A Code Links

* ROBE-Z patches : https://github.com/apd10/universal_memory_allocation/tree/paddingidx_sparse
* DLRM criteo-tb code (patch over original facebook code) : https://github.com/apd10/dlrm
* criteo-kaggle code link https://github.com/apd10/criteo_deepctr

B Theorem|[6]

Theorem: Let the embedding table be £ € R™*?. Consider a matrix S which is JLT (¢, ,9%)). Then
M and M defined by

M=SE M(M,i)=(Se;)" (M)
is a Macro(e, §)-PSS.

Proof. In this section we want to analyze the embedding table as a whole under compression.
Consider the embedding table . Generally, with deep learning, the embeddings taken from the
embedding table undergo a functional transformation. If we only focus on only the first layer, we
would usually see an operation like the following for some i, x

el Bx)

Let us restrict ourselves to this computation. Also, let us look at all the embeddings at once. So for
some z € R< let us consider the following vector

Ezx 3)

as a vector that encapsulates the effect of E/ on this (which is the first layer of the model. Let
S : k xn be the 12-subspace embedding matrix [20]]. Then, leveraging the known result in randomized
linear algebra, we know that ,

I(SE)z||2 = (1 £ ¢)||Ex||2 Yo € R @)

This translates to
((SE)z,(SE)y) = (Ex, By) £ O(e)Va,y € R ||z = |ly]| = 1 (5)
Note that (SE) is the proposed compressed representation of the embedding table and is of size
k x d, k < n. There are various types of 12-subspace embedding matrices. Specifically, the class of
JLT (e, 6,9%) matrices are 12-subspace embedding matrices. We know that we can build JLT matrix
of size k x n where k = ©((d + log(1/8))e™2). Thus, in terms of obtaining a ¢, § approximation

for embedding table, we only need O(d(d + log(1/5)/€?)) parameters to approximate the column
subspace of E , ExVx € RY. O

C Theorem[7]
Theorem: Let the embedding table be E ¢ R™?. Consider a matrix S which is JLT (pe, 8,9 +n))
Then M and M defined by

M=SE M(M,i)=(Se;)" (M)
is a Micro (e, d, p) PSS where e; € R™ is a one-hot encoding of integer i (i.e e;[¢] = 1 and rest all
elements of e; are 0).
Proof. Johnson Lindenstrauss transforms are a class of transformations which preserve pair wise
inner products (equivalently norms) of a set of vectors in a space.

Definition of JLT transform from [20] is as follows: random matrix S € R¥*™ is a JLT (e, 4, f) if
with probability (1 — §), for any f-element subset V' ¢ R™, for all vy, vy € V/, it holds that

[{Sv1, Sva) = (01, v2)] < eljoalfa][va]2 (6)

Consider the following sets of points.

14

1. {ei ;l:_ol

2. 1/2 — net over the set {u|u € Column-space(E) ||ul||l2 = 1}

We use the lemma 5 from [20] to have the number of points in set 2 bounded by 9%. Let S be a matrix
that is JLT(6, €, (n + 9%)). For these (n + 9%) points with probability (1 — &), the matrix S preserves

inner products as per definition of JLT given above.

part A: We will show that using the matrix S, for all vy, v € {€;} U column-space(E) it holds that

b}

[(Sv1, Svz) = (1, v2)| < el[vrfa][val2

Let us consider 3 cases.

(7

1. vi,vo € Column-space(FE). We use the same argument as given on page 12 [20] and

conclude that condition holds for these vy, v

2. vy, € {e;}7 U 1/2 - net. condition holds due to JLT

3. v € {e;}7, va € column-space(E). Let |[va| = 1. We will prove the condition for this
case and for all other non-unit-norm cases will happen due to scaling. Using argument from

page 12 [20], we can represent vs as a sum of vectors in 1/2 — net.
Vg = v + o + 0% + ... where v’ € 1/2-net
such that [[vf]| < &
{(Sv1, Sv2) = (v1,v2)|

- |5, 50) - (s,)
- [T (S01,50) - (on, D)

< S((S0r, 50 - (o))

< E il Il

SO

Thus, using the matrix S, for all v1,v2 € {e;} U column-space(F) it holds that

[{(Sv1, Sv2) = (v1,v2)] < €l|vr][2]Jv2]|2

Part B: Proving the theorem for using S to create (e, d, p) PSS
Let ¢;s be one hot encoded vectors such that we have that
Eli]=¢]E
Let M = SE and M(M,i) = (SE)" Se;
(M(M,i),z) - (E[i]", z)
=((SE)"Sei,x) - (E[i]",)
=(Se;, SEz) — ((e] E)",) =(Se;, SEx) - (e;, Ex)

