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ABSTRACT

As neural networks grow in scale, their training becomes both computationally
demanding and rich in dynamics. Amidst the flourishing interest in these training
dynamics, we present a novel observation: Parameters during training exhibit in-
trinsic correlations over time. Capitalizing on this, we introduce correlation mode
decomposition (CMD). This algorithm clusters the parameter space into groups,
termed modes, that display synchronized behavior across epochs. This enables
CMD to efficiently represent the training dynamics of complex networks, like
ResNets and Transformers, using only a few modes. Moreover, test set general-
ization is enhanced.
We introduce an efficient CMD variant, designed to run concurrently with train-
ing. Our experiments indicate that CMD surpasses the state-of-the-art method for
compactly modeled dynamics on image classification. Our modeling can improve
training efficiency and lower communication overhead, as shown by our prelimi-
nary experiments in the context of federated learning.

1 INTRODUCTION

The research of training dynamics in neural networks aims to comprehend the evolution of model
weights during the training process. Understanding stochastic gradient descent (SGD) is of
paramount importance as it is the preferred training method used in practice. By studying these dy-
namics, researchers strive to achieve predictability, enhance training efficiency, and improve overall
performance. In this work we show, for instance, how a good model can improve distributive and
federated learning.

Outside the scope of deep learning, time profiles and correlation methods have been valuable for
studying complex systems since the 1990s, as demonstrated by the foundational work of Aubry
et al. (1991; 1992). Studies in variational image-processing such as Burger et al. (2016) and Gilboa
(2018) also highlight the emergence of specific time profiles during gradient descent. However, these
methods often rely on properties like convexity and homogeneity, which neural networks training
dynamics typically lack.

Research into deep learning training dynamics dates back to the early days of neural networks,
with initial studies focusing on two-layer models (Saad & Solla, 1995b;a; Mace & Coolen, 1998;
Chizat & Bach, 2018; Aubin et al., 2018; Goldt et al., 2019; Oostwal et al., 2021). These simpler
models continue to offer valuable insights, but our interest lies in the dynamics of contemporary,
complex models that feature significantly larger numbers of weights and layers. These complexities
introduce higher degrees of nonlinearity. Another popular simplification is the first-order Taylor
approximation of the dynamics, particularly in the realm of infinitely wide neural networks, as in
Jacot et al. (2018); Lee et al. (2019). However, this often results in performance shortcomings.

A different approach examines the low-dimensional sub-space hypothesis, positing that effective
training can occur in a limited set of directions within the weight space, see Li et al. (2018a); Gur-
Ari et al. (2018); Gressmann et al. (2020). Recently, Li et al. (2023) employed the eigenvectors
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of the covariance between weight trajectories to define a 40-dimensional training sub-space. They
achieve strong performance in this constrained sub-space, setting the SOTA for compactly modeled
dynamics in image classification. Other studies proposed to represent the training dynamics of
complex models through a concise set of representative trajectories wm(t):

wi(t) ≈ bi +
∑
m

ai,mwm(t), (1)

where bi, ai,m are scalars and wi(t) is the trajectory of the i’th tunable weight (parameter) of the
network. Common solution approaches employ dynamical analysis techniques, relying on Koopman
theory and Dynamic Mode Decomposition (DMD), see Schmid (2010); Dogra & Redman (2020);
Naiman & Azencot (2021). Our experiments and analysis indicate that DMD and its variants do
not adequately capture the complex dynamics inherent in neural network training (see Fig. 1 and
Appendix H).

Our main observation is that network parameters are highly correlated and can be grouped into
“Modes” characterized by their alignment with a common evolutionary profile. This captures the
complex dynamics, as illustrated in Fig. 1. Our findings are substantiated through comprehensive
experiments; a selection of key graphs is presented in the main body, while the Appendix offers a
rich array of additional results, ablation studies, stability evaluations and details regarding various
architectures and settings. Our contributions are three-fold:

• The introduction of Correlation Mode Decomposition (CMD), a data-driven approach that effi-
ciently models training dynamics.

• Devising efficient CMD which can be performed online during training, out-performing the state-
of-the-art method for training dynamics dimensionality reduction of Li et al. (2023) in both effi-
ciency and performance.

• We pioneer the use of modeled training dynamics to reduce communication overhead. Our pre-
liminary experiments offer a promising avenue for future research.

Figure 1: Correlated dynamics. Left: Correlation matrix of weight trajectories, clustered to modes,
for a simple network (See Fig. 10a in the Appendix) trained on MNIST (LeCun et al. (1998)).
Middle: Clustered correlation matrix of weight trajectories for ResNet18 (He et al. (2016a)) trained
on CIFAR10 (Krizhevsky et al. (2009)). The block diagonal structure indicates high correlations of
the parameter dynamics within each mode. Right: Three weight trajectories from SGD training are
reconstructed via DMD, which uses exponentials (Top) and CMD, which uses reference trajectories
(Bottom). These highlight the effectiveness of CMD in capturing complex training dynamics. See
Appendix A.1, Figs. 6, 7 for extended findings.

2 PREVIOUS WORK

Dimensionality reduction techniques, particularly those using correlation matrices, are key to our
approach and have roots in statistics and information visualization, see Nonato & Aupetit (2018);
Sorzano et al. (2014); Van Der Maaten et al. (2009); Van der Maaten & Hinton (2008). Various stud-
ies explore low-dimensional sub-space training using similar methods. For example, random projec-
tions can capture a substantial amount of the gradient’s information (Li et al., 2018a). Hessian-based
methods focus on its top eigenvectors, (Gur-Ari et al., 2018). Dimensionality has been further re-
duced via smart weight sampling, (Gressmann et al., 2020). The work by Li et al. (2023) bears the
most resemblance to our research. The authors affirm low-dimensional training dynamics, using top
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eigenvectors of the covariance matrix to span the training space. The gradient is fully computed
for all of the weights before being projected onto this basis, making their method more involved
than regular (stochastic) gradient descent. They also introduce an efficient Quasi-Newton training
scheme that benefits from the low-dimensional representation. Our approach distinguishes itself
from Li et al. (2023) by focusing on dynamics mode decomposition, rather than training in a low-
dimensional sub-space. Both methods use dimensionality reduction to compactly model the dynam-
ics, but operate differently. Our analysis is not based on eigenvectors but on nonlinear clustering,
yielding improved performance. DMD and Koopman theory, (Schmid, 2010; Tu, 2013; Williams
et al., 2015; Kutz et al., 2016), decompose dynamics to modes using well-studied operators. They
extend to neural training dynamics analysis (Manojlović et al., 2020; Dogra & Redman, 2020; Red-
man et al., 2021), including advanced methods for highly non-linear cases Yeh et al. (2023). Šimánek
et al. (2022) also incorporates DMD for training optimization. Contrary to these, we extract modes
from the observed correlation in the dynamics without using a predefined operator, implying a more
adaptive, data-driven approach. The geometry of loss landscapes has been a topic of interest, see
Shalev-Shwartz & Ben-David (2014); Keskar et al. (2016); Li et al. (2018b); Draxler et al. (2018).
We showcase our dimensionality-reduction technique in this regard as well.

We demonstrate the relevance of our approach for communication overhead in distributed learning,
a widely-studied challenge addressed by various techniques, including order scheduling and data
compression (Ho et al., 2013; Cui et al., 2014; Zhang et al., 2017; Chen et al., 2019; Shi et al., 2019;
Hashemi et al., 2019; Peng et al., 2019; Dryden et al., 2016; Alistarh et al., 2017). In Federated
Learning, communication is particularly problematic (Li et al., 2020). For instance, Chen et al.
(2021) finds communication takes up more than 50% of the training time in their experiments.
Solutions involve adaptive weight updates to reduce communication load (Seide et al., 2014; Alistarh
et al., 2017; Hsieh et al., 2017; Luping et al., 2019; Konečnỳ et al., 2016; McMahan et al., 2017;
Ström, 2015; Chen et al., 2021). In our work we propose for the first time to use dynamics modeling
to reduce the number of communicated parameters.

3 METHOD

We present several approaches to apply our method, starting by discussing the underlying correlated
dynamics (Sec. 3.1). Following this discussion we introduce the basic CMD version, called post-
hoc CMD, which analyzes dynamics after they occur (Sec. 3.2). We then present the more efficient
online CMD (Sec. 3.3) and embedded CMD (Sec. 3.4), which embeds CMD dynamics to the
training process. In Sec. 3.5 we demonstrate accuracy landscape visualization via CMD.

