
Under review as a conference paper at ICLR 2023

Appendix

A MORE DETAILS IN THE INTRODUCTION PART

A.1 WRONG USAGE OF HOEFFDING’S INEQUALITY

This part mainly discusses some results when we use Hoeffding’s inequality wrongly for the unbounded data {Xi}ni=1.

Lemma 3. If the Gaussian data {Xi}ni=1
i.i.d.∼ N(µ, σ2) are misspecified as bounded variable (a bound as a function

of n) with high probability, and Hoeffding’s inequality is wrongly adopted for the unbounded Gaussian data, it gives

P
(
µ ∈ [X̄n ± 2σ

√
n−1 log(4/α)[

√
log(4/α) +

√
log n]

)
≥ 1− α.

Lemma 3 gives a loose CI, since it contains a
√
log n factor. In the remark after the proof, we extend Lemma 3 to some

unbounded random variables with strongly log-concave distributions and finite sub-exponential norms ∥X1∥w1 <∞.

Proof of Lemma 3. The Borell–TIS inequality Giné & Nickl (2016) gives the probability of a deviation of the maxi-
mum of a centered Gaussian random variables (or stochastic processes) above from its expected value. WLOG, we
assume {Xi}ni=1

i.i.d.∼ N(0, σ2) are misspecified as bounded variable, by Borell-TIS inequality

P(max
i∈[n]

Xi − E[max
i∈[n]

Xi] > t) ≤ e−t
2/(2σ2),

we have with probability at least 1− α/4

max
i∈[n]

Xi ≤
√
2σ2 log(4/α) + E[max

i∈[n]
Xi] ≤ σ

√
2[
√

log(4/α) +
√
log n], i = 1, 2, · · · , n,

where we use the maximal inequality E[max1≤i≤nXi] ≤ σ
√
2 log n in Rigollet & Hütter (2019). Then,

P(max
i∈[n]

Xi ≥ σ
√
2[
√

log(4/α) +
√
log n]) ≤ α/4

and P(maxi∈[n](−Xi) ≥ σ
√
2[
√

log(4/α) +
√
log n]) ≤ α/4 by symmetric property. Conditioning on event

max
i∈[n]

|Xi| ≤ σn,α := σ
√
2[
√

log(4/α) +
√
log n],

For i.i.d. {Xi}ni=1 with a ≤ Xi ≤ b, Hoeffding’s inequality gives P(|X̄n − µ| ≥ b−a√
2

√
1
n log( 2δ )) ≤ δ). Let δ = α/2

and a = σn,α, b = −σn,α

P
(
|X̄n − µ| ≥

√
2σn,α

√
n−1 log(4/α)

)
≤ P

(
|X̄n − µ| ≥

√
2σn,α

√
n−1 log(4/α),max

i∈[n]
|Xi| ≤ σn,α

)
+ P

(
max
i∈[n]

|Xi| > σn,α

)
≤ α/2 + α/2 = α

Then, P(µ ∈ [X̄n ± 2σ
√
n−1 log(4/α)[

√
log(4/α) +

√
log n]) ≥ 1− α.

Lemma 3 can be extend to unbounded non-Gaussian r.v.s. We need some geometric aspect of the concentration
inequalities; see Section 3.2 in Wainwright (2019). A function ψ(x) : Rn → R is γ-strongly concave if there is some
γ > 0 s.t.

λψ(x) + (1− λ)ψ(y)− ψ(λx+ (1− λ)y) ≤ γ
2λ(1− λ)∥x− y∥22, ∀ λ ∈ [0, 1] and x,y ∈ Rn.

A continuous probability density f(x) and the corresponding r.v. is strongly log-concave if f(x) is a strongly log-
concave function.
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Lemma 4 (Theorem 3.16 in Wainwright (2019)). Let P be any γ−strongly log-concave distribution on Rn with γ > 0.
Then for any L-Lipschitz function f : Rn → R w.r.t. Euclidean norm, we have

P[f(X)− Ef(X) ≥ t] ≤ e−
γt2

4L2 for X ∼ P and t ≥ 0.

From Lemma 4, assume {Xi}ni=1 are independent r.v.s which are γ−strongly log-concave distributed satisfying

P[f(X)− Ef(X) ≥ t] ≤ e−
γt2

4L2 for any f : Rn → R that is L-Lipschitz w.r.t. the Euclidean norm. Note that

max
i∈[n]

xi −max
i∈[n]

yi ≤ |xl − yl| ≤ ∥x− y∥2 for some l ∈ [n].

For L = 1, thus we obtain the following max-concentration inequality.
Corollary 1 (Borell-TIS inequality for γ−strongly log-concave distributions). If {Xi}ni=1 are independent r.v.s which
are γ−strongly log-concave distributed, then

P(max
i∈[n]

Xi − E[max
i∈[n]

Xi] > t) ≤ e−
t2

4/γ .

From Corollary 7.4 in Zhang & Chen (2021), one has maximal inequality for sub-exponential r.v.s E(max
i∈[n]

|Xi|) ≤

log(1 + n)∥X1∥w1
if ∥X1∥w1

<∞. Then with probability at least 1− e−
t2

4/γ ,

max
i∈[n]

|Xi| ≤ E(max
i∈[n]

|Xi|) + t ≤ log(1 + n)∥X1∥w1 + t.

A.2 HISTORICAL NOTES FOR SUB-GAUSSIAN AND ITS OPTIMAL PARAMETER

The MGF-based variance proxy in Definition 1 for sub-Gaussian distribution dates back to Kahane (1960), and it
is not unique which cannot be view as the parameter. So it motivates Chow (1966) to defined the optimal variance
proxy σ2

opt(X) as the unique parameter of sub-Gaussian distribution. σ2
opt(X) is also called the sub-Gaussian norm

in Wang (2020) or sub-Gaussian diameter in Kontorovich (2014). The monograph Buldygin & Kozachenko (2000)
gave comprehensive studies concerning metric characterizations for various sub-Gaussian norms of certain random
variables.

From Chernoff’s inequality, the exponential decay of the sub-Gaussian tail is obtained

P (X ≥ t) ≤ infs>0 exp{−st}Eexp{sX} ≤ infs>0 exp(−st+
σ2
opts

2

2 ) = exp(− t2

2σ2
opt

)

by minimizing the upper bound via putting s = t/σ2. Moreover, for independent {Xi}ni=1 with Xi ∼ subG(σ2
i ), we

have sub-Gaussian Hoeffding’s inequality (Chow, 1966)

P(|
n∑
i=1

Xi| ≥ t) ≤ 2 exp

{
− t2

2
∑n
i=1 σ

2
opt(Xi)

}
≤ 2 exp

{
− t2

2
∑n
i=1 σ

2
i

}
, t ≥ 0 (12)

for any variance proxies {σ2
i }ni=1 of {Xi}ni=1.

The σ2
opt(X) not only characterizes the speed of decay in (12) but also naturally bounds the variance of X as well. To

appreciate this, observe that by the definition of sub-Gaussian:

s2

2
σ2
opt(X) + o(s2) = exp(

σ2
opt(X)s2

2
)− 1 ≥ Eexp(sX)− 1 = sEX +

s2

2
EX2 + · · ·

=
s2

2
·VarX + o

(
s2
)

(13)

(by dividing s2 on both sides and taking s→ 0) which implies

σ2
opt(X) ≥ VarX. (14)
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Thus, σ2
opt(X) provides a conservative lower bound for optimal proxy variance.

Interestingly, some special distributions whose variance can attain the σ2
opt(X). For example, Bernoulli r.v. X ∈ {0, 1}

with mean µ ∈ (0, 1) [denote X ∼ Bern(µ)] is sub-Gaussian with

1/4 ≥ σ2
opt(X) = (1−2µ)

2 log 1−µ
µ

≥ µ(1− µ) = Var(X)

in Kearns & Saul (1998), while, Hoeffding’s inequality shows a crude bound X − µ ∼ subG(1/4). The inequality
holds if the Bernoulli distributions is symmetric with µ = 1/2, i.e. σ2

opt(X) = lim
µ→1/2

(1−2µ)

2 log 1−µ
µ

= 1/4 = VarX , and

the inequality σ2
opt(X) = VarX define the strict sub-Gaussianity:

Definition 4 (Buldygin & Kozachenko (2000)). For zero-mean X ∼ subG(σ2) is called strict sub-Gaussian if
VarX = σ2

opt(X) [denote X ∼ ssubG(σ2
opt(X))].

The strict sub-Gaussian r.v.s include Gaussian, symmetric Beta, symmetric Bernoulli and U [−c, c]; Marchal et al.
(2017) showed that by a second order ODE (with a unique solution of the Cauchy problem) Beta(α, β) has

σ2
opt(α, β) =

α
(α+β)x0

(
1F1(α+1;α+β+1;x0)

1F1(α;α+β;x0)
− 1
)
≥ Var[Beta(α, β)],

where x0 is a unique solution of log (1F1 (α;α+ β;x0)) = αx0

2(α+β)

(
1 + 1F1(α+1;α+β+1;x0)

1F1(α;α+β;x0)

)
. Finding the explicit

expression and giving the iff condition for general distributions (such as unbounded or asymmetrical distributions) are
still an open questions Marchal et al. (2017).

Similar to Definition 1, if sub-G variable is unbounded, we define the optimal lower variance proxy that renders a
sharp reverse Chernoff inequality and a sharp lower tails of sub-Gaussian maxima in below.
Definition 5. The optimal lower variance proxy for a sub-G X is defined as

l2opt(X) := sup
{
l2 ≥ 0 : E exp(tX) ≥ exp{l2t2/2}, ∀ t ∈ R

}
= 2 inf t∈Rt

−2log[E exp(tX)]. (15)

Lemma 5 (A sharp reverse Chernoff inequality). Suppose that l2opt(X) > 0 for a sub-G r.v. X . For t > 0, then

P(X ≥ t) ≥ C2
σ,l(X) exp

{
−4[2σ2

opt(X)/l4opt(X)− l−2
opt(X)]t2

}
,

where Cσ,l(X) :=
(

l2opt(X)

4σ2
opt(X)−l2opt(X)

)(
4σ2
opt(X)−2l2opt(X)

4σ2
opt(X)−l2opt(X)

)2[2σ2
opt(X)/l2opt(X)−1]

∈ (0, 1).

Proposition 2. (a). Suppose that l2opt(X) > 0 for i.i.d. sub-G r.v. {Xi}ni=1 ∼ X . With probability at least 1− δ,

lopt(X)/σopt(X)

2
√

2σ2
opt(X)/l2opt(X)−1

√
log n− logC−2

σ,l (X)− log log
(
2
δ

)
≤ max1≤i≤n

Xi
σopt(X) ≤

√
2[log n+ log

(
2
δ

)
,

where Cσ,l(X) < 1 is constant defined in Lemma 1 below; (b) if X is bounded variable, then l2opt(X) = 0.

The proof of Lemma 5 and Proposition 2 is similar to Lemma 1 and Theorem 1.

A.2.1 REMARKS FOR ORLICZ NORM AND OTHER COMMONLY USED NORMS

In Remarks 2 and 1 below, we will show P(|X| ≥ t) ≤ 2 exp{− t2

2 /(2e∥X∥2ψ2
)} and P(|X| > t) ≤

2 exp
{
−t2/[2(∥X∥w2

/
√
2)2]

}
for all t ≥ 0. The variance can be upper bounded by both norms as (2∥X∥w2

)2 ≥
VarX and (

√
2∥X∥ψ2

)2 ≥ VarX .
Remark 1. If Eexp(|X|2/∥X∥2w2

) ≤ 2 for ∥X∥w2 <∞, then Markov’s inequality gives for all t ≥ 0

P(|X| > t) ≤ P(e|X/∥X∥w2 |
2

≥ et
2/∥X∥2

w2 ) ≤ 2 exp
{
− t

2

2
/(

∥X∥w2√
2

)2
}
. (16)

Using Lemma 1.5 in Rigollet & Hütter (2019):

if P(|X| > t) ≤ 2 exp
{
− t2/[2σ2]

}
with EX = 0, then Eexp{sX} ≤ exp{4σ2s2} (17)
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for any s ≥ 0. Therefore, we have

Eexp{sX} ≤ exp
{
(2∥X∥w2

)2 s
2

2

}
.

By the same argument in (13), one has (2∥X∥w2
)2 ≥ VarX.

Example 2. (i) For X ∼ N(0, σ2), one has ∥X∥w2
=
√

8
3σ (see Example 3.4 in Zhang & Chen (2021)), and

then we have a crude tail bound from (16), P(|X| > t) ≤ 2 exp
{
− t2

2 /(
4
3σ

2)
}

; (ii) For X ∼ Bern(0.5), one has

∥X − 0.5∥w2
= 1

2
√
log 2

, which leads to the bound P(|X − 0.5| > t) ≤ 2 exp
{
− t2

2 /
1

4 log 2

}
; (iii) For X ∼ [a, b], we

have ∥X− a+b
2 ∥w2

≤ b−a
2
√
log 2

by and then P(|X− a+b
2 | > t) ≤ exp

{
− t2

2 /
(b−a)2
2 log 2

}
. The results in (ii) and (iii) comes

from the conclusion about bounded variables in Example 1 in Zhang & Wei (2022), while Hoeffding’s inequality gives
sharper tail inequalities P(|X − µ| > t) ≤ 2 exp{−2t2} and P(|X − a+b

2 | > t) ≤ 2 exp{− 2t2

(b−a)2 } in (ii) and (iii).

Remark 2. Recall Vershynin (2010)’s definition of sub-Gaussian norm

∥X∥ψ2
= max

p≥1
p−1
(
E|X|p

)1/p
.

By p! ≥ (p/e)p, a crude bounds also appears. Indeed, by
(
E|X|p

)1/p ≤ K
√
p for all integer p ≥ 1,

Eec
−1X2

= 1 +

∞∑
p=1

c−pX2p

p!
≤ 1 +

∞∑
p=1

c−p(2K2p)
p

p!
≤ 1 +

∞∑
p=1

(
2eK2

c
)p = 1 + (

2eK2

c
)

∞∑
p=0

(
2eK2

c
)p

[
2eK2

c
< 1] = 1 + (

2eK2

c
)

∞∑
p=0

(
2eK2

c
)p = 1 + (

2eK2

c
)

1

1− 2eK2

c

.

Setting 2eK2

c ≤ s < 1 and assign s such that Eexp
(
c−1X2

)
≤ 1 + s

1−s =: 2, the solution is s = 1/2. Let

K = ∥X∥ψ2
. We thus have c ≥ 4e∥X∥2ψ2

. The EeX
2/(4e∥X∥2

ψ2
) ≤ 2 implies P(|X| ≥ t) ≤ 2e−t

2/(4e∥X∥2
ψ2

). by
using (17). Therefore, one has

Eexp{tX} ≤ exp
{
(4
√
e∥X∥ψ2

)2t2/2
}
. (18)

Example 3. For X ∼ N(0, 1), observe that

∥X∥φ2
= max

p≥1
p−1/2

(
E|X|p

)1/p
= lim
p→∞

p−1/2
(
E|X|p

)1/p
= lim
p→∞

√
2
p [

Γ((1+p)/2)
Γ(1/2) ]1/p = 1/

√
2 ≈ 0.7071.

For uniform distributed X ∼ U [−1, 1], one has ∥X∥φ2
= 0.4082 and P(|X| ≥ t) ≤ 2e−t

2/(4e·0.40822) =

2e−t
2/1.8122 comparing to Hoeffding’s inequality with a sharper bound P (|X| ≥ t) ≤ 2e−t

2

. For X ∼ Bern(µ),
1√
p [E|X − µ|p]1/p = 1√

p [(1− µ)µp + µ(1− µ)p]1/p. Let µ = 0.3, we have ∥X∥φ2 = 0.3240 and P(|X| ≥ t) ≤
2e−t

2/(4e·0.32402) = 2e−t
2/1.1417 comparing to Hoeffding’s inequality with a sharper bound P (|X| ≥ t) ≤ 2e−2t2 .

Example 4. The (18) implies

P(|
n∑
i=1

Xi| ≥ t) ≤ 2 exp

{
− t2

2
∑n
i=1(4

√
e∥Xi∥w2

)2

}
, t ≥ 0. (19)

The 2∥X∥2ψ2
≥ VarX implies that for strictly sub-G independent variables {Xi}ni=1

P(|
∑n
i=1Xi| ≥ t) ≤ 2 exp

{
− t2

2
∑n
i=1 Var(Xi)

}
≤ 2 exp

{
− t2

4
∑n
i=1 ∥Xi∥2

ψ2

}
< 2 exp

{
− t2

2
∑n
i=1(4

√
e∥Xi∥w2

)2

}
.

Hence, by (19), 2∥ · ∥w2
-norm leads to a looser concentration bound.
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Figure 5: The half length of 1− δ confidence interval with different norms. The results are divided by
√

2 log(2/δ) to
eliminate the affect of δ.

A.3 DETAILS FOR TABLE 1

Let {Xi}ni=1 be i.i.d. r.v.s with EX1 = 0,EX2
1 = σ2 > 0, and E |X1|3 = ρ < ∞. Shevtsova (2013) gave a tighter

estimate of the absolute constant in B-E bounds for X̄n := 1
n

∑n
i=1Xi:

∆n := sup
x∈R

∣∣∣∣P(√
n

σ
X̄n ≤ x

)
− Φ(x)

∣∣∣∣ ≤ 0.3328
(
ρ+ 0.429σ3

)
σ3

√
n

, ∀ n ≥ 1, (20)

where Φ(·) is the cumulative distribution function of N(0, 1).

Consider Bernoulli samples {Xi}ni=1
i.i.d.∼ Ber (1/2) with σ = 1/2 and ρ = 1/8, and Zolotukhin et al. (2018) shown

∆n ≤ 0.409954/
√
n. Put δ = 0.05, 0.075, 0.1. For n ≥ 1, Hoeffding’s inequality gives

P
(
|X̄n − 1/2| ≤ 1

2
√
n
·
√
2 log(2δ )

)
≥ 1− δ.

From B-E bounds (20), we have P(
√
n
σ (X̄n−1/2) ≤ −x)−Φ(−x) ≤ ∆n and P(

√
n
σ (1/2− X̄n) ≤ −x)−Φ(−x) ≤

∆n by the symmetry of Ber (1/2). Set

P
(√

n
σ (X̄n − 1/2) ≤ −x

)
≤ ∆n +Φ(−x) ≤ 0.409954√

n
+Φ(−x) =: δ2 ;

P
(√

n
σ (X̄n − 1/2) ≥ x

)
≤ ∆n +Φ(−x) ≤ 0.409954√

n
+Φ(−x) =: δ2 ,

where x = −Φ−1( δ2 − 0.409954√
n

) with δ
2 − 0.409954√

n
> 0.

Then, it results in a (1− δ)100%’s non-asymptotic CI:

P
(
|X̄n − 1/2| ≤ − 1

2
√
n
· Φ−1( δ2 − 0.409954√

n
)
)
≥ 1− δ

for n ≥ (0.8199/δ)2, which require least sample sizes n ≥ 269, 120, 68 for δ = 0.05, 0.075, 0.1 respectively.

For symmetric data with zero mean and finite third moment, (20) gives a trivial bound if we put 0.3328(ρ+0.429σ3)
σ3

√
n

≥ 1,

i.e. the B-E bound is useless when n ≤ [0.3328(ρ+0.429σ3)]2

σ6 .
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B SMALL SAMPLE LEAVE-ONE-OUT AVERAGE IN MOMENT NORM ESTIMATIONS

For the small sample zise (n ≤ 20), one has two other methods, except the direct empirical moment method (DE). The
first one is the well-known Bootstrap. The non-parametric Bootstrap can reduce the estimator’s variance and make it
more robust (see p512 in Hesterberg (2011)). Especially, here we use (n− 1)-out-of-n Bootstrap and construct n− 1
Bootstrap estimators and then take the median of these estimators. The second robust method under small sample
setting is called the leave-one-out Hodges-Lehmann method (LOO-HL) proposed by Rousseeuw & Verboven (2002).
Specially, based on sample X = (X1, . . . , Xn)

⊤ ∈ Rn, define LOO-HL empirical mean estimator as

µ̂LOO := med

{
DE(X(−i)) + DE(X(−j))

2
: 1 ≤ i < j ≤ n

}
,

where DE(X(−i)) :=
∑
k ̸=iXk/(n−1) is the empirical mean estimator ofX(−i) = {X1, . . . , Xi−1, Xi+1, . . . , Xn}.

It is worthy to note that the leave-one-out method is different from classic Hodges–Lehmann empirical mean estimator
µ̂HL := medi≤j

Xi+Xj
2 which uses a single sample Xi instead of leave-one-out mean DE(X(−i)) since in practice

we find that classic Hodges-Lehmann method cannot render ideal performance.

To see the performance, we use the three methods above to calculate the relative estimators’ errors based on small
samples corresponding to the settings in the previous section, except we use 1% independent Cauchy(0, 5) perturbation
to contaminate the original distribution. The results is shown in Figure 6. It can be seen that the three methods can
achieve relatively good performance, while the LOO-HL method gives less error overall and is obviously better than
the other two methods when 2 ≤ n ≤ 4.
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Figure 6: The relative error of ∥ · ∥G-norm estimation for three kind distributions by using direct empirical moment
method (DE), Bootstrap, and Leave-one-out Hodges-Lehmann method (LOO-HL).

C PROOFS OF MAIN RESULTS

Proof of Lemma 2. Note that ∥X∥G := maxm∈2N
[
EXm

EZm

]1/m
, where Z ∼ N(0, 1). If the maximum take at m = ∞,

max
m=2k∈2N

[
EXm

EZm

]1/m
= max

k∈N

[
2k√
π
Γ

(
k +

1

2

)]−1/(2k)

∥X∥2k

is an increasing function for some sub-sequence {kℓ} ⊆ {k} such that limℓ→∞ kℓ = ∞ when ℓ is large enough, where
we use the formula of 2k-th moment of standard normal distribution (see (18) in Winkelbauer (2012)).

Therefore, [
2kℓ√
π
Γ

(
kℓ +

1

2

)]−1/(2kℓ)

∥X∥2kℓ ≤
[
2kℓ+1

√
π

Γ

(
kℓ +

3

2

)]−1/(2kℓ+2)

∥X∥2kℓ+2

18



Under review as a conference paper at ICLR 2023

i.e. 2kℓ+1
2

[ √
π

Γ(kℓ+1/2)

]1/kℓ
≤ ∥X∥2kℓ+2

2kℓ+2/∥X∥2kℓ+2
2kℓ

for any kℓ is large enough. Let ℓ→ ∞, we have

1 = lim sup
ℓ→∞

∥X∥2kℓ+2
2kℓ+2

∥X∥2kℓ+2
2kℓ

≥ lim
ℓ→∞

2kℓ + 1

2

[ √
π

Γ(kℓ + 1/2)

]1/kℓ
= lim
kℓ→∞

(kℓ + 1/2)

[ √
π√

2π(kℓ + 1/2)kℓe−(kℓ+1/2)

]1/kℓ
= lim
ℓ→∞

e1+1/(2kℓ)

√
2

=
e√
2
> 1,

which leads to a contradiction, where we use a fact that limn→∞ ∥X∥n = ∥X∥∞ = esssup |X|, and hence

lim supℓ→∞ ∥X∥2kℓ+2
2kℓ+2/∥X∥2kℓ+2

2kℓ
= 1. As a result, one must have argmaxm∈2N

[
EXm

EZm

]1/m
<∞.

Proof of Theorem 2. If Xi is symmetric around zero, then we have by EX2k+1
i = 0 for k ∈ N+

EetXi = 1 +

∞∑
k=1

t2kEX2k
i

(2k)!
≤ 1 +

∞∑
k=1

t2k

(2k)!

(2k)! ∥Xi∥2kG
2kk!

= 1 +

∞∑
k=1

(t2 ∥Xi∥2G /2)
k

k!
= exp{

t2 ∥Xi∥2G
2

}

for all t ∈ R, where the last inequality is by the definition of ∥Xi∥G < ∞ such that EX2k
i ≤ (2k)!

2kk!
∥Xi∥2kG . Then it

proves Xi ∼ subG(∥Xi∥2G), which shows case (a).

For case (b), if Xi has zero mean, then we bound the odd moment by even moments. For k = 1, 2, · · · and ck > 0,
Cauchy’s inequality and mean value inequality imply

E|tXi|2k+1 ≤
(
c−1
k E|tXi|2k · ckE|tXi|2k+2

)1/2 ≤
(
c−1
k t2kEX2k

i + ckt
2k+2EX2k+2

i

)
/2.

So, E|tXi|3
3! ≤ c−1

1 t2EX2
i+c1t

4EX4
i

2·3! , E|tXi|5
5! ≤ c−1

2 t4EX4
i+c2t

6EX6
i

2·5! , and so on, which implies

EetXi ≤ 1 +

∞∑
k=2

tkE|Xi|k

k!
≤ 1 +

t2EX2
i

2!
+
c−1
1 t2EX2

i + c1t
4EX4

i

2 · 3!
+
t4EX4

i

4!

+
c−1
2 t4EX4

i + c2t
6EX6

i

2 · 5!
+
t6EX6

i

6!
+
c−1
3 t6EX6

i + c3t
8EX8

i

2 · 7!
+ · · ·

≤ 1 +

(
1 +

c−1
1

3!

)
t2EX2

i

2!
+

(
1 +

4!c1
2 · 3!

+
4!c−1

2

2 · 5!

)
t4EX4

i

4!
+

(
1 +

6!c2
2 · 5!

+
6!c−1

3

2 · 7!

)
t6EX6

i

6!
+ · · ·

≤ 1 +

(
1 +

1

6c1

)
t2EX2

i

2!
+

(
1 + 2c1 +

c−1
2

10

)
t4EX4

i

4!
+

(
1 + 3c2 +

c−1
3

14

)
t6EX6

i

6!
+ · · ·

≤ 1 +

(
1 +

1

6c1

)
t2EX2

i

2!
+

(
1 + 2c1 +

c−1
2

10

)
t4EX4

i

4!
+

∞∑
k=3

(
1 + kck−1 +

c−1
k

4k + 2

)
t2kEX2k

i

(2k)!
. (21)

To bound (21), we assign ck = x−1 · m
k+1

2k+2 for k ≥ 2 and x,m > 0. Consider the following system of equations:{
1 + 1

6c1
= m

1 + 2c1 +
c−1
2

10 = m2
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This system with c2 = 1
6·xm

3 gives 1 + 2c1 + 0.6x
(
1 + 1

6c1

)−3

=
(
1 + 1

6c1

)2
which could implies c1 = 0.4 if we

set x = 0.9806308. And then m = 1 + 1
6c1

= 17
12 . Therefore, (21) has a further upper bound

EetXi ≤ 1 +m
t2EX2

i

2!
+m2 t

4EX4
i

4!
+

∞∑
k=3

(
1 + kck−1 +

c−1
k

4k + 2

)
t2kEX2k

i

(2k)!

≤
∞∑
k=0

(
√
mt)2kEX2k

i

(2k)!
≤ 1 +

∞∑
k=1

(
√
mt)2k

(2k)!

(2k)! ∥Xi∥2kG
2kk!

≤ exp{
t2(
√

17/12∥Xi∥G)2

2
}, (22)

where the first inequality stems from 1 + mk

2x + (k+1)x
2k+1 ·m−k−1 ≤ mk with m = 17/12, k = 3, 4, · · · , and the last

inequality is by the definition of ∥Xi∥G. Thus we show Xi ∼ subG(17∥Xi∥2G/12).

Proof of Theorem 1. For (a), it remains to show the lower tail bound. For t ≥ 0, by the independence of {Xi}ni=1,

P{ max
1≤i≤n

Xi ≤ t} = P(X1 ≤ t, · · · , Xn ≤ t) =

n∏
i=1

P (Xi ≤ t)

[Applying Lemma 1] ≤
(
1− C2(X)e−4[2∥X∥2

G/∥X∥2
G̃
−1]t2

)n
≤ exp

(
−nC2(X)e−4[2∥X∥2

G/∥X∥2
G̃
−1]t2

)
,

where we use 1− x ≤ e−x for all x ∈ R in the last inequality.

Let δ = exp(−nC2(X)e−4[2∥X∥2
G/∥X∥2

G̃
−1]) and we get t = ∥X∥G̃/∥X∥G

2
√

2∥X∥2
G/∥X∥2

G̃
−1

√
log n− logC−2(X)− log log

(
2
δ

)
.

For (b), if X ≤M <∞, it shows

0 ≤ ∥X∥G̃ ≤ min
k≥1

[
2kk!

(2k)!
M2k

]1/(2k)
=M min

k≥1

[
2kk!

(2k)!

]1/(2k)
= 0,

So we immediately get ∥X∥G̃ = 0.

Proof of Lemma 1. The proof is based on Paley–Zygmund inequality P(Z ≥ θEZ) ≥ (1− θ)2 E[Z]2

E[Z2] for a positive r.v.
Z with finite variance, where θ ∈ (0, 1); see Page 47 in Boucheron et al. (2013).

Since X is symmetric around zero, one has EX2k+1 = 0 for k ∈ N+, which gives for all s ∈ R,

EesX = 1 +

∞∑
k=1

s2kEX2k

(2k)!
≥ 1 +

∞∑
k=1

s2k

(2k)!

(2k)! ∥X∥2kG̃
2kk!

= 1 +

∞∑
k=1

(s2 ∥X∥2G̃ /2)
k

k!
= exp{

s2 ∥X∥2G̃
2

}, (23)

where the last inequality stems from the definition of ∥X∥G̃ <∞ such that EX2k ≥ (2k)!
2kk!

∥X∥2kG̃ .

Let Z = exp{sX}. The above Paley–Zygmund inequality and (23) imply

P(Z ≥ t) := P(exp{sX} ≥ θ exp{∥X∥2G̃s
2/2}) ≥ P(exp{sX} ≥ θEexp{sX}) ≥ (1− θ)2

[E exp{sX}]2

Eexp{2sX}

≥ (1− θ)2
exp{∥X∥2G̃s2}
exp{2∥X∥2Gs2}

= (1− θ)2 exp{−[2∥X∥2G − ∥X∥2G̃]s
2} (24)
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where t := ∥X∥2G̃
s
2 + log θ

s > 0, and the last inequality is from Theorem 2(a). Put s =
t+

√
t2+2∥X∥2

G̃
log(1/θ)

∥X∥2
G̃

, which

is solved from equation 1
2∥X∥G̃s2 − ts− log(1/θ) = 0, then we have

s2 = ∥X∥−4

G̃

[
t+

√
t2 + 2∥X∥2G̃ log(1/θ)

]2
≤

4t2 + 4∥X∥2G̃ log(1/θ)

∥X∥4G̃
.

Substitute this upper bound into (24), and it leads to

P(X ≥ t) ≥ (1− θ)2 exp

{
−
[2∥X∥2G − ∥X∥2G̃][4t2 + 4∥X∥2G̃ log(1/θ)]

∥X∥4G̃

}
= (1− θ)2 exp{−[2∥X∥2G/∥X∥4G̃ − ∥X∥−2

G̃
][4t2 + 4∥X∥2G̃ log(1/θ)]}

= (1− θ)2θ4[2∥X∥2
G/∥X∥4

G̃
−∥X∥−2

G̃
] exp{−4[2∥X∥2G/∥X∥4G̃ − ∥X∥−2

G̃
]t2}. (25)

Taking sup on θ ∈ (0, 1) over the two sides of (25), we have

P(X ≥ t) ≥ exp{−4[2∥X∥2G/∥X∥4G̃ − ∥X∥−2

G̃
]t2} supθ∈(0,1)(1− θ)2θ4[2∥X∥2

G/∥X∥2
G̃
−1]

=

(
∥X∥2G̃

4∥X∥2G − ∥X∥2G̃

)(
4∥X∥2G − 2∥X∥2G̃
4∥X∥2G − ∥X∥2G̃

)2[2∥X∥2
G/∥X∥2

G̃
−1]

exp{−4[2∥X∥2G/∥X∥4G̃ − ∥X∥−2

G̃
]t2} (26)

where the supremum of supθ∈(0,1)(1− θ)2θ4[2∥X∥2
G/∥X∥2

G̃
−1] is attained at θ0 =

4∥X∥2
G−2∥X∥2

G̃

4∥X∥2
G−∥X∥2

G̃

.

Proof of Proposition 1. As in Hao et al. (2019), the sub-Weibull condition is that X ∼ subW(η) is defined as a
sub-Weibull r.v. with sub-Weibull index η > 0 if it has a finite sub-Weibull norm ∥X∥wη := inf{C ∈ (0,∞) :
E[exp(|X|η/Cη)] ≤ 2}. It is easy to see that, for sub-G X , we have X ∼ subW(2). Write

∥̃X∥
2kX

G − ∥X∥2kXG =
1

(2kX − 1)!!

[
1

n

n∑
i=1

X2kX
i − EX2kX

]
.

Since X ∼ subW(2), by Corollary 4 in Zhang & Wei (2022), we have X2kX ∼ subW(1/kX). Then apply Theorem
1 in Zhang & Wei (2022), we get

P
(∣∣∣∥̃X∥

2kX

G − ∥X∥2kXG

∣∣∣ ≤ 2en−1/2∥X∥ψ1/kX
C(k−1

X )
{√

t+ Ln

(
k−1
X , 1⊤n n

−1∥X∥ψ1/kX

)
tkX
})

≥ 1− 2e−t,

where constants C(·) and Ln(·, ·) is defined in Theorem 1 of Zhang & Wei (2022), and

Ln(k
−1
X , n−1∥X∥ψ1/kX

1n)

:=γ2kXA(k−1
X )

∥n−1∥X∥ψ1/kX
1n∥∞

∥n−1∥X∥ψ1/kX
1n∥2

1{0 < k−1
X ≤ 1}+ γ2kXB(k−1

X )
∥n−1∥X∥ψ1/kX

1n∥β
∥n−1∥X∥ψ1/kX

1n∥2
1{k−1

X > 1}

=γ2kXA(k−1
X )

∥n−1∥X∥ψ1/kX
1n∥∞

∥n−1∥X∥ψ1/kX
1n∥2

= γ2kXA(k−1
X )/

√
n, (1/θ + 1/β = 1).

Proof of Theorem 3. Let MOMb[Y ] := meds∈[b]{PBsm Y } be the MOM estimator for data {Yi}ni=1.

Since bS represents the number of sane block containing no outliers, and η(ε) is a possitive fraction function for sane
block such that bS ≥ η(ε)b. For ϵ > 0, in fact, if∑

k∈[bS ]
1{|PBkm Y−EY |>ϵ} ≤ bS − b/2, then |MOMb[Y ]− EY | ≤ ϵ.
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The reason is that if at least b/2 sane block {Bk} s.t. |PBkm Y − EY | ≤ ϵ, then |MOMb[Y ]− EY | ≤ ϵ. We have

{|MOMb[Y ]− EY | ≤ ϵ} ⊃
{∣∣{k ∈ [bS ] : |PBkm Y − EY | ≤ ϵ

}∣∣ ≥ b

2

}
=

 ∑
k∈[bS ]

1{|PBkm Y−EY |>ϵ
} ≤ bS − b

2

 .

Then,

P{|MOMb[Y ]− EY | ≤ ϵ} ≥ P

 ∑
k∈[bS ]

1{|PBkm Y−EY |>ϵ
} ≤ bS − b

2


= P

 ∑
s∈[bS ]

[1{|PBsm Y−EY |>ϵ} − P
{
|PBsm Y − EY | > ϵ

}
] < bS − b

2
− bSP

{
|PBsm Y − EY | > ϵ

}
≥ P

 ∑
s∈[bS ]

[1{|PBsm Y−EY |>ϵ} − P
{
|PBsm Y − EY | > ϵ

}
] < bS [1−

1

2η(ε)
− P

{
|PBsm Y − EY | > ϵ

}
]

 , (27)

where the last inequality is by (M.2): − b
2 ≥ − bS

2η(ε) . In (27), Chebyshev’s inequality implies

P{|PBsm Y − EY | ≥ 2

√
η(ε)VarY

m
} ≤ P{|PBsm Y − EY | ≥ 2

√
η(ε)VarY

m
} ≤ 1

4η(ε)
.

Let ϵ = 2
√

η(ε)VarY
m , and the last inequality shows

P {|MOMb[Y ]− EY | ≤ ϵ} ≥ P

 ∑
s∈[bS ]

[1{|PBsm Y−EY |>ϵ} − P
{
|PBsm Y − EY | > ϵ

}
] < bS [1−

3

4η(ε)
]

 .

Since {1{|PBsm Y−EY |>ϵ}}s∈[bS ] are independent r.v. which is bounded by 1, Hoeffding’s inequality shows

P

 ∑
s∈[bS ]

[1{|PBsm Y−EY |>ϵ} − P
{
|PBsm Y − EY | > ϵ

}
] < bS [1−

3

4η(ε)
]

 ≥ 1−e
−2

[bS(1− 3
4η(ε)

)]2∑bS
s=1 (1−0)2 = 1−e−2bS(1− 3

4η(ε)
)2 .

Therefore, we have

P

{
|MOMb[Y ]− EY | ≥ 2

√
η(ε)VarY

m

}
≤ e−2bS(1− 3

4η(ε)
)2 ≤ e−2η(ε)b(1− 3

4η(ε)
)2 , (28)

where the last inequality is from bS ≥ η(ε)b.

Next, recall that

∥X∥G = max
1≤k≤kX

[
EX2k

(2k − 1)!!

]1/(2k)
= max

1≤k≤κn

[
EX2k

(2k − 1)!!

]1/(2k)
for any κn ≥ kX (29)

and ∥̂X∥b,G = max
1≤k≤kX

med
s∈[b]

{[ 1
(2k−1)!! · P

Bs
m X2k]1/(2k)}. Recall that g

k,m
(σk) and ḡk,m(σk) are the sequences s.t.

[
EX2k/(2k − 1)!!

]1/(2k)
(1− ḡk,m(σk)) = max

1≤k≤κn

[
−2[m/η(ε)]−1/2σk

k/(EX
2k) + EX2k/(2k − 1)!!

]1/(2k)
; (30)

[2[m/η(ε)]−1/2σkk/(EX
2k) + 1]1/(2k) = 1 + g

k,m
(σk) for any m ∈ N and 1 ≤ k ≤ κn respectively. (31)
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For the first inequality, we have by (29)

P

{
∥̂X∥b,G ≤ [1− max

1≤k≤κn
ḡk,m(σk)]∥X∥G

}
= P

{
∥̂X∥b,G ≤ max

1≤k≤κn

[
EX2k

(2k − 1)!!

]1/(2k)
(1− max

1≤k≤κn
ḡk,m(σk))

}

≤ P

{
∥̂X∥b,G ≤ max

1≤k≤κn

[
EX2k

(2k − 1)!!

]1/(2k)
(1− ḡk,m(σk))

}

[By (30)] = P

{
∥̂X∥b,G ≤

[
− σkk
(2k − 1)!!

· 2

[m/η(ε)]1/2
+

EX2k

(2k − 1)!!

]1/(2k)}

≤
κn∑
k=1

P

{
med
s∈[b]

{[ 1

(2k − 1)!!
· PBsm X2k]

1/(2k)

} ≤
[

σkk
(2k − 1)!!

· 2

[m/η(ε)]1/2
+

EX2k

!k

]1/(2k)}

=

κn∑
k=1

P

{
med
s∈[b]

{ 1

(2k − 1)!!
· PBsm X2k} ≤ EX2k

(2k − 1)!!
− σkk

(2k − 1)!!
· 2

[m/η(ε)]1/2

}

=

κn∑
k=1

P

{
med
s∈[b]

{ 1

(2k − 1)!!
· [PBsm X2k − EX2k]} ≤ − σkk

(2k − 1)!!
· 2

[m/η(ε)]1/2

}

<

κn∑
k=1

P

{
|med
s∈[b]

{PBsm [X2k − EX2k]}| ≥ σkk ·
2

[m/η(ε)]1/2

}
≤ κne

−2η(ε)b(1− 3
4η(ε)

)2 ,

where the last inequality is by (28) with Yi = X2k
i ; and the assumption that

√
VarX2k ≤ σkk , 1 ≤ k ≤ κn.

Let g
m
(σ) := max1≤k≤κn gk,m(σk). For the second inequality, the definition of gk,m(σk) implies

P

{
∥X∥G <

∥̂X∥b,G
1 + g

m
(σ)

}
= P

{
∥̂X∥b,G − max

1≤k≤κn

[
EX2k

(2k − 1)!!

]1/(2k)
> g

m
(σ) max

1≤k≤κn

[
EX2k

(2k − 1)!!

]1/(2k)}

≤ P

{
∥̂X∥b,G − max

1≤k≤κn

[
EX2k

(2k − 1)!!

]1/(2k)
> g

k,m
(σk) max

1≤k≤κn

[
EX2k

(2k − 1)!!

]1/(2k)}

= P

{
∥̂X∥b,G > max

1≤k≤κn

[
EX2k

(2k − 1)!!

]1/(2k)
(1 + g

k,m
(σk))

}

= P

{
∥̂X∥b,G > max

1≤k≤κn

[
EX2k

(2k − 1)!!

]1/(2k) [
σkk

EX2k
· 2

[m/η(ε)]1/2
+ 1

]1/(2k)}

= P

{
∥̂X∥b,G > max

1≤k≤κn

[
σkk

(2k − 1)!!
· 2

[m/η(ε)]1/2
+

EX2k

(2k − 1)!!

]1/(2k)}

≤ P

{
max

1≤k≤κn
med
s∈[b]

{[ 1

(2k − 1)!!
· PBsm X2k]1/(2k)} >

[
σkk

(2k − 1)!!
· 2

[m/η(ε)]1/2
+

EX2k

(2k − 1)!!

]1/(2k)}

≤
κn∑
k=1

P

{
med
s∈[b]

{[
1

(2k − 1)!!
· PBsm X2k

]1/2k}
>

[
σkk

(2k − 1)!!
· 2

[m/η(ε)]1/2
+

EX2k

(2k − 1)!!

]1/(2k)}

=

κn∑
k=1

P

{
med
s∈[b]

{
1

(2k − 1)!!
· PBsm X2k

}
>

σkk
(2k − 1)!!

· 2

[m/η(ε)]1/2
+

EX2k

(2k − 1)!!

}

=

κn∑
k=1

P

{
med
s∈[b]

{
PBsm X2k

}
>

2σkk
[m/η(ε)]1/2

+ EX2k

}
=

κn∑
k=1

P

{
med
s∈[b]

{
PBsm

[
X2k − EX2k

]}
>

2σkk
[m/η(ε)]1/2

}

[By (28)] <
κn∑
k=1

P

{
|med
s∈[b]

{PBsm [X2k − EX2k]}| ≥ σkk ·
2

[m/η(ε)]1/2

}
≤ κne

−2η(ε)b(1− 3
4η(ε)

)2 ,
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where the last inequality stems from
√
VarX2k ≤ σkk , 1 ≤ k ≤ κn for a sequence {σk}k≥1.

Proof of Theorem 4: Denote Yk,i represents the i-th value of reward of arm k in its history, where i ∈ [Tk(t)] for any
round t. It is needed to bound ETk(t) as one has

ERegT ≤
K∑
k=2

∆kETk(t),

from (10), so we can only focus on some fixed arm. Hence, we can just drop the subscript k in {Yk,i}Tk(t)i=1 as {Yi}Tk(t)i=1 .

We first give a lemma, which is crucial in the following proof.

Lemma 6. Let {Yi}ni=1 be independent r.v.s with µi = EYi, and assume that Yi − µi is symmetric around zero with
∥Yi − µi∥G ≤ C and {wi}ni=1 are i.i.d. Rademacher r.v.s independent of {Yi}ni=1. Let w := 1

n

∑n
i=1 wi. Then,

P

(
1

n

n∑
i=1

(wi − w)(Yi − µi) ≤ C

√
2 log(1/α)

n

)
≥ 1− α.

Proof of Lemma 6. From Theorem 2 , we know that under the conditions in the lemma,

P

(
1

n

n∑
i=1

ai(Yi − µi) ≤ C∥a∥2
√

2 log(1/α)

n

)
≥ 1− α (32)

for any vector a := (a1, . . . , an)
⊤ ∈ Rn.

On the other hand, we have following inequalities,

∥w − w∥22 :=

n∑
i=1

(wi − w)2 =

n∑
i=1

w2
i − nw2 = n(1− w2) ≤ n, and ∥w − w∥∞ ≤ 2. (33)

Therefore, one has

P

(
1

n

n∑
i=1

(wi − w)(Yi − µi) ≤ C

√
2 log(1/α)

n

)
= PwPy

(
1

n

n∑
i=1

(wi − w)(Yi − µi) ≤ C

√
2 log(1/α)

n

)

≥ PwPy

(
1

n

n∑
i=1

(wi − w)(Yi − µi) ≤ C∥w − w∥2
√
2 log(1/α)

n

)
≥ 1− α,

where the second inequality is by (33) and the last inequality applies (32).

Based on Lemma 6, next we can prove Theorem 4. We first state the assumptions for Theorem 4 in detail.

(UCB1) The rewards of k-the arm in round t, Yk. And
√
VarY 2κ

k ≤ σκk,κ, 1 ≤ κ ≤ kYk for a sequence {σk,κ}κ≥1;

(UCB2) For any k ∈ [K]

gκ,m(σk,κ) := 1−
[
EY 2κ

k /(2κ− 1)!!
]−1/(2κ)

max
1≤κ≤κYk

[
−2m−1/2σκk,κ/(EY

2κ
k ) + EY 2κ

k /(2κ− 1)!!
]1/(2κ)

and
g
κ,m

(σk,κ) := [2m−1/2σκk,κ/(EY
2κ
k ) + 1]1/(2κ) − 1

are both less than n−1/2 for sufficient large m.

Proof of Theorem 4. Denote the population version of
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φ̂G(Yn) =
√

2 log(4/α)
n

̂∥Y−µ∥bk,G
1−n−1/2 for φG(Yn) := ∥Y − µ∥G

√
2 log(4/α)

n with EY = µ.

Theorem 2 gives

P
(
|Y − µ| ≥ φG(Yn)

)
≤ 2 exp

{
− n2φ2

G(Yn)

2n∥Y − µ∥2G

}
= α/2.

by the fact that Y − µ is symmetric around zero.

From Theorem 3, we take b ≥ 8 log(kY /α) and define the event EY bellow associated with the MOM estimation of
the intrinsic moment norm

EY := { ̂∥Y − µ∥b,G ≥ [1− max
1≤k≤kY /2

gk,m(σk)]∥Y − µ∥G}

with probability at least 1− α/2. Note that

P
(
|Y − µ| ≥ φ̂G(Yn)

)
≤ P

(
|Y − µ| ≥ φ̂G(Yn), EY

)
+ P

(
EcY
)

≤ P

(
|Y − µ| ≥

√
2 log(4/α)

n
(1− n−1/2)−1 ̂∥Y − µ∥b,G, EY

)
+ α/2

≤ P

(
|Y − µ| ≥ (1− n−1/2)−1[1− max

1≤k≤kY /2
gk,m(σk)]

√
2 log(4/α)

n
∥Y − µ∥G

)
+ α/2

≤ P
(
|Y − µ| ≥ φG(Yn)) + α/2 ≤ α.

where the last inequality is by taking m big enough such that max1≤k≤kY /2 gk,m(σk) ≤ 1/
√
n. Then, for s ∈ N+,

P
(
|Y s − µk| ≤ φ̂G(Ys)

)
≥ 1− α.

Now for any k ∈ [K] and fixed Tk(t) = s, we know that

P
(
Y s − µk ≥ φ̂G(Ys)

)
≤ P

(
|Y k − µk| ≥ φ̂G(Yn)

)
≤ α.

By the non-asymptotic second-order correction (see Theorem 2.2 in Hao et al. (2019)) and the assumption that Y − µ
is symmetric around zero, one has

P

{
µk − Y s ≥ qα/2(Ys − Y s) +

√
2 log(4/α)

s
φ̂G(Ys)

}
≤ 2α,

where qα/2(YBk − Y Bk) := qα/2
(
Ys − Y s,

1
s1s
)
.

Denote the UCB index UCBk(t) = Y Tk(t) + hα(YTk(t)), and the good event

Ek := {µ1 < min
t∈[T ]

UCB1(t)} ∩
{
Y Bk + qα/2(Ys − Y s) +

√
2 log(4/α)/s · φ̂G(Ys) < µ1

}
, k ∈ [K],

where Bk ∈ [T ] is a constant to be chosen later. Following from the proof in (B.16)-(B.18) of Hao et al. (2019), we
can gives that Tk(t) ≤ Bk and

ETk(t) ≤ Bk + T
[
2αT + P

(
Y Bk + qα/2(YBk − Y Bk) +

√
2 log(4/α)/Bk · φ̂G(YBk) ≥ µ1

)]
. (34)

On the other hand, from Lemma 6, then

P

(
qα/2(YBk − Y Bk) ≥ C

√
2 log(4/α)

Bk

)
≤ α/2.
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Next, by applying MOM estimator, we need to the following assumptions for block {bk}k∈[K] corresponding to
Theorem 3. Here we include the subscript k to avoid confusion.

Under η(ε) = 1 with ε = 0, Theorem 3 ensures for bk ≥ 8 log(kY /α) and take m large enough such that
max1≤κ≤kY gκ,m(σκ) ≤ n−1/2, then

P
(
(1 + n−1/2)C ≤ ̂∥Y − µ∥b,G

)
≤ P

(
(1 + max

1≤κ≤kY /2
g
κ,m

(σk,κ)) ∥Y − µ∥G ≤ ̂∥Y − µ∥bk,G
)
≤ kY e

−bk/8 ≤ α/2

Hence, we have

P

(
qα/2(YBk − Y Bk) +

√
2 log(4/α)

Bk
φ̂G(YBk) ≥ C

1 +√2 log(4/α)

Bk

1 +Bk
−1/2

1−Bk
−1/2

√2 log(4/α)

Bk

)

≤P

(
qα/2(YBk − Y Bk) +

2 log(4/α)

Bk

̂∥Y − µ∥bk,G
1−Bk

−1/2
≥ C

√
2 log(4/α)

Bk
+

2 log(4/α)

Bk

(1 +Bk
−1/2)C

1−B
−1/2
k

)

≤P

(
qα/2(YBk − Y Bk) ≥ C

√
2 log(4/α)

Bk

)
+ P

( ̂∥Y − µ∥bk,G ≥ (1 +Bk
−1/2)C

)
which implies with probability at least 1− α,

qα/2(YBk − Y Bk) +

√
2 log(4/α)

Bk
φ̂G(YBk) ≤ C

[
1 +

√
2 log(4/α)

Bk

1 +Bk
−1/2

1−B
−1/2
k

]√
2 log(4/α)

Bk

≤ 2(2 +
√
2)C

√
2 log(4/α)

Bk

where Bk ≥ 8 log(kYk/α) ∨ 2 log(4/α) and max1≤κ≤kYk/2 gκ,m(σk,κ) ≤ 1/
√
Bk for each arm k.

Now, define the event Bk := {qα/2(YBk − Y Bk) +
√
2 log(4/α)/Bk · φ̂G(YBk) ≤ ∆k/2} with ∆k := µ1 − µk.

Choose Bk as

Bk =
42(2 +

√
2)2C2

∆2
k

log(4/α) ≥ 2, (35)

we have
P
(
Bck
)
= P

(
qα/2(YBk − Y Bk) +

√
2 log(4/α)/Bk · φ̂G(YBk) > ∆k/2

)
≤ P

(
2(2 +

√
2)C

√
log(4/α)

Bk
> ∆k/2

)
+ α = 0 + α = α.

Applying Theorem 2 for concentration of Y Bk − µk when Bk is chosen as in (35),

P
(
Y Bk + qα/2(YBk − Y Bk) +

√
2 log(4/α)/Bk · φ̂G(YBk) ≥ µ1

)
≤ P

(
Y Bk − µk ≥ ∆k/2

)
+ P

(
Bck
)

≤ 2 exp
{
− (Bk∆k/2)

2

2 ·BkC2

}
+ α

= 2 exp
{
− Bk∆

2
k

8C2

}
+ α.
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Taking account these results into (34), we get that

ETk(t) ≤ Bk + 2αT 2 + αT + 2T exp
{
− Bk∆

2
k

8C2

}
=

42(2 +
√
2)2C2

∆2
k

log(4/α) + 2αT 2 + αT + 2T exp
{
− 2(2 +

√
2)2 log(4/α)

}
=

16(2 +
√
2)2C2

∆2
k

log T +
4

T
+

2

T 25+16
√
2
+ 8

by taking α = 4/T 2. Under the problem-dependent case, the regret is bounded by

RegT =

K∑
k=2

∆kETk(t) ≤ 16(2 +
√
2)2C2 log T

K∑
k=2

∆−1
k +

(
4

T
+

2

T 25+16
√
2
+ 8

) K∑
k=2

∆k.

To get the problem-independent bound, we let ∆ > 0 as an arbitrary threshold, then decompose RegT , we get

RegT =
∑

∆k:∆k<∆

∆kETk(t) +
∑

∆k:∆k≥∆

∆kETk(t)

≤ T∆+ 16(2 +
√
2)2C2 log T

∑
∆k:∆k≥∆

∆−1
k +

(
4

T
+

2

T 25+16
√
2
+ 8

) ∑
∆k:∆k≥∆

∆k

≤ T∆+
16(2 +

√
2)2C2K log T

∆
+

(
4

T
+

2

T 25+16
√
2
+ 8

)
Kµ∗

1

= 8(
√
2 + 2)C

√
TK log T +

(
4

T
+

2

T 25+16
√
2
+ 8

)
Kµ∗

1,

by taking ∆ = 8(2 +
√
2)C

√
(K log T )/T . And finally, we take C = maxk∈[K] ∥Yk − µk∥G.
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