Note that both e; and E'x are vectors that belong to our f point set V. Thus

15

(®)

9

(10)

(an
(12)
13)

(M(M,Z),l‘) - (E[Z]Twr)
=(Se;, SEx) - (e;, Ex)
< elleillzl| Bl

< €| Bl

< e (E)|lz]|2

o(E)
||E[S EGll

G)IIE[illlz [f(l2

(14)
15)
(16)
a7)
(18)

19)

(20)

Note that ||e;|| = 1 Let o be the max singular value of E. If we use J LT (pe, §,9% + n), then we will

have,

(M(M,i),x) - (E[i]",)

<eﬂ||E[i]llz [l

Thus if p(i) > p then

(M(M, i),) - (E[i]", z)
< ellE[e]]l2 [|l2

Hence, proved.

D Proof of theorem 4]

Let (M, M) be a Micro (¢, 6, p)-PSS for embedding table E, we have ,
VZ7] € {07 "'7n_1}7 s.t p(Z),p(]) >p

| (MM, 1), M(M, 7)) = (E[i], B[] < (€2 + 20) | E[2]|l2[| E[5]] |2

Proof. part A: we will first bound the || M ||z in terms of || E[4]]|2
Using definition of PSS

(MM, i), M(M,i)) = (M(M, i), E[i])] < el M(M, 7)||2|| E[¢]]|2

(M(M, i), M(M, i) < (M(M, 1), E[i]) + €| M (M, 3) |2 [E[4]]l2
and (M(le)aM(Mal» 2 <M(M71)aE[]) _EHM(M Z)H ||E[]||2

(M(M, i), M(M, 1)) < (E[i], B[i]) + e(| B[]l + M (M, 9) 2| ELi]]l2)
and (M(M,), M(M, i) > (E[d], E[]) - (| ELII5 + [|IM(M,) |2 E[7]||2)

Let | M(M, d)|| = m and || E[i][| =

2

2 2 2 2 2
m-~ —eem < e” +ee” and m” + eem > e — €e

Adding (1/4)e?e? on both sides

16

21
(22)

(23)
(24)

1 1 1 1
m2 —eem + 16262 < 62 + 662 + 16262 and m2 +eem + *6262 > 62 - 662 + *6262

(m —1/2ee)? < (e + 1/2ee)? and (m + 1/2ee)? > (e + 1/2¢e)?
As both m and e are positive.

m<(e+ee)andm >e—ce
Thus,

|m —e| < ee
Thus,

MM,)]z = (1 +)| E[i][|2

(25)
Part B: Now we can look at the pairwise inner products.
(MM, i), M(M, j)) - (E[i], E[5])]
< e(|E[]ll2lM (M, $)l2) + el EL] I EL Il
<e(L+) (IE[[E[]ll2) + el E[]l2/ E[]ll2
= e+ (IELlLAEL2)
Hence, proved O

17

E Data

E.1 PSS rigorous evaluation

* Page 1 : memory vs compression.
* page 2: memory vs chunk size
* page 3: compression vs chunk size

Some obervations

* (sparse/dense) original embeddings should be run with sparse gradients. The dense embed-
dings are too time consuming as they require updating large amounts of memory (vacuously)
in each iteration. Note that a lot of optimizers in deep learning libraries like pytorch do not
yet have support for sparse gradient updates.

* When the entire embedding table can fit on the GPU, the forward and backward times do
not change much.

* While we can go upto 64M tokens (for m = 128) on single gpu using original embeddings
and sparse gradient propogation, the simulated embedding tables can be much larger with
PSS and compression.

* Best forward times we can achieve with PSS (around 0.27ms/iteration) is almost 2x the
forward times for original embedding lookup. (0.12 ms / iteration). This is expected since,
we have to perform additional hash computations in PSS. Hence, if both original embeddings
and compressed embeddings are at the same distance from the computational resource, then
PSS will have a disadvantage.

* (compression, PSS) Higher the compression, better are timings for both backward pass
(using dense propagation) and forward pass.

* A nice trade-off can be seen between using sparse or dense gradients with PSS. If we
use dense gradients, the time in backward propogation is affected by the overall size of
embedding parameters. Thus, for higher compression and smaller n, we have smaller times
where as if n becomes larger and compression is smaller, the time taken increases. The cost
of dense gradient propogation becomes quite high at sufficiently large n and sufficiently
small compression. On the other hand, the cost of sparse gradient propogation is uniform
across different values of n and compression. This is because the algorithmic complexity
and memory accessed is similar. This gives us a guideline as to when to use sparse / dense
gradients with PSS. Note that in our final results, we see a good overall improvement by
leveraging the dense gradient propogation at high compression.

* Higher the chunk size better is the time in forward pass. backward pass is largely unaffected
by chunk size largely due to the way it is implemented.

Original time(ms)

call sparse 4M M 16M
backward | FALSE | 25.68 | 50.72 | 100.72
TRUE | 0.35 | 0.35 0.38
forward | FALSE | 0.21 | 0.22 0.22
TRUE | 0.12 | 0.12 0.12
Table 5: Time taken for original embeddingn table

18

Forward pass (ms) [sparse=false]
compression
n 10x 10000x
iM 0.40
M
16M | 0.37
32M | 0.37
64M | 037 | 0.37
128M | 0.37 | 0.37
256M 0.36

Table 6: batch size = 10240 and dimension = 128

Forward pass (ms) [sparse=true]
compression

Table 7: batch size = 10240 and dimension = 128

Backward pass (ms) [sparse=false]

compression
n 10x
M 2.55
&M 4.81
16M 9.15

32M | 17.81

4,34

Table 8: batch size = 10240 and dimension = 128

19

Backward pass (ms) [sparse=true]
compression
n 10x | 100x | 1000x | 10000x
M 2.67 | 248 2.56 2.52
SM 2.53 | 2.58 2.48 2.53
16M | 2.52 | 2.68 2.58 2.45
32M | 2.51 | 2.64 2.56 2.55
64M | 2.51 | 2.66 2.63 2.60
128M | 2.52 | 2.65 2.65 2.54
256M | 2.54 | 2.52 2.53 2.62
Table 9: batch size = 10240 and dimension = 128

Forward pass (ms) [sparse=false]
PSS chunk size

Table 10: batch size = 10240 and dimension = 128

Forward pass (ms) [sparse=true]
PSS chunk size

Table 11: batch size = 10240 and dimension = 128, fixed compression = 100x

20

Backward pass (ms) [sparse=false]
PSS chunk size

16M 2.02 | 1.87

32M 296 | 279 | 240 | 220 | 212 | 212
64M 4.69 | 454 | 413 | 398 | 3.85 | 3.85
128M | 815 | 8.00 | 7.70 | 7.48 | 743 | 742

256M
Table 12: batch size = 10240 and dimension = 128, fixed compression = 100x

Backward pass (ms) [sparse=true]
PSS chunk size
n 1 2 4 8 16 32
M 3.17 | 3.04 | 2.61 | 254 | 250 | 2.48
M 341 | 297 | 2.64 | 2.64 | 2.66 | 2.61
16M | 3.56 | 3.07 | 2.74 | 2.58 | 2.54 | 2.62
32M | 3.68 | 3.13 | 2.73 | 2.63 | 2.53 | 2.50
64M | 394 | 336 | 291 | 2.64 | 2.52 | 2.64
128M | 398 | 3.22 | 2.77 | 2.60 | 2.51 | 2.60
256M | 4.00 | 3.27 | 2.74 | 2.61 | 2.53 | 2.50
Table 13: batch size = 10240 and dimension = 128, fixed compression = 100x

Forward pass (ms) [sparse=false]
compression

chunk | 10x 10000x

Table 14: batch size = 10240 and dimension = 128

Forward pass (ms) [sparse=true]
compression

ble 15: batch size = 10240 and dimension = 128

21

Backward pass (ms) [sparse=false]

compression

chunk | 10x | 100x | 1000x | 10000x

1 4.69 1.44
2 4.53

4 4.13

8 391

16 3.85
32 3.86

Table 16: batch size = 10240 and dimension = 128

Ta

Backward pass (ms) [sparse=true]

compression

chunk | 10x | 100x | 1000x | 10000x

1 4.08 | 3.89 2.71 2.87

2 332 | 3.20 2.76 2.88

4 278 | 2.78 2.61 2.63

8 2.62 | 2.60 2.58 2.58

16 2.51 | 2.68 2.63 2.55

32 249 | 2.50 2.59 2.57

ble 17: batch size = 10240 and dimension = 128

22