3.1 THE UNDERLYING CORRELATED DYNAMICS

Hypothesis 1 The dynamics of neural network parameters can be clustered into very few highly
correlated groups, referred to as “Modes”.

Let W = {wi(t)}Ni=1 denote the set of time-profiles of the neural network trainable weights during
the training process, where i is the weight index, t is the training time, and N is the total number
of such weights. We refer to W as the ’trajectories’ where each wi(t) is a single ’trajectory’. The
trajectories are clustered to M modes, where M ≪ N . Let Wm ⊂ W be the subset of trajec-
tories corresponding to mode m within W. Using a minor abuse of notation, when t is discrete
we use W,Wm to denote the matrices where the (discrete) trajectories are arranged as rows. De-
tails of the discrete case will be provided in Sec. 3.2. The correlation of two trajectories u, v is
denoted corr(u, v). Any two time trajectories u, v that are perfectly correlated (or anti-correlated),
i.e. |corr(u, v)| = 1, can be expressed as an affine transformation of each other, u = av + b. Thus,
under the assumption of correlated dynamics, the following approximation is used to describe the
dynamics of a weight trajectory

wi(t) ≈ aiwm(t) + bi, ∀wi(t) ∈Wm, (2)

where ai, bi are scalar affine coefficients associated with wi, and wm(t) is a single common weight
trajectory chosen to represent mode m termed ’reference weight’. Note that in terms of the usual
dynamics decomposition approach of Eq. (1), the case of Eq. (2) is a specific case where a single
wm(t) models each trajectory. Figs. 1, 7 demonstrate that Eq. (2) approximates the dynamics using
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a notably small set of modes (10 or less in most cases), supporting our hypothesis of correlated
dynamics. Surprisingly, parameters of the same layers are typically distributed between the modes,
see Fig. 10b in the Appendix.

While neural networks are notoriously known for their complex dynamics, the data-driven approach
of Eq. (2) is simple yet effective at capturing these training intricacies. The reference weights hold
the advantage of not being restricted to common assumptions typically made in classical dynamics
analysis. For instance, we show DMD (a classical analysis approach) to be too restrictive even for
simple cases in Appendix H.2.

Our key novelty lies in leveraging the correlation between parameter trajectories to compactly model
the training dynamics. We will show that this approach outperforms current modeling methods.

3.2 POST-HOC CMD

In this section we introduce the basic CMD version, called post-hoc CMD, which analyzes dynamics
after they occur. This algorithm models dynamics as per Eq. (2): It splits the trajectories to modes,
associates a reference trajectory to each mode and approximates the affine coefficients.

Consider a discrete time setting, t ∈ [1, ..E], where E is the number of epochs, and denote Nm the
number of trajectories in mode m. Then wm, wi ∈ RE , W ∈ RN×E ,Wm ∈ RNm×E . We consider
1D vectors such as u ∈ RE to be row vectors, and define ū := u − 1

E

∑E
t=1 u(t), ⟨u, v⟩ = uvT ,

∥u∥ =
√
uuT , corr(u, v) = ⟨ū,v̄⟩

||ū||||v̄|| . Let A, B ∈ RN s.t. A(i) = ai, B(i) = bi, and let Am, Bm ∈

RNm be the parts of A,B corresponding to the weights in mode m. Denote w̃m =

[
wm

1⃗

]
∈ R2×E ,

where 1⃗ = (1, 1, · · · 1) ∈ RE , and Ãm = [AT
m, BT

m] ∈ RNm×2. In this context, Eq. (2) reads as

Wm ≈ Ãmw̃m. (3)

Step 1. Find reference trajectories. Given the trajectories wi ∈ W, use correlation to select
wm. To avoid a large N ×N matrix, we sample K trajectories to construct the absolute trajectory
correlation matrix C1, i.e.

C1[k1, k2] = |corr(wk1
, wk2

)|, C1 ∈ RK×K , (4)
where wk1

, wk2
take any pair of the K sampled trajectories and M ≪ K ≪ N . C1 is used to

cluster the K trajectories to M modes. In each mode, wm is chosen as the weight trajectory with the
highest average correlation to the other weights in the mode. Details on the sampling and clustering
procedures are available in Appendix C.2, C.3.

Step 2. Associate weights to modes. Given {wm}Mm=1 and W, partition W to {Wm}Mm=1. Let
C2 ∈ RN×M : C2[i,m] = |corr(wi, wm)|. (5)

To get {Wm}Mm=1, we obtain the mode of each wi ∈W as argmax of the ith row C2[i, :].

Step 3. Obtain the affine parameters. Given wm, Wm, get Ãm by a pseudo-inverse of Eq. (3)

Ãm = Wmw̃T
m(w̃mw̃T

m)−1 ∈ argmin
Ãm

∥Wm − Ãmw̃m∥F , (6)

where ∥ · ∥F denotes the Frobenius norm. Reconstruction of the modeled dynamics WRecon
m , is

performed by re-plugging Ãm to the right-hand-side of Eq. (3)
WRecon

m = AT
mwm +BT

m1⃗, (7)

where, e.g., mode m weights at end of training appear at the last column, denoted WRecon
m (t)

∣∣∣∣
t=E

.

We tested post-hoc CMD on image classification, segmentation and generative image style transfer.
The performance upon replacing the weights with the CMD modelled weights produces similar, and
even enhanced results, compared to the original network weights, see Fig. 2. Further experimental
details and additional post-hoc results, and ablation studies are in Appendix B. As far as we know,
we are the first to assess dynamics modeling in image segmentation and generative style transfer.
Post-hoc CMD is resource-intensive due to full training trajectory usage. Thus we introduce efficient
CMD variants for real-time computation during training.
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Figure 2: Post-hoc CMD examples. CMD representation is highly general and models well diverse
architectures operating on various tasks. Here, the successful modeling is evident through its ability
to follow the performance dynamics while even providing a performance boost. Left: CIFAR10
performance on ViT-b-16 (Dosovitskiy et al., 2020), pre-trained on JFT-300M. Middle: StarGAN-
v2 (Choi et al., 2020) style transfer, qualitative result of the original network compared to the result
of CMD modeling of its dynamics. Right: Segmentation results, using PSPNet Architecture (Zhao
et al., 2017). See more details and results in Appendix B and Figs. 15, 18. ’GD’ in the legend stands
for SGD.

3.3 ONLINE CMD

We introduce an iterative CMD version that mitigates the computational drawbacks of post-hoc
CMD. Designed to run alongside the regular training process, with negligible overhead - we term
it online. Transforming post-hoc CMD into an iterative algorithm, we eliminate the need for full
training trajectories, reducing memory and computation.

Warm-up phase. We observed that the reference trajectories can be selected once during training,
and do not require further updates (see Fig. 16 and Table 4 in Appendix C.5). Thus we perform
Step 1 of Sec. 3.2 once at a pre-defined epoch F , and the selected reference weights continue to
model the dynamics for the remainder of the training process. After the warm-up phase, we perform
efficient iterative updates, variants of Step 2 and Step 3 of Sec. 3.2.

Step 2 (iterative). This step requires computing C2, the trajectory correlation matrix of Eq. (5). C2

is calculated using inner products and norms. Denote wt ∈ Rt as the discrete trajectory of a weight
w at times 1 through t. Given ⟨wm,t−1, wi,t−1⟩, ∥wi,t−1∥2, we may obtain ⟨wm,t, wi,t⟩, ∥wi,t∥2 as:

⟨wm,t, wi,t⟩ = ⟨wm,t−1, wi,t−1⟩+ wm(t)wi(t), ∥wi,t∥2 = ∥wi,t−1∥2 + w2
i (t). (8)

Step 3 (iterative). Let Ãm(t) be Ãm evaluated on trajectories up to time t. Given Ãm(t − 1), we
have by Eq. (6)

Ãm(t) =
(
Ãm(t− 1)(w̃m,t−1w̃

T
m,t−1) +Wm(t)w̃T

m(t)
)
(w̃m,tw̃

T
m,t)

−1, (9)

w̃m,tw̃
T
m,t = w̃m,t−1w̃

T
m,t−1 +

(
w2

m(t) wm(t)
wm(t) 1

)
, (10)

where Wm(t), w̃m(t) are the tth column of Wm, w̃m respectively, and w̃m,t are columns 1 through
t of w̃m. Note that we only used the weights at the current time t, along with the 2 × 2 matrices
w̃m,t−1w̃

T
m,t−1, w̃m,tw̃

T
m,t, which are also iteratively maintained via Eq. (10). In all of our experi-

ments - invertability of this 2×2 was never an issue (generally, a pseudo-inverse can be used). Thus
we use Eq. (9), Eq. (10) for iterative updates, see derivation of Eq. (9) in Appendix C.4.

Performance Our experiments show that after the F warm-up iterations we may fix not only Steps
1, but also Step 2, and continue with iterative Step 3 updates, while maintaining on-par performance
with post-hoc CMD, as shown in Table 4 in Appendix C.5. Online CMD outperforms the current
SOTA low-dimensional model of Li et al. (2023) on various image classification architectures, as
highlighted in Table 1, while requiring a substantially shorter warm-up phase.

Efficiency Unlike Eq. (6), which is performed once at the end of the warm-up phase, the iterative
updates, Eq. (9), Eq. (10), do not require trajectory storage at all. Moreover, their overhead is
computationally negligible compared to a training step, see Appendix C.6 for the calculations. Thus
we have an online dynamics modeling procedure with negligible overhead - setting the ground for
training enhancement. The full Online CMD algorithm is available in Algorithm 3 in Appendix C.1.
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3.4 EMBEDDING THE MODELED DYNAMICS IN TRAINING

This method gradually integrates CMD dynamics into training, aimed at leveraging modeled dynam-
ics for enhanced learning. This improves accuracy and reduces the number of trained parameters.
Experiments show that gradual CMD embedding stabilizes training, whereas instantaneous CMD
use in SGD is unstable (Fig. 3). Two naive approaches failed: 1) periodic CMD weight assignment
reverted to regular SGD paths; 2) training only the reference weights after the warm-up phase.

Let us describe the gradual embedding approach of choice. We rely upon the online algorithm of
Sec. 3.3, where after a short warm-up phase the affine parameters ai, bi are iteratively updated at
each epoch. Every L epochs we further embed additional parameters. A parameter wi for which the
model is stable (change of ai, bi in time is negligible) is CMD embedded from then on, i.e. it gets
its value according to the CMD model and not by gradient updates. Additionally, from this point on,
ai, bi are fixed.

Figure 3: Embedding CMD in training. Left: Naively assigning CMD-modeled weights to the
model every 20 epochs, and performing SGD in between. Dots represent the CMD model perfor-
mance. Performance is repeatedly drawn back to the CMD-less (regular SGD) case. Middle: Online
CMD and Embedded CMD, compared to regular SGD. An additional naive approach which trains
only the reference weights post warm-up is also presented (green). Performance is portrayed along
the training epochs. CMD runs use M = 10 modes, F = 20 warm-up epochs. We use an embed-
ding rate of P = 10%, and L = 10 epochs (Right), which lead to ≈ 50% reduction in the total
number of trained parameters in the whole training cycle. Both online and embedded CMD variants
considerably improve performance, compared to regular SGD. Both naive approaches do not.

As shown in Appendix C.8, the affine parameters ai, bi tend to exhibit minimal or no changes after a
certain epoch, denoted t = τi. Thus, after τi we may fix ai, bi, i.e. use ai ← ai(τi), bi ← b(τi)∀t >
τi. Denote I(t) = {i : t > τi}. To embed the modeled dynamics to wi, we perform

wi(t)←
{

SGD update if i /∈ I(t)
aiwm(t) + bi if i ∈ I(t) . (11)

After τi, we say that wi is an embedded weight, and ai, bi its embedded coefficents. Note: Embedded
coefficients are frozen in time, embedded weights are not. Let ci be a criterion of change in ai, bi,
for instance ci(t) =

√
∥ai(t)− ai(t− L)∥2 + ∥bi(t)− bi(t− L)∥2. One way to obtain τi is by

τi = t : ci(t) is in the bottom P% of the unembedded weights. (12)

Other reasonable ways include τi = t : ci(t) < ϵ, for un-embedded wi, using a small threshold
ϵ > 0. The full online embedding algorithm is available in Algorithm 4 in the Appendix. Note that
we do not embed the reference weights {wm}Mm=1. Sec. 4 demonstrates the benefit of embedded
dynamics in the context of federated learning, where we can locally store the embedded coefficients
to significantly reduce the communication overhead.

3.5 CMD ACCURACY AND LOSS LANDSCAPE VISUALIZATION

Reducing the search space to 1-2 dimensions allows for loss landscape visualization. To this end we
use CMD with 2 modes, as seen in Fig. 4, where different parts of the dataset are used for accuracy
visualization. Expectedly, training and validation sets differ in landscape smoothness. Smoothness
as well as minima points also vary across the CIFAR10 classes. See further details in Appendix G.
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Figure 4: Visualization of accuracy landscape. A grid is created based on the two reference
weights, and colored by accuracy values. The accuracy landscape of the training set (left) is very
smooth, compared to that of the validation set (second left). The landscape of the Automobile class
(3rd left) is rather regular whereas the Dog class (right) is much more irregular and suboptimal. The
original CMD model is marked with a black dot, the optimal model is marked with a red dot.

4 CMD FOR EFFICIENT COMMUNICATION IN DISTRIBUTED LEARNING

We propose for the first time to use training dynamics modeling for efficient communication in
distributed learning. In conventional (non-distributed) learning, as discussed above, a reduction in
trained parameters leads to decreased computation. Nonetheless, in distributed scenarios, modeling
trajectories may reduce the No. of communicated parameters as well, offering further significant
benefits. Specifically in Federated Learning (FL), communication efficiency is crucial (Li et al.,
2020). For example, Chen et al. (2021) find in their FL experiments that communication accounts
for over 50% of the total training time. Following their experimental setting, we concentrate on
FL, where client models handle unique per-client data. Although developed for FL, our method is
adaptable for distributed learning.

Let C be the set of client models, trained locally on distinct data. Periodical ’synchronization
rounds’ occur at time ts as follows: A subset C(ts) ⊂ C is randomly selected and aggregated in
a Central Server using standard averaging (McMahan et al., 2017). We consider the (less standard)
practice that aggregates only a subset of the weights

Central Server: wmain
i (ts) =

1

|C(ts)|
∑

client∈C(ts)

wclient
i (ts), ∀i /∈ I(ts), (13)

where I(ts) is the set of indices of the un-aggregated weights at time ts. Un-aggregated weights do
not require communication with the central server, hence increasing the size of I while maintaining
performance is beneficial. To this end, we harness the embedded CMD modeling of Sec. 3.4, where
the analyzed set of weight trajectories is {wmain

i (ts)}i∈I(ts) as follows: The coefficients {ai, bi} are
maintained in the Central Server as in Sec. 3.4, and calculated w.r.t. {wmain

i (ts)}Ni=1. Let τs,i be
the round in which ai, bi are embedded. At ts = τs,i, the pair {ai, bi} is distributed to the client
models. Each client maintains a local copy of all the embedded coefficients {ai, bi}i∈I(ts). The
client synchronization is performed, similarly to Eq. (11), as

Local Client: wclient
i (ts)←

{
wmain

i (ts) if i /∈ I(ts)
aiwm(ts) + bi if i ∈ I(ts),

(14)

where I(ts) = {i : ts > τs,i}, and τs,i is updated at the Central Server via Eq. (12). Note that only
the weights corresponding to indices i /∈ I(ts) and the set {wm}Mm=1 require communication. Ad-
ditionally, each ai, bi pair is sent once during the training from the main model to the clients (when
they are selected as embedded coefficients). Note: CMD is performed solely on {wmain

i (ts)}Ni=1.

In basic FL, N weights from each of the |C| selected clients are sent to a central server during each
synchronization step. These are aggregated into a main model, which is then distributed back to
all |C| clients. Thus, before employing any compression, the total data volume transmitted for each
synchronization, is given by:

Sync. Volume (Baseline) = N(|C|+ |C|), (15)

where usually this is measured in floating point numbers (depending on the variable-type of the N
weights).
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In our scenario, due to the progressive change in I, the communicated volume is not constant. Thus,
we consider the following average:

Sync. Volume (CMD) = N̂ not-embedded(|C|+ |C|) + 2N

Es
|C|, (16)

where N̂ not-embedded is the number of un-embedded parameters, averaged over Es synchronization
rounds. Note that upon full embedding, the M reference weights are still required for communica-
tion. The term 2N

Es
|C| accounts for the following: Each ai, bi pair is embedded and communicated

once during training. The N pairs form a total of 2N communicated parameters. Communication is
performed to all clients, i.e. 2N |C| total volume. Average round communication is thus 2N

Es
|C|.

In Fig. 5 our approach is compared to Chen et al. (2021), showing comparable accuracy with
significant reduction of communicated weights.

5 RESULTS

We provide a focused comparison between our approach and the most closely related contempo-
rary works: Li et al. (2023) that uses the SOTA P-BFGS for compactly modeled dynamics in im-
age classification, and Chen et al. (2021)’s APF and aggressive APF (A-APF) aimed at reducing
communicated parameters in FL. While we are first to leverage dynamics modeling for efficient
communication, APF targets parameters that are nearly constant over time, which is infact plateau
dynamics.

Table 1: CIFAR10 test accuracy results for different modeling methods. P-BFGS stands for the
algorithm proposed in Li et al. (2023). Warm-up phase length (equal to CMD or longer) is noted in
each P-BFGS column title. Best result in each row is in bold, second best is underlined. Vit-b-16
model is pre-trained on ImageNet1K. For the full experimental details see Appendix D, Tables 5, 6
specifically.

Model Baseline SGD Online CMD P-BFGS (equal) P-BFGS (long)
ResNet18 90.91%± 0.52 92.43%± 0.34 89.34%± 0.54 91.03%± 0.38
WideRes 92.70%± 0.48 93.21%± 0.50 88.65%± 0.77 92.78%± 0.25

PreRes164 90.64%± 0.98 91.34%± 1.20 90.76%± 1.14 90.91%± 0.77
LeNet-5 75.36%± 0.57 76.77%± 0.60 74.67%± 0.35 76.44%± 0.37

GoogleNet 92.05%± 0.48 93.07%± 0.49 92.01%± 1.05 92.41%± 0.38
ViT-b-16 97.86%± 0.11 97.99%± 0.28 95.05%± 0.69 -

Dimensionality reduction. In Table 1 we compare our online CMD method to P-BFGS (Li et al.,
2023) on various architectures, ranging from very simple networks to vision transformers. We add
results of CMD embedding for some of the models in Table 10 in the Appendix. For implemen-
tation details see Appendix D. P-BFGS appears twice in the table: With CMD-equivalent warm-
up, and with an 80-epoch warm-up as they originally propose. Dimensionality is 40 unless the
warm-up is ≤40 epochs, then it matches the warm-up length due to method constraints. Our on-
line CMD method outperforms P-BFGS in all experiments. With just a handful of modes (10 or
less), we achieve superior performance, regardless of the warm-up phase duration. P-BFGS requires
substantially more dimensions and a longer warm-up phase than CMD, yielding models with low
performance for equal warm-up phases to CMD and less than 40 dimensions. Furthermore, On-
line CMD has constant memory consumption and negligible computational overhead (see Appendix
C.6, C.7). On the other hand, P-BFGS requires a matrix linearly dependent on the number of di-
mensions, leading to memory issues when training large models such as Wide-ResNet (Zagoruyko
& Komodakis, 2016) or a vision transformer - ViT-b-16 (Dosovitskiy et al., 2020). In fact, we could
not train P-BFGS on ViT-b-16 using a single GPU, like CMD. Moreover, we could not calculate
the P-BFGS parameters for the long warm-up case using our computational device (125GB RAM
memory), therefore only the equal warm-up phase option is available in the results.

CMD as a regularizer A by-product of applying CMD for dynamics modeling is smoother trajec-
tories, demonstrated in Figs. 1, 7. Smoothed trajectories have been shown to improve performance,

8



Published as a conference paper at ICLR 2024

for instance in using EMA and SWA, (Tarvainen & Valpola, 2017; Izmailov et al., 2018). We com-
pare this performance boost with CMD in Table 2, using several SGD variants. It can be observed
that CMD even slightly out-performs EMA and SWA. See additional information in Appendix D.
Notably, EMA and SWA are specifically designed for smoothing and relate to CMD solely through
this by-product; they do not involve dynamics modeling.

Table 2: CIFAR10 test accuracy results on ResNet18 for different regularizers. Different train-
ing optimization techniques are used. Best result in each row is in bold, second best is underlined.
CMD entails excellent implicit regularization, competing well with dedicated training regularization
algorithms. ’Mom’ stands for momentum and ’SCH’ stands for learning rate scheduler.

Optimizer / Method Baseline SGD EMA SWA Online CMD
SGD 90.68%±0.29 92.02%±0.16 92.09%±0.10 92.26%± 0.12

SGD + Mom 90.91%±0.52 92.22%±0.43 92.28%±0.44 92.43%± 0.34
SGD + Mom + SCH 91.29%±0.23 91.28%±0.23 91.29%±0.24 91.68%± 0.21

Adam 89.59%±0.43 91.43%±0.39 91.65%±0.43 91.70%± 0.51

Federated Learning In Table 3 we contrast CMD with APF and A-APF. As a baseline, we per-
form FL training without any communication boosting. The Volume criterion quantifies the average
number of parameters communicated per round, expressed as a ratio to the baseline number of
parameters. We note that no additional compression is performed here. We closely followed the
experimental setting provided in Chen et al. (2021), as detailed in Appendix F.1. CMD is preferable
in terms of Volume to APF and A-APF as seen in Table 3.

Figure 5: Federated Learning, ResNet18 on
CIFAR10. Test loss and accuracy throughout
training. CMD with two modes is harnessed
for FL, compared to regular SGD (Baseline)
and Aggressive APF (A-APF). Each trend-line
is the average of 10 runs.

Table 3: Federated Learning, ResNet18 on
CIFAR10. CMD significantly reduces volume
(48.12%) while boosting test accuracy compared
to the baseline. In contrast, APF marginally re-
duces communication but attains a slightly higher
accuracy boost, and A-APF reduces communica-
tion (not as much as CMD) with a negligible ac-
curacy boost. Overall, CMD offers a favorable
trade-off between communication and accuracy.

Volume Test Accuracy
Baseline 100% 91.4% ±0.3

Ours 48.12% 91.7% ±0.2
APF 90.22% 92.0% ±0.2

A-APF 60.75% 91.5% ±0.4

6 CONCLUSION

In this paper, we have presented a new approach to model neural network parameter dynamics,
leveraging the underlying correlated behavior of the training process. We show the model applies
for a wide variety of architectures and learning tasks. By incorporating a low-dimensional approxi-
mation and using iterative update techniques, we introduce Online CMD, an efficient online method
that models the training dynamics with just a handful of modes, while enhancing performance. We
also incorporated the modeled dynamics into the training process and demonstrated the efficiency
in Federated Learning, improving the communication overhead. The idea to use modeled dynamics
for this task is novel in itself.

Our experiments showcase a range of benefits: We improve accuracy relative to regular SGD train-
ing and also surpass the state-of-the-art in low-dimensional dynamics modeling. The model can
also be used effectively for visualization of accuracy and error landscapes. Additionally, our feder-
ated learning method significantly reduces communication overhead without compromising perfor-
mance. Our approach could be effectively combined with other techniques, opening up new avenues
for optimizing complex neural network training.
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REPRODUCIBILITY

Detailed pseudo-code of our CMD algorithm is described in Algorithms 1, 2. Our other CMD
variants, Online CMD and Embedded CMD are descibed in Algorithms 3, 4. All the algorithms
are available in the Appendix. The parameters used for our experiments in Sec. 5 are available
in the Appendix D, specifically Table 5 (training parameters) and Table 6 (CMD parameters). All
of our algorithms: Post-hoc, Online, and Embedded CMD, have an implementation provided here,
alongside a script which executes them in the setting of the results in Sec. 5.
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committee machine: Computational to statistical gaps in learning a two-layers neural network.
Advances in Neural Information Processing Systems, 31, 2018.

N Aubry, R Guyonnet, and R Lima. Spatio-temporal symmetries and bifurcations via bi-orthogonal
decompositions. Journal of Nonlinear Science, 2(2):183–215, 1992.

Nadine Aubry, Régis Guyonnet, and Ricardo Lima. Spatiotemporal analysis of complex signals:
theory and applications. Journal of Statistical Physics, 64(3):683–739, 1991.

Martin Burger, Guy Gilboa, Michael Moeller, Lina Eckardt, and Daniel Cremers. Spectral decompo-
sitions using one-homogeneous functionals. SIAM Journal on Imaging Sciences, 9(3):1374–1408,
2016.

Chen Chen, Wei Wang, and Bo Li. Round-robin synchronization: Mitigating communication bot-
tlenecks in parameter servers. In IEEE INFOCOM 2019-IEEE Conference on Computer Commu-
nications, pp. 532–540. IEEE, 2019.

Chen Chen, Hong Xu, Wei Wang, Baochun Li, Bo Li, Li Chen, and Gong Zhang. Communication-
efficient federated learning with adaptive parameter freezing. In 2021 IEEE 41st International
Conference on Distributed Computing Systems (ICDCS), pp. 1–11. IEEE, 2021.

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. Advances in neural information processing sys-
tems, 31, 2018.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis
for multiple domains. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 8188–8197, 2020.

Ido Cohen and Guy Gilboa. Latent modes of nonlinear flows: A koopman theory analysis. Elements
in Non-local Data Interactions: Foundations and Applications, 2023.

Henggang Cui, Alexey Tumanov, Jinliang Wei, Lianghong Xu, Wei Dai, Jesse Haber-Kucharsky,
Qirong Ho, Gregory R Ganger, Phillip B Gibbons, Garth A Gibson, et al. Exploiting iterative-
ness for parallel ml computations. In Proceedings of the ACM Symposium on Cloud Computing,
pp. 1–14, 2014.

10

https://drive.google.com/drive/u/3/folders/1oQJtz6FRGmVr-ewfuCzkq5IUgHwrN1sW


Published as a conference paper at ICLR 2024

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Felix Dietrich, Thomas N Thiem, and Ioannis G Kevrekidis. On the koopman operator of algorithms.
SIAM Journal on Applied Dynamical Systems, 19(2):860–885, 2020.

Akshunna S Dogra and William Redman. Optimizing neural networks via koopman operator theory.
Advances in Neural Information Processing Systems, 33:2087–2097, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers
in neural network energy landscape. In International conference on machine learning, pp. 1309–
1318. PMLR, 2018.

Nikoli Dryden, Tim Moon, Sam Ade Jacobs, and Brian Van Essen. Communication quantization
for data-parallel training of deep neural networks. In 2016 2nd Workshop on Machine Learning
in HPC Environments (MLHPC), pp. 1–8. IEEE, 2016.

Mark Everingham and John Winn. The pascal visual object classes challenge 2012 (voc2012) de-
velopment kit. Pattern Anal. Stat. Model. Comput. Learn., Tech. Rep, 2007(1-45):5, 2012.

Guy Gilboa. Nonlinear Eigenproblems in Image Processing and Computer Vision. Springer, 2018.

Sebastian Goldt, Madhu Advani, Andrew M Saxe, Florent Krzakala, and Lenka Zdeborová. Dy-
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APPENDIX

A CORRELATION RELATED EXPERIMENTS

A.1 MANUAL INSPECTION OF MODELED TRAJECTORIES

Figure 6: For each mode, weight trajectories are portrayed as mean and variance of the normalized
trajectories (shaded area) alongside the reference trajectory (solid line). Each subplot represents a
mode characterized by its parameter count (size), inter-mode correlation (corr1), and correlation of
the mean trajectory with the reference trajectory (corr2). Formally, corr1 for the cluster mth clus-
ter Cm is 1

(Nm
2 )

∑
i∈Cm

∑
j∈Cm,j>i corr(wi, wj), where Nm is the size of the cluster, and corr2 is

corr
(

1
Nm

∑
i∈Cm

wi, wm

)
. Notably, corr2 consistently indicates a strong alignment of the mean

trajectory with the reference trajectory, demonstrating its efficacy in capturing the general dynamics,
even upon less-than-perfect values in corr1. Additionally, larger modes exhibit higher corr2 as well
as corr1 values, suggesting more consistent behavior within the collective dynamics. The mode-
average dynamics display varied patterns, including sharp decreases and subsequent stabilization,
reflecting the learning process’s adaptation phases. This diversity is effectively encapsulated by the
reference trajectories, affirming our dynamics modeling approach despite the variation in correla-
tion.
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(a) mode 0 (b) mode 1

(c) mode 2 (d) mode 3

(e) mode 4 (f) mode 5

(g) mode 6 (h) mode 7

(i) mode 8 (j) mode 9

Figure 7: CMD Weight Trajectory Reconstruction. 3 randomly sampled weights from each mode,
and their CMD reconstruction. CIFAR10 image classification, ResNet18. The CMD modeling
provides more stable, less oscillatory solutions.

In Fig. 1 we compare CMD weight trajectory approximation to DMD weight trajectory approx-
imation. Here we offer additional examples of CMD weight trajectory approximations. CMD is
performed with M = 10 modes and 3 weights are randomly sampled from each mode for visualiza-
tion. Manual observation is indispensable, therefore in Fig. 7 we show CMD smoothens the output,
implying a regularization effect that may boost performance similarly to smoothing methods like
EMA and SWA (Tarvainen & Valpola, 2017; Izmailov et al., 2018). Note however that EMA and
SWA do not offer modelling (which is the core interest in our work).

A.2 REFERENCE WEIGHT AND MODE WEIGHTS RELATIONS

In Fig. 8, statistical metrics validate CMD’s weight trajectory modeling. The reference weight
of a mode, together with the mean and variance of 10,000 randomly sampled weights per mode are
presented. Different approaches are used - Post-hoc CMD (top row), Naive reference weight training
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(a) Post-Hoc CMD, Test Acc - 91.24%

(b) Training the Ref-Weight Space, Test Acc - 89.49%

(c) Gradual CMD Embedding, Test Acc - 91.50%

Figure 8: Reference Weight Trajectories with the Mean and Variance of Weights per Mode.
Top: post-hoc CMD; Middle: naive CMD embedding. Only reference weights are trained post
warm-up phase; Bottom: Gradual CMD Embedding. Test Accuracy of the final model is available
in the caption of each row. Blue color represents SGD trained weights and orange represents CMD
embedded weights. The gradual embedding case mitigates high performance with a converging
mean and decreasing variance.

(middle row) and gradual CMD embedding (bottom row). In each row 3 modes are presented. In
the post-hoc CMD case the mean of the weights in the mode do not follow the exact dynamic of
the reference weight, it is somewhat similar and more smooth. In addition, the variance increases
throughout the epochs. In the naive reference weight training case all of the weights in the mode
are directly related to the reference weight and change only according to the reference weight, post
warm-up (orange). Therefore, there is no variance and the mean of the sampled weights is exactly
equal to the reference weight. However, in this case the final test accuracy is not comparable to
the other cases (more details about the accuracy are available in Fig. 3). The warm-up phase in
this case was 50 epochs. In the gradual CMD embedding case the weights are gradually linked
to the reference weights which results with a converging mean and decreasing variance. The high
performance is maintained, in terms of test accuracy. The warm-up phase is 20 epochs.

Note: In order to display weights with different ranges of values in the same graph we stretch the
values to the range of [0, 1] - w̃i =

wi−min(wi)
max(wi)−min(wi)

.
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A.3 CORRELATION MATRIX EXAMPLES

Our main observation is that many network parameters, although non-smooth in their evolution, are
highly correlated and can be grouped into “Modes” characterized by their alignment with a common
evolutionary profile. In Fig. 1 we displayed two examples of a clustered correlation matrix. Bellow
we present two additional examples. The first example is of SimpleNet (see Fig. 10b) trained on
a binary classification task. In this case the parameters are divided into 3 modes. The main mode
contains the majority of the network parameters. The second example is of a vision transformer,
ViT-b-16, fine tuned on CIFAR10. The model parameters are divided into 30 modes. The modes
contain a decreasing number of parameters, and some redundancy is visible. Redundancy in the
number of modes is implied when all of the weights from one mode have high correlation to all of
weights in a different mode (mode 0, mode 2, mode 4, etc. in this case, and mode 1, mode 3, etc.).

Figure 9: Clustered Correlation Matrix. Left - SimpleNet trained on MNIST, M = 3 modes.
Right - ViT-b-16 fine tuned on CIFAR10, M = 30 modes. A single main mode is visible for
SimpleNet, while for ViT-b-16 it appears there is a certain redundancy in the high number of modes.

B POST-HOC CMD EXPERIMENTS

Image Classification First we consider the CIFAR10 (He et al., 2016a) classification problem,
using a simple CNN architecture, used in Manojlović et al. (2020), we refer to it as SimpleNet (Fig.
10a). Cross-Entropy Loss and augmented data (horizontal flip, random crop, etc.) are used for
training. The CNN was trained for 100 epochs, using Adam optimizer with momentum, and initial
learning rate of η = 1 × 10−3. The CMD Analysis was applied on the full 100 checkpoints of this
training. In this case we obtained 12 modes for the post-hoc CMD. The results from the CMD and
the original SGD training are presented in Fig. 10c. We clearly see the model follows well the SGD
dynamic, where both train and test accuracy are even slightly improved. In addition, the distribution
of the modes through the entire network is presented in Fig. 10b. Each mode contains weights from
each layer of the network. Therefor, trying to simplify the mode decomposition to full layers of
weights is not expected to work as well. After validating our method on a simple scenario we tested
CMD on larger architectures, such as ResNet18 (He et al., 2016a), see Fig. 12.

In recent years, after becoming a key tool in NLP (Devlin et al., 2018) transformers are making
a large impact in the field of computer vision. Following Dosovitskiy et al. (2020), we apply our
method on a pre-trained vision transformer. Our model was applied on the fine tuning process of a
ViT-b-16 (Dosovitskiy et al., 2020; Gugger et al., 2021), pre-trained on the JFT-300M dataset (Sun
et al., 2017), on CIFAR10 with 15% validation/training split. We used Adam optimizer with a start-
ing learning rate of 5 × 10−5 with linear scheduling. The network contains 86 million parameters.
Negative Log Likelihood Loss was used. One can see in Fig. 2 that our method models the dynamics
well and the induced regularization of CMD yields a stable, non-oscillatory evolution.

Image Segmentation using PSPNet Our method generalizes well to other vision tasks. We
present CMD modeling on the semantic segmentation task for PASCAL VOC 2012 dataset (Ev-
eringham & Winn, 2012). For this task we used PSPNet Architecture (Zhao et al., 2017), (13× 106

trainable parameters). The model was trained for 100 epochs, using SGD optimizer with momen-
tum of 0.9, and weight decay of 1 × 10−4. In addition, we used “poly” learning policy with initial
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(a)

(b) (c)

Figure 10: SimpleNet on CIFAR10. (a) architecture (b) CMD Modes distribution through the
Network. (c) CMD modeling performance

learning rate of η = 1× 10−2. Post-hoc CMD was executed using M = 10 modes. Pixel accuracy
and mIoU results from the CMD modeling and the original SGD training are presented in Fig. 11.
Max CMD performance on the validation set: Pixel accuracy: 88.8% with mIoU of 61.6%. Max
SGD performance on the validation set: Pixel accuracy: 88.1% with mIoU of 58.9%. We observe
CMD follows SGD well in the training, until it reaches the overfitting regime. For the validation set,
CMD is more stable and surpasses SGD for both quality criteria.

Figure 11: Post-hoc CMD on PSPNet. PASCAL VOC 2012 (Everingham & Winn, 2012) seg-
mentation results, PSPNet Architecture. Original SGD training vs. CMD modeling with M = 10.
modes. Left: pixel accuracy. Right: mIoU. CMD follows SGD well in the training, until it reaches
the overfitting regime. For the validation set, CMD is more stable and surpasses SGD for both qual-
ity criteria.

Image synthesis using StarGan-v2 We applied our CMD modeling on image synthesis task using
StarGan-V2 (Choi et al., 2020). This framework consists of four modules, each one contains millions
of parameters. It was modeled successfully by only a few modes, as demonstrated in Fig. 15.

Ablation Study Our method introduces additional hyper-parameters such as the number of modes
(M ) and the number of sampled weights to compute the correlation matrix (K). We performed
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(a) Accuracy per Epoch (b) Best Accuracy

(c) Weights MSE

Figure 12: ResNet18 CIFAR10 Results for Different Number of Modes (a) Test Accuracy per
epoch. (b) Maximal Test Accuracy of CMD model per number of modes used. (c) MSE of Weights
reconstruction per number of modes used for CMD. While the MSE decreases as the number of
modes increases, this is not reflected in performance, which is relatively constant.

several robustness experiments, validating our proposed method and examining the sensitivity of
the CMD algorithm to these factors.

1. Robustness to number of modes. Fig. 12 presents the test accuracy results of 10 different
CMD models, with different number of modes for the same SGD training. Surprisingly,
the test accuracy is close to invariant to the number of modes. The best test accuracy
per mode is presented in Fig. 12b. We reach the highest score for only two modes. It
appears ResNet18 is especially well suited for our proposed model. Weights MSE does
in fact reduce as more modes are generated (Fig. 12c), but this does not effect the model
performance. It is important to note that the weights MSE is very low even for 2 modes.

2. Robustness to different random subsets. Here We examine empirically our assump-
tion that in the K sampled weights we obtain all the essential modes of the network. In
Fig. 13 we show the results of 10 CMD experiments executed on the same SGD training
(ResNet18, CIFAR10), where in each experiment a different random subset of the weights
is sampled. We fixed the number of modes to M = 10 and the subset size to K = 1000.
The mean value of the test-accuracy at each epoch is shown, as well as the maximal and
minimal values (over 10 trials, vertical bars). As can be expected, there are some changes
in the CMD results. However, it is highly robust and outperforms the original GD training.
In addition, we conducted several experiments, examining different values of K, the values
were K = 50, 125, 250, 500, 1000, 2000. The number of modes was fixed (M = 10). For
any fixed K, 5 experiments were carried out, see Fig. 13. We observe that the algorithm is
robust to this meta-parameter as well. The results tend to be with somewhat less variance
for larger K, but generally we see the sampling size for the initial clustering phase can be
very small, compared to the size of the net N .
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(a) Fixed K (b) Different K Values

Figure 13: ResNet18 CIFAR10 Results for Different Sampled Weights. (a) Mean Test Accuracy
per epoch for different experiments with fixed K = 1000. (b) Mean Test Accuracy per epoch for
different experiments with different K values. M = 10 in all the experiments. Despite different
weights leading to slightly different models (a), CMD consistently outperforms SGD. Different sizes
of K yield very similar results (b).

Figure 14: ResNet18 CIFAR10 Results for Different Random Initializations. Mean test accuracy
(and variance) results for 10 different experiments is presented for SGD and CMD. The variance of
the CMD results is similar to the variance of the SGD results, with a smoother mean.

3. Robustness to random initialization - In Fig. 14 we show that the effects of random
initialization of the weights is marginal. The results of 10 training experiments are shown
(ResNet18, CIFAR10). In each experiment a different random initialization of the weights
is used. The same weights are sampled and the number of modes is fixed (M = 10,K =
1000). The variance of the CMD results is similar to the variance of the SGD results, with
a smoother mean.
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CMD
Original +

EMAOriginal CMD
Original +

EMAOriginal

Figure 15: StarGAN-v2 Style Transfer. Post-hoc CMD modeling of the dynamics of StarGAN-
v2 on Celeb-A-HQ dataset Karras et al. (2017). It can be seen that the CMD regularization effect
is similar to that of the EMA in this style-transfer framework, both qualitatively, and in the image
generation measures LPIPS and FID - which measure discrepancy from real Celeb-A-HQ images.
CMD is performed for both reference-image and latent-noise guided generation.
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C METHOD DETAILS

C.1 ALGORITHMS

In Sec. 3.2 we introduce the CMD algorithm, consisting of three steps. Steps 1 and 2 describe
clustering the model weights to modes. The clustering we use is a correlation based clustering with
linear complexity and it is described in Algorithm 1. The full CMD algorithm is described, including
the third step, in Algorithm 2.

Algorithm 1 Correlation-based clustering with linear complexity

Input:
- W ∈ RN×T - Matrix of all weights.
- K - Number of sampled weights.
- M / t - Number of wanted modes / desired in-cluster distance threshold.

Output:
- {Cm}Mm=1 - Clusters of the network parameters.

procedure
1. Initialize Cm = {}, m = 1..M .
2. Sample a subset of K random weights and compute their correlations.
3. Cluster this set to M modes based on correlation values, update {Cm} accordingly.
4. Choose profiles wm = argmaxwj∈Cm

∑
wi∈Cm

|corr(wi, wj)|.
for i in (N −K) weights do

m∗ = argmaxm |corr(wi, wr,m)|
Cm∗ ← Cm∗ ∪ {wi}

end for
return {Cm}Mm=1

end procedure

Algorithm 2 CMD - Correlation Mode Decomposition

Input:
- W ∈ RN×T - Matrix of all weights.
- K - Number of sampled weights.
- M / t - Number of wanted modes / desired in-cluster distance threshold.

Output:
- WRecon ∈ RN×T - CMD reconstruction of network parameters.

procedure CMD
Perform correlation clustering to M modes using Alg. 1. (M is fixed if given, or deduced

according to the t input). Get mode mapping {Cm}Mm=1.
for m← 1 to M do

Follow Eq. (6) to compute A,B, the affine parameters.
Follow Eq. (7) to compute WRecon

m per mode, the CMD reconstructed weights.
end for
return WRecon

end procedure

Algorithm 2 can return the CMD parameters (A,B vectors, wm weights, etc.) instead of the re-
constructed weights WRecon, if wanted. The Online CMD algorithm is presented in Algorithm 3.

C.2 SAMPLING DETAILS

We would like to make sure that every layer is represented in the subset that is randomly sampled at
the first step of our method (correlation and clustering). The choice of reference weights depends on
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Algorithm 3 Online CMD - Iterative AB Update Algorithm
Inputs:

- F - Number of warm-up phase epochs.
- E - Number of total epochs.
- Any other input needed for the SGD training (learning rate, momentum, etc.) or CMD

algorithm (CMD sampled weights number - K, CMD number of modes - M , etc.)
Outputs:

- Regular SGD final model
- CMD final model

Procedure
1. Start SGD training and save model checkpoint in each epoch.
2. When epoch = F perform the full CMD algorithm. All CMD parameters are saved

(A, B, Related mode vectors and reference weights time profiles). No checkpoints
(additional or previous) are needed.

3. For epoch from F + 1 to E: update A,B vectors according to Eq. (9), using the current
model weights. Update the reference weights time profiles.

4. After last epoch calculate final CMD model weights according to Eq. (7).

this set. We therefore allocate a budget of K
2·|layers| for each layer and randomly sample it uniformly

(using a total budget of K
2 parameters). The other K

2 parameters are sampled uniformly throughout
the network parmeter space. When K

2 <= |layers| we simply sample all of the K parameters
uniformly. In the context of image classification, we observed a reduction in test accuracy vari-
ance when using this procedure (compared to naively sampling with uniform distribution accross all
weights).

C.3 CLUSTERING METHOD

To cluster the correlation map into modes we employed a full linkage algorithm - the Farthest Point
hierarchical clustering method. After creating a linkage graph we broke it down into groups either
by thresholding the distance between vertices (ϵ), or by specifying a number for modes (M ). Note
- In Step 1, we associate K weights; in Step 2, only the remaining N −K weights are considered,
reducing C2 from RN to R(N−K)×M .

The Clustering method could be substituted by any clustering algorithm such as the simple k-means
and others. We do not recommend methods such as PCA to avoid assumptions, such as orthogonal-
ity, which may not apply to weight trajectory space.

C.4 ITERATIVE STEP 3 DERIVATION

Given Ãm,t−1, we can re-express Eq. (6) as

Ãm = Wmw̃T
m(w̃mw̃T

m)−1 (17)

=
[
Wm,t−1w̃

T
m,t−1 +Wm(t)w̃m(t)

]
(w̃mw̃T

m)−1,

On the other hand, by Eq. (6) at time t − 1 we have Wm,t−1w̃
T
m,t−1 = Ãm,t−1(w̃m,t−1w̃

T
m,t−1).

Plugging this we indeed get Eq. (9), which is:

Ãm(t) =
(
Ãm,t−1(w̃m,t−1w̃

T
m,t−1) +Wm(t)w̃T

m(t)
)
(w̃m,tw̃

T
m,t)

−1, (18)

C.5 POST-HOC VS ONLINE CMD COMPARISON

Post-Hoc CMD is the basic approach, while Online CMD is a highly efficient version of it. While
it is often the case that efficiency comes at the expense of performance - here it is not the case,
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as validated by our experiments, see Table. 4. The comparison is done on ResNet18 trained on
CIFAR10 with different number of modes. The post-hoc experiments are done at the end of the full
training (150 epochs). The online approach is performed with a short warm-up phase (20 epochs) for
steps 1 and 2 in the online CMD algorithm (see Sec. 3.3). The iterative updates are then performed
until the end of training (from epoch #21 to the last epoch - epoch #150). Each experiment is
performed 5 times, on the same SGD training process. The same weights are sampled for both
approaches in each experiment. In Fig. 16 we present an experiment comparing online CMD runs
with different warm-up phases. We examine short warm-up phases (20,30,40 epochs) and longer
warm-up phases (80, 100, 120 epochs). We also present the regular SGD training case and the post-
hoc CMD case. All CMD runs, online CMD with different warm-up phases and post-hoc CMD,
achieve similar results. CMD is performed with 10 modes in all the experiments in this figure, using
the same training process.

Table 4: Comparing Online CMD vs the basic Post-hoc CMD. Accuracy performance is com-
parable, where the online version has slightly higher variance. The number in the model column
represents the number of modes.

Model Test Accuracy
CMD1 (online) 92.06%± 0.05

CMD1 (post-hoc) 92.06%± 0.02
CMD2 (online) 92.07%± 0.07

CMD2 (post-hoc) 92.01%± 0.04
CMD5 (online) 91.94%± 0.12

CMD5 (post-hoc) 91.96%± 0.05
CMD10 (online) 91.98%± 0.17

CMD10 (post-hoc) 92.05%± 0.25

Figure 16: Online CMD with different warm-up phases. Test accuracy for online CMD with
different warm-up phases. The value after W in the legend descries the length of the warm-up
phase. SGD and post-hoc CMD results are presented as well.

C.6 ONLINE CMD FLOPS COMPUTATION

Here we show rigorously that the Online CMD algorithm computation can be completely neglected
compared to the SGD which it accompanies. Upon the online CMD Eq. (9), Eq. (7) are performed
on each epoch that occurs after the F warm-up epochs (note that Eq. (7) is performed only in order
to validate the model and is not necessary for the training process itself. However we will take the
worst case when calculating the computational overhead.) We consider t2 = t1 + 1, which we
also use in practice. Let us calculate the number of FLOPS required for each epoch in this case.
Reminder: an n× p matrix multiplied by a p×m matrix takes nm(2p− 1) FLOPS.
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Let us start with Eq. (9), which is given by:

Ãm,t2 = (Ãm,t1(w̃m,t1w̃
T
m,t1) +Wm,t1:t2w̃

T
m,t1:t2)(w̃m,t2w̃

T
m,t2)

−1. (19)

We begin with the complexity of the first term:

Ãm,t1(w̃m,t1w̃
T
m,t1). (20)

Computational complexity: First multiplication of a Nm× 2 by a 2× 2 is 6Nm FLOPS. The second
multiplication (inside the brackets), may be updated iteratively on its own, similarly to Eq. (8), with
8 FLOPS, i.e. we treat it as O(1). Thus we have 6Nm + O(1) FLOPS.

The last term:

(w̃m,t2w̃
T
m,t2)

−1. (21)
The multipication is similarly O(1) (via another iterative update), and the inverse of a 2× 2 is O(1)
as well.

The middle term:
Wm,t1:t2w̃

T
m,t1:t2 . (22)

Multiplying a Nm × t2 − t1 by a t2 − t1 × 2, considering t2 − t1 = 1 yields 2Nm FLOPS.

The first addition takes 2Nm FLOPS, and the remaining multipication by the inverse matrix is a
Nm × 2 miltiplied by the inverse which is a 2× 2 resulting with 6Nm FLOPS.

In total summing all FLOPS and summing over the modes, where the number of modes is much
smaller than N , we have

14N +O(1) FLOPS. (23)

Now let us move to the easier Eq. (7). Here we have one element-wise multipication and one
elementwise addition to the weights vector, i.e. 2N FLOPS.

Thus in total we have 16N +O(1) FLOPS, that can be done on the CPU (do not require GPU). This
is negligible considering typical actual FLOPS, for instance - ResNet18 has 70.07·109

1.82·106 N = 38, 500N
FLOPS just for a forward pass, according to the model zoo provided here.

C.7 ONLINE CMD MEMORY CONSUMPTION

The final memory consumption of the algorithm, for a random number of modes, after the F warm-
up epochs, is approximately 2.25 times the memory of a single model. The CMD parameters, and
there relative sizes are detailed below.

1. Vectors A and B each have a size equal to the size of a full model.

2. M̃ vector which stores the related mode of each weight has the size of ≈ 0.25 times the
model. This vector has the same length as A and B, but the values stored have a smaller
range - positive integers that represent the mode number. This vector can be compressed
even more if necessary.

3. The full time profile for each reference weight. A 2 × 2 matrix can be stored for each
reference weight instead, as explained in Step 3 in Sec. 3.3. Both cases have negligible
size compared to the full model size.

It is well established (see for instance Izmailov et al. (2018)) that the space occupied by storing the
model is insignificant during the training process compared to the sustained gradients. Therefor,
after the F warm-up epochs this online method has negligible memory consumption.

C.8 COEFFICIENT STABILIZATION

Analyzing the changes in the affine parameters {ai, bi}Ni=1 throughout training reveals variations
among them, with some experiencing more significant changes than others. Additionally, as depicted
in Fig. 17, the portion of parameters that remain relatively unchanged increases as the training
procedure progresses. This motivates us to gradually embed the CMD model into the SGD training
process.
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Figure 17: Relative Change in the Affine Parameters. Histogram of the relative change in the
{bi}Ni=1 parameters calculated in different epochs. The relative change is compared w.r.t. {bi}Ni=1 at
the end of the process, at epoch 150. As we can see, there are weights that do not change their value
at all between epochs 20 and 150. Additionally, the portion of B parameters that do not change, or
change a little, increases throughout the training procedure.

D RESULTS SECTION EXPERIMENTAL DETAILS

Models In order to generalize our method and verify that it works on various models and ar-
chitectures we examined different ResNet models and networks with different architectures. We
strive to check models with different properties in order to examine a diverse set of examples. In
the ResNet family of models we tested ResNet18, Preactivation ResNet-164 (He et al., 2016b) and
Wide ResNet28-10 (Zagoruyko & Komodakis, 2016). PreRes164 is a very deep network com-
posed of more than 800 layers. The number of parameters in this model is 2.7 million, less than in
ResNet18 (11.2 million). In Wide ResNet28-10 the feature channels per layer are multiplied by 10
and the depth, the number of residual blocks, is 28. This model has 36.5 million parameters, more
than three times the number of parameters in ResNet18. A different architecture, which is very ba-
sic, is LeNet-5 (LeCun et al., 1998). This model, which was presented more than 20 years ago, has
a very basic architecture, composed of several convolutional layers. We also tested in GoogleNet
(Szegedy et al., 2015), another model which is not relatively new. In addition to these well known
models we also demonstrate the CMD methods presented in this work on a vision transformers ar-
chitecture named ViT-b-16 introduced in Dosovitskiy et al. (2020). Transformers have become a
fundamental tool in NLP (Devlin et al., 2018) and many computer vision tasks (Dosovitskiy et al.,
2020). The Vit-b-16 model we used was pre-trained on ImageNet1k (Russakovsky et al., 2015). The
code we used for each model is linked to the following model names. ResNet18, Wide ResNet28-10,
Preactivation-ResNet-164, LeNet-5, GoogleNet, ViT-b-16.

Table 5: SGD Training Implementation Details. In ViT-b-16 a cosine scheduler is used, see more
details in text. For generalization different optimizers are used.

Model Training Epochs Optimizer Learning Rate
ResNet18 150 SGD 0.05
WideRes 150 SGD 0.1

PreRes164 150 SGD 0.1
LeNet-5 150 Adam 0.001

GoogleNet 120 Adam 0.001
ViT-b-16 90 SGD 0.03*

Implementation Details Each experiment is performed 5 times and the mean test accuracy and
standard deviation are presented in the results tables (Tables 1, 2). The training parameters (number
of epochs, optimizer, learning rate) and the CMD parameters (warm-up phase, number of modes
(M ), number of sampled weights (K)) for each model are presented in Tables 5, 6 respectively.
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Table 6: CMD Implementation Details. Models with relatively high number of layers (PreRes164,
GoogleNet) require more warm-up epochs and more sampled weights for stable performance. For
generalization different number of modes are used.

Model Warm-up Epochs Modes Sampled Weights
ResNet18 20 10 1000
WideRes 20 5 1000

PreRes164 40 2 10000
LeNet-5 20 10 1000

GoogleNet 30 7 5000
ViT-b-16 20 10 1000

In all the experiments the weight decay was 0 and when SGD is used momentum is 0.9. In the
ViT-b-16 training we used a cosine scheduler starting with a short (5 epochs) warm-up phase where
the learning rate linearly increases from 0 to 0.03. Then a cosine decreasing scheduler is applied
for the remaining 85 epochs. The code for this scheduler is from here. The training parameters
used are training parameters used in other works, specifically in the linked projects from above.
Additionally, we wanted to show CMD works with any optimizer, not specifically SGD, so we used
Adam in several cases. Both SGD and ADAM optimizers are implemented using the Pytorch library
(Paszke et al., 2019). The CMD warm-up phase was enlarged for relatively deep models, with many
layers. The number of modes used in each experiment was not optimized. Rather, various number
of modes from 2 to 10 modes were chosen for generalization purposes. P-BFGS code is provided by
the authors of the original paper here. In Fig. 18 single run comparisons between the regular SGD
test accuracy and the Online CMD test accuracy are presented. Each plot describes a single run, on
a specific model (see figure caption), following the experimental details described above. The test
accuracy of the Online CMD method is much more smooth compared to the regular SGD training
result.

Figure 18: SGD vs Online CMD Comparison. Results of a single run are presented for each
model. The Online CMD is superior to the regular SGD in all cases. Left: WideRes28-10, Middle:
ViT-b-16, Right: GoogleNet.

For Table 2 we used the same learning rate in all experiments (LR = 0.05), when momentum was
applied the value was - 0.9 and the learning rate scheduler (when used) is the Cosine scheduler with
no warm-up epochs. All the training sessions are 150 epochs long, with a warm-up phase of 20
epochs for CMD. EMA is performed with a smoothing factor β = 0.9 and SWA is performed on the
last 25% of epochs. CMD was performed with M = 10 modes.

In order to demonstrate CMD on a different dataset we present a small experiment, performed on
CIFAR100 (Krizhevsky et al., 2009), in Table 7. The implementation details of this experiment
on ResNet18 are - 150 epochs, learning rate - 0.05 and momentum - 0.9. CMD is performed with
10 modes, the number of sampled weights (K) is 1000 and 20 warm-up epochs were used. For
Embedded CMD we used L - 10 and P - 10. The experiment is repeated 5 times, the mean and
standard deviation of the results are presented.

In Table 2 results of CMD are compared to EMA and SWA, which all achieve similar results. To
further analyze the relations between these methods we experimented with preforming one on top
of the other (Table 9. Using ResNet18 on CIFAR10, we reconstructed the full model weight values
per epoch for EMA and CMD (post-hoc). Then, we performed SWA, EMA and CMD (post-hoc) on
each set of weights - SGD weights, EMA weights and CMD weights. The implementation details
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Table 7: CMD on CIFAR100. Both CMD methods (online and embedded) improve the baseline
SGD training.

Model Baseline SGD Online CMD Embedded CMD
ResNet18 66.81%± 0.62 68.74%± 0.44 69.27%± 0.57

Table 8: CMD on TinyImageNet.

Model Baseline SGD Post-hoc CMD
ResNet18 26.01%± 0.31 28.4%± 0.72

of this experiment are - 150 epochs, learning rate - 0.05 and momentum - 0.9. CMD (post-hoc) is
performed with 10 modes and the number of sampled weights (K) is 1000. The results indicate that
similar regularization introduced by EMA and SWA is attained by CMD as well.

Table 9: CMD relations with EMA and SWA: The test accuracy at the end of the baseline SGD
training is 91.24%. Using only one of the methods (SWA, EMA or CMD) leads to similar results as
combining two methods together. This experiment is performed once, therefore there is no mean or
standard deviation.

Weights/Method SWA EMA CMD
SGD 92.1% 92.07% 92.06%
EMA 92.04 - 92.07%
CMD 92.09% 92.07% -

E EMBEDDING CMD DETAILS

E.1 ALGORITHM

The full gradual CMD embedding and weight freeing algorithm is presented in Algorithm 4.

Algorithm 4 Gradual CMD Embedding Algorithm
Hyper-parameters:
F (Number of warm-up epochs);
L (Number of epochs between each embedding epoch);
P (Percentage of embedded coefficients in each embedding epoch);
Any inputs required for the CMD algorithm or training process (learning rate, etc.)

Procedure
W1:F ← weight trajectories of F regular SGD epochs.
A,B, related modes← Post-hoc CMD on W1:F .
I ← ∅ ▷ index set of embedded weights
for t > F do

Regular SGD step
Iterative update of A, B via Eