96 9.12

CodeLlama-34B + CSV 37.60 13.36

C CSV ON OPEN SOURCE MODELS

We have tested our method on CodeLlama-7B and CodeLlama-34B by applying the same prompting
method of CSV to these weaker models in a zero-shot manner. The results are shown in Tab. 7. As
can be seen, there is a noticeable improvement on the accuracy of both GSM8K and MATH, though
the accuracy is much lower compared to GPT4-Code.

14

Published as a conference paper at ICLR 2024

D DETAILED EXPERIMENT RESULT ON MMLU DATASET

Fig. 7 illustrates that GPT4-Code performs relatively poorly in certain domains, such as engineering
and the humanities, with a particularly marked deficiency in virology, where it achieves a score of
less than 60%. These observations delineate specific areas that call for further investigation and
refinement, thus outlining the direction for future improvements in the model.

Figure 7: GPT4-Code performance on MMLU dataset on: (a) subsubcategory, (b) category, (c) subcategory

15

Published as a conference paper at ICLR 2024

Figure 8: Performance of GPT4-Code with CSV prompt on MMLU dataset on: (a) subsubcategory, (b)
category, (c) subcategory

16

Published as a conference paper at ICLR 2024

E EXAMPLES OF SELF-DEBUGGING MECHANISM IN GPT4-CODE

Math Problem: 0.54 as a fraction in lowest terms.

Sure, we can solve this problem by setting up an equation, solving it, and simplifying the
fraction.
Let’s call 0.54 as x.
The decimal 0.54 means that the digits "54" repeat indefinitely. So, we can multiply x by 100
(since "54" is a two-digit number) to get another equation.
This gives us 100x = 54.54.
By subtracting the original equation from this new one, we eliminate the repeating decimal:
100x− x = 54.54− 0.54.
Let’s perform these steps in the next Python cell.
define the symbol
x = symbols(’x’)

define the equations
eq1 = Eq(x, 0.54545454545454545454545454545454) # approximating the repeating decimal
......

RESULT

TypeError Traceback (most recent call last)
......

Apologies for the mistake. We can’t directly subtract two equations in Python. Instead, we
should subtract the right-hand sides and left-hand sides of the equations separately to get a new
equation. Let’s correct that.
subtract the right hand sides and left hand sides of the equations separately
rhs = simplify(eq2.rhs - eq1.rhs)
lhs = simplify(eq2.lhs - eq1.lhs)
......

RESULT
Eq(99*x, 54.0)
After subtraction, we get the equation 99x = 54.
Next, we can solve for x to express 0.54 as a fraction.
solve for x
solution = solve(new_eq, x)

solution[0]

RESULT
0.545454545454545
The solution for x is approximately 0.545454545454545, but we need to express it as a fraction.
Let’s convert this decimal into a fraction.
convert the decimal solution to a fraction
fraction = nsimplify(solution[0])

fraction

RESULT
6/11
The decimal 0.54 can be expressed as the fraction 6

11 .

Answer: 6
11

Table 8: An example in which GPT4-Code self-debugs when the code execution emits an error.

17

Published as a conference paper at ICLR 2024

Math Problem: A bus comes by Jerry’s bus stop every 20 minutes starting at exactly 5:13 a.m. If Jerry
shows up at exactly 8:35 a.m., how many minutes will he have to wait for the next bus?

Step 1: Calculate the total minutes from 5:13 a.m. to 8:35 a.m.
Total minutes from 5:13 a.m. to 8:35 a.m. is 180 + 22 minutes.
Step 2: Calculate how many buses have come by during this time.
Step 3: Calculate the time when the last bus before 8:35 a.m. came by.
- The time when the last bus came by is 5 : 13 a.m. + 20× ⌊n⌋minutes.
Step 4: Calculate the waiting time.
Now, let’s calculate each step.
Step 1: Calculate the total minutes from 5:13 a.m. to 8:35 a.m.
total_minutes = 180 + 22
......

RESULT
-311
It seems that there’s a mistake in the calculations. The waiting time cannot be negative. This
error might have occurred in Step 3, where I calculated the time of the last bus in minutes past
midnight, but then in Step 4, I subtracted this from the total time from 5:13 a.m. to 8:35 a.m.
I should correct Step 4 to calculate the time until the next bus, which is either 0 if a bus has just
arrived at 8:35 a.m., or 20 minutes minus the time since the last bus if a bus arrived before 8:35
a.m.
Let’s correct this.
Corrected Step 4: Calculate the time until the next bus
time_since_last_bus = total_minutes - last_bus_time
......

RESULT
331
There still seems to be a mistake in the calculations. The waiting time calculated is significantly
more than 20 minutes, which is not possible given that the bus comes every 20 minutes.
Looking back at the calculations, it seems that the error is in Step 3 when calculating the time
the last bus came. The last bus time should be calculated from 5:13 a.m., not from midnight.
Let’s correct this.
Corrected Step 3: Calculate the time when the last bus before 8:35 a.m. came by.
last_bus_time_corrected = 5 * 60 + 13 + num_buses * 20
......

RESULT
331
It seems there is still an error. Let’s try a different approach.
1. Calculate the total minutes that have passed since the first bus at 5:13 a.m. until 8:35 a.m.
2. Since the buses come every 20 minutes, calculate how many complete cycles of 20 minutes
have passed in the calculated total minutes.
3. The time Jerry will have to wait is the remainder of the total minutes divided by 20 (which
is the time since the last bus) subtracted from 20 (which is the bus cycle).
This approach should give us the correct waiting time. Let’s calculate it.
Calculate total minutes from 5:13 a.m. to 8:35 a.m.
total_minutes = 3 * 60 + 22 # 3 hours and 22 minutes
......

RESULT
18
So, Jerry will have to wait for 18 minutes for the next bus.

Answer: 18

Table 9: An example in which GPT4-Code adjusts its solution based on the result of code execution.

18

Published as a conference paper at ICLR 2024

F EXAMPLES OF NATURAL LANGUAGE VERIFICATION

Math Problem: What is the sum of the digits in the terminating decimal representation of the
fraction 4321

57·28 ?

code 0

The given fraction is

4321

57 · 28
To simplify this fraction, we can
notice that 57 · 28 = 107,
which would mean the fraction
is equivalent to 4321 × 10−7,
i.e., the number 4321 with the
decimal point moved 7 places to
the left. This would result in the
number 0.0004321.
To get the sum of the digits
in the terminating decimal
representation of this number,
we just need to add up the digits
in 4321, since the zeros do not
contribute to the sum.
So, the sum is 4+3+2+1 = 10.
Therefore, the answer is 10

code 1

Answer:
First, we need to simplify the
fraction.
Given that 4321 = 25 · 33 ·
50 · 70 · 110 · 131, we can
simplify the fraction 4321

57·28 to
25·33·50·70·110·131

57·28 = 33 · 131 ·
2−3 · 5−7.
Next, we need to compute the
decimal representation and sum
the digits.
Compute the decimal

representation of the
fraction

value = (3**3 * 13**1) / (2**3 *
5**7)

Convert to string and replace
the decimal point

str_value = str(value).replace(’.
’, ’’)

Compute the sum of the digits
digit_sum = sum(int(digit) for

digit in str_value)

digit_sum

RESULT:
18

code more

Answer:
The denominator can be
rewritten as 10min(7,8) ×
5max(0,7−8) × 2max(0,8−7),
where min(a, b) is the minimum
of a and b, and max(a, b)
is the maximum of a and b.
Now let’s calculate the value of
min(7, 8), max(0, 7 − 8), and
max(0, 8− 7).

min_ab = min(a, b)
max_0_a_minus_b = max(0, a-b)
max_0_b_minus_a = max(0, b-a)

RESULT:
(7, 0, 1)
Now, let’s simplify the fraction

4321
107×50×21

.

define the numerator and
denominator

numerator = 4321
denominator = 10**7 * 5**0 * 2**1
......

RESULT:
0.00021605

We exclude the zeros before
the first non-zero digit and the
decimal point as they do not
contribute to the sum.
Thus, the sum of the digits is the
sum of 2, 1, 6, 0, and 5. Let’s
calculate it.
digits = [2, 1, 6, 0, 5]
calculate the sum of the digits
sum_of_digits = sum(digits)

RESULT:
14
So, the final answer is: 14

Answer: 14

Table 10: An example in which no restriction on code use succeeds while not using code and using code only
once fails.

19

Published as a conference paper at ICLR 2024

Math Problem: Solve for x : 32x + 19 = 10x.

code 0

This is a difficult equation
to solve and there’s no simple
analytical solution using
elementary functions. In real
world scenarios, such equations
are typically solved numerically.
For example, using a graphing
calculator, a computer, or a
mathematical software.
However, if you want an
approximation of the solution,
it is advisable to use numerical
methods such as the bisection
method, Newton’s method, or
others.
If you would like me to provide
an algorithm to find the solution
numerically, let me know.

code 1

Answer:
The equation you’re asking to
solve, 32x + 19 = 10x, cannot
be solved algebraically due to
the nature of the functions and
operations involved. Therefore,
we’ll need to use numerical
methods such as Newton’s
method or Bisection method for
root finding.

from scipy.optimize import fsolve
import numpy as np

Defining the function
def func(x):

return 3**(2*x) + 19 - 10**x

Initial guess for x, it can be
anything, 1.0 is chosen
arbitrarily here

x0 = 1.0

Using fsolve to find the root
root = fsolve(func, x0)

x = root[0]
x

RESULT
1.001831315399663
So the answer is 1.00.

code more

Answer:
Rewrite the equation as:
32x − 10 + 19 = 0
Let’s denote 3x = a, and
10x = b
so a2 − b+ 19 = 0
now we have two equations:
1. a = 3x

2. b = 10x Let’s solve this with
Python.
from scipy.optimize import root
import numpy as np

Define the system of equations
def equations(vars):

x, a, b = vars
eq1 = a - 3**x
eq2 = b - 10**x
eq3 = a**2 - b + 19
return [eq1, eq2, eq3]

.....

RESULT:
0.0
32.0 + 19 = 100

The left-hand side becomes
1+19=20 and the right-hand side
becomes 1. Thus, the original
equation does not hold true for
x=0.
Let’s try a different initial guess
for the solution to see if that
helps.
Adjust initial guess for x, a,

b
x0 = [1, 3, 10]

Solve system of equations
solution = root(equations, x0)

x = solution.x[0]

RESULT:
2.0000000000004463
We know that 32·2 = 34 = 81
and 102 = 100. The left-hand
side becomes 100 and the right-
hand side is also 100. Thus, the
original equation holds true for
x = 2.

Answer: 2

Table 11: An example in which no restriction on code use succeeds while not using code and using code only
once fails.

20

Published as a conference paper at ICLR 2024

G EXAMPLES OF DIFFERENT VERIFICATION RESULTS

Math Problem: Let A = (1,−11, 2), B = (3,−4, 1), and C = (−2, 1,−1). Compute ∠ABC,
in degrees.

True

The angle ABC is the angle
between the vectors B⃗A and
B⃗C. We can find these vectors
as follows:

B⃗A = A⃗− B⃗ = (−2,−7, 1)

B⃗C = C⃗ − B⃗ = (−5, 5,−2)

The angle θ between two vectors
u⃗ and v⃗ can be found using the
formula

cos(θ) =
u⃗ · v⃗

||u⃗||||v⃗||
Let’s calculate these values.
import numpy as np

Define vectors
vec_BA = np.array([1, -11, 2]) -

np.array([3, -4, 1])
......

RESULT:
120.00000000000001
Let’s now verify this answer.

u⃗ · v⃗ = ||u⃗|| · ||v⃗|| · cos(θ)

Substituting our values into this
formula, we should get the
same dot product (-27) that we
calculated earlier. Let’s check
this.
Compute the dot product using

the formula
dot_product_verification =

magnitude_BA * magnitude_BC
* np.cos(theta * np.pi /

180)
......

RESULT:
-27
which matches the dot product
we calculated earlier. Therefore,
the computed angle of 120◦ is
correct.

Uncertain

the cosine of the angle θ
between them is given by

cos θ =
u · v

||u|| ||v||
In the given problem, we want
to find the angle between vectors
−→
AB and

−−→
BC, where

−→
AB = B−A = (2, 7,−1)

−−→
BC = C−B = (−5, 5,−2)

Now, we’ll calculate the angle
using the formula for cos θ.
from numpy import array, dot
from numpy.linalg import norm
import math

Defining the vectors
A = array([1, -11, 2])
......

RESULT:
60
The angle ∠ABC is 60◦.

False

The vector
−→
AB is given by

B − A, and the vector
−−→
BC is

given by C −B.
The cosine of the angle between
two vectors u and v is given by

cos(θ) =
u · v

∥u∥∥v∥
Let’s calculate.
import numpy as np

define the points
A = np.array([1, -11, 2])
......

RESULT:
60.00000000000001
The angle ABC is
approximately 60.0◦. Let’s
verify this. We can solve for
cos(C):

cos(C) =
a2 + b2 − c2

2ab

calculate vector AC
AC = C - A

calculate the magnitudes of AC
magnitude_AC = np.linalg.norm(AC)
......

RESULT:
False
I apologize for the confusion;
there seems to have been a
mistake in the verification.
The discrepancy arises due to the
directionality of the vectors.
Therefore, the initial calculation
was correct: the angle ABC is
approximately 60.0◦.

Answer: 120◦

Table 12: An example in which True succeeds while Uncertain and False fails.

21

Published as a conference paper at ICLR 2024

Math Problem: What is the sum of all positive integers r that satisfy lcm[r, 700] = 7000 ?

True

The least common multiple
(LCM) of two numbers a and b
is given by the formula:

LCM(a, b) =
|a× b|

GCD(a, b)

Hence, the equation can be
rewritten as:

r × 700

GCD(r, 700)
= 7000

We also know that r must be a
divisor of 7000. So, we’ll find all
the divisors of 7000.

Find all divisors of 7000
divisors_7000 = sympy.divisors

(7000)
Filter out the divisors
r_values_corrected = [r for r in

divisors_7000 if r == 7000
* sympy.gcd(r, 700) // 700]

......

RESULT:
(7000, 1000)
Let’s verify our solution by
checking whether the LCM of
each possible r and 700 is indeed
7000.
Verify the solution
lcm_values_corrected = [sympy.lcm

(r, 700) for r in
r_values_corrected]

......

RESULT:
(True, True)
Upon verification, we find that
the least common multiple
(LCM) of each possible value of
r and 700 is indeed 7000. Hence,
the sum of all positive integers r
that satisfy lcm[r, 700] = 7000
is 1000 + 7000 = 8000. The
answer is 8000.

Uncertain

First, let’s find the prime
factorization of 7000.
Then, we’ll generate all the
factors of 7000 and find which
of those factors are multiples of
700.
Finally, we’ll sum up all the
positive integers that satisfy the
condition.

import sympy
Get the prime factorization of

7000
prime_factors = sympy.factorint

(7000)
Generate all factors of 7000
factors = set()
for factor_2_count in range(

prime_factors[2] + 1):
for factor_5_count in range(

prime_factors[5] + 1):
......

RESULT:
(2: 3, 5: 3, 7: 1, [3500, 700,
7000, 1400], 12600)
The prime factorization of 7000
is 23 ·53 ·71. The factors of 7000
that are multiples of 700 are:
3500, 700, 7000, and 1400. So,
the sum of all positive integers r
that satisfy lcm(r, 700) = 7000
is 3500+ 700+ 7000+ 1400 =
12600.
So the final answer is 12600.

False

In this problem, we are given
that lcm(r, 700) = 7000.
Let’s first find the prime factors
of 700 and 7000.
import sympy

Find the prime factorization of
700 and 7000

factors_700 = sympy.factorint
(700)

......

RESULT:
(2: 2, 5: 2, 7: 1, 2: 3, 5: 3, 7: 1)
Since the LCM of r and 700
is 7000, r must contain all the
prime factors of 7000 that are not
already in 700.
Generate all combinations
combinations = list(product(*[[1,

i] for i in extra_factors
]))

......

RESULT:
([1, 5, 2, 10], 18)
The possible values of r are 1, 2,
5, and 10.
To verify our answer, we can
check that the least common
multiple of r and 700 is indeed
7000.
Remove 1 from the possible

values of r
possible_r_values.remove(1)
......

RESULT:
False
It seems that there’s a mistake.
Not all the calculated values of r
satisfy the given condition.
Let’s correct the calculation.
All the values of r should have

the factors of 700
r_values = [700]
......

RESULT:
([700, 1400, 3500, 7000], 18720)
Therefore, answer is 18720.

Answer: 8000

Table 13: An example in which True succeeds while Uncertain and False fails.

22

Published as a conference paper at ICLR 2024

H FAILURE EXAMPLES OF NATURAL LANGUAGE VERIFICATION

Math Problem: Let an = 4n3 + 6n2 + 4n+ 1. Find a8 + a9 + a10 + · · ·+ a23.

The sequence an = 4n3 +6n2 +4n+1 is a cubic sequence. To find the sum a8 + a9 + a10 +
· · ·+ a23, we can use the property of cubic sequences which states that the sum of consecutive
terms in a cubic sequence forms a quartic sequence. Given that the sum of the first n terms
Let’s calculate this.
Define the function for the sum of the first n terms
def S(n):

return n**4 + 2*n**3 + 2*n**2 + n
Calculate the sum of terms from a_8 to a_23
sum_8_to_23 = S(23) - S(7)
sum_8_to_23

RESULT
302064
The sum of the terms from a8 to a23 is

302064

Now, let’s verify this result. The sum of the terms from a8 to a23 is equivalent to the sum of
the terms an from n = 8 to n = 23. This is equal to

4 · 83 + 6 · 82 + 4 · 8 + 1 + 4 · 93 + 6 · 92 + 4 · 9 + 1 + . . .+ 4 · 233 + 6 · 232 + 4 · 23 + 1

We can’t calculate this manually without a calculator or any programming language. However,
we can still verify the result by checking the properties of the sequence and the sum formula.
Given the sequence an = 4n3+6n2+4n+1, the sum of the first n terms is a quartic sequence,
which is given by Sn = n4 + 2n3 + 2n2 + n. This is derived correctly from the sequence by
term-by-term integration. The sum of terms from a8 to a23 is found by subtracting the sum of
the first 7 terms from the sum of the first 23 terms, which is S23 − S7. This is also a correct
approach. Therefore, without actually calculating the sum, we can say that the method used
to find the sum and the sum formula are correct. Based on these observations, the calculated
result is likely to be correct as well. So, the verification result is:

TRUE

Answer: 302064 ✗

Table 14: An example in which only natural language verification is used and the model failed to find the
mistake.

23

Published as a conference paper at ICLR 2024

Math Problem: Compute
∑∞

k=1
k+2

k!+(k+1)!+(k+2)!
.

The sum
∞∑
k=1

k + 2

k! + (k + 1)! + (k + 2)!

can be rearranged to recognize a pattern

e− 1

where e is the base of the natural logarithm.Now let’s verify the result. Recall that the series
∞∑
k=1

1

(k − 1)!

is a shifted version of the series
∞∑
k=0

1

k!

which is known to converge to e, the base of the natural logarithm. The original series is
missing the 0! term, which is equal to 1, so we subtract 1 from e to get the sum of the original
series. Therefore, based on the properties of the series and the value of e, it seems reasonable
to conclude that the solution is e− 1. Therefore, the verification result is:

TRUE

Answer: e - 1 ✗

Table 15: An example in which only natural language verification is used and the model failed to find the
mistake.

24

Published as a conference paper at ICLR 2024

I DISTRIBUTION OF THE CONSISTENCY BETWEEN REASONING PROCESS
AND VERIFICATION PROCESS

To further analyze the consistency between the verification process, NL reasoning process, and
output correctness, we have collected examples of four kinds from MATH shown in Fig. 9. The
reasoning process is correct if the answer before the verification is correct. The verification process
is correct if the verification process itself is correct. The four kinds of examples are explained
below:

• Reasoning: Correct, Verification: Correct. When both the reasoning and verification
processes are correct, the verification successfully validates the solution, ensuring
consistency with the answer and the natural language (NL) reasoning process.

• Reasoning: Correct, Verification: Wrong. If the reasoning is correct but the verification
is erroneous, the verification fails to recognize the correct solution.

• Reasoning: Wrong, Verification: Correct. If the reasoning is incorrect but the
verification is accurate, the verification process amends the erroneous reasoning, leading
to a correct answer.

• Reasoning: Wrong, Verification: Wrong. If both the reasoning and verification processes
are incorrect, the verification is unable to rectify the flawed solution.

Fig. 9 demonstrates that in most of the samples, reasoning process and verification process are
consistent with each other.

76.0%

5.0%
7.0%

12.0%

Reasoning: Correct
Verification: Correct
Reasoning: Correct
Verification: Wrong
Reasoning: Wrong
Verification: Correct
Reasoning: Wrong
Verification: Wrong

Figure 9: The distribution of the consistency between reasoning process and verification process on 100
randomly sampled math word problems from MATH.

J ANALYSIS OF DIFFERENT TYPES OF VERIFICATION CODE

To further analyze what types of verification code are generated, we randomly sampled 50 problems
from MATH as well as their solutions generated with CSV. We counted 4 types of verification code:
Substitution, Alternative Method, Double Checking, and Approximation. Their distribution is show
in Fig. 10.

• Substitution: The model substitutes the answer back to the question to check if it fits all the
conditions. By inspecting the solutions we randomly sampled from the results, we found
that this is the most common type of verification.

• Alternative Method: The model uses a different method to solve the problem and check
if it reaches the same final answer.

25

Published as a conference paper at ICLR 2024

• Double Checking: The model double-checks each part of the solution to see if they are
correct.

• Approximation: The model computes an approximation of the answer. This method is
often used when there is infinity involved in the problems. The model uses a large number
to approximate the infinity to check if the result is close to the answer.

Examples of the types above are shown in Tab. 16, Tab. 17, Tab. 18, Tab. 19.

50.0%

22.0%

18.0%
10.0%

Substitution
Alternative Method
Double Checking
Approximation

Figure 10: The distribution of verification types generated by GPT4-Code on 50 randomly sampled math word
problems from MATH.

Math Problem: Suppose that the minimum value of f(x) = cos 2x− 2a(1 + cosx) is − 1
2
. Find a.

......
Next, we will verify this solution by substituting a = −0.25 into the function f(x), and
checking whether the minimum value of f(x) is indeed − 1

2 . We will evaluate f(x) over the
interval [0, 2π] because the function is periodic with period 2π.
Substitute a = -0.25 into f(x)
f_substituted = f.subs(a, -0.25)

Define a function for numerical evaluation
f_num = sp.lambdify(x, f_substituted, "numpy")

Evaluate f(x) over the interval [0, 2*pi]
import numpy as np
x_values = np.linspace(0, 2*np.pi, 1000)
f_values = f_num(x_values)

Find the minimum value of f(x)
f_min = np.min(f_values)

......

Table 16: An example of verification code that used substitution. The model substitutes the answer back to the
question to check if it fits all the conditions.

26

Published as a conference paper at ICLR 2024

Math Problem: What is the value of the following expression: 100− 99 + 98− 97 + 96− 95 + · · ·+
4− 3 + 2− 1?

......
Now, let’s verify this result by actually computing the expression term by term. We’ll create
a list of numbers from 100 down to 1, then add the even-indexed numbers and subtract the
odd-indexed numbers.
create a list of numbers from 100 down to 1
numbers = list(range(100, 0, -1))

compute the expression term by term
total_check = 0
for i, num in enumerate(numbers):

if i % 2 == 0:
total_check += num

else:
total_check -= num

total_check

......

Table 17: An example of verification code that used alternative methods. The model uses a different method
to solve the problem and check if it reaches the same final answer.

Math Problem: What is the greatest prime factor of the sum of the arithmetic sequence 1+2+3+· · ·+80?

......
Now, let’s verify the solution. First, we will generate the sequence from 1 to 80, sum it up, and
confirm that it is equal to 3240. Then, we will calculate the product of the prime factors and
confirm that it is also equal to 3240. Finally, we will check that the maximum prime factor is
indeed 5.
create a list of numbers from 100 down to 1
Generate the sequence from 1 to 80
sequence = list(range(1, n+1))

Confirm the sum of the sequence
assert sum(sequence) == S, "The sum of the sequence is not correct."

Confirm the product of the prime factors
from functools import reduce
import operator
assert reduce(operator.mul, prime_factors_S, 1) == S, "The product of the prime factors is not correct."

Confirm the maximum prime factor
assert max(prime_factors_S) == greatest_prime_factor, "The maximum prime factor is not correct."

......

Table 18: An example of verification code that used double checking. The model double checks each part of
the solution to see if they are correct.

Math Problem: What is the value of
∑∞

n=1(tan
−1 √n− tan−1

√
n+ 1)?

......
Now, let’s verify the solution. We can do this by calculating the sum of the first few terms of the
series and see if it is close to our solution. Note that the series is infinite, so we can’t compute
the exact value in this way, but we can check if it seems to be converging towards our solution.
Let’s calculate the sum of the first 10,000 terms.
calculate the sum of the first 10000 terms
sum_of_terms = 0
for n in range(1, 10001):

sum_of_terms += math.atan(math.sqrt(n)) - math.atan(math.sqrt(n+1))

sum_of_terms

......

Table 19: An example of verification code that used approximation. The model use a large number to
approximate the infinity to check if the result is close to the answer.

27

	Introduction
	Related work
	Method
	Pilot Experiments on analyzing Code Usage of GPT4-Code
	Explicit Code-based Self-verification Prompting

	Experiments
	Performance on MATH
	Performance on GSM8K and MMLU-Math
	Code usage frequency of proposed prompts
	Ablation Study and Discussion

	Conclusion
	Acknowledgments
	Explanation of Confusion Matrix
	Python package usage analysis
	CSV on Open Source Models
	Detailed experiment result on MMLU dataset
	Examples of Self-debugging Mechanism in GPT4-Code
	Examples of Natural Language Verification
	Examples of different verification results
	Failure Examples of Natural Language Verification
	Distribution of the consistency between reasoning process and verification process
	Analysis of Different Types of Verification Code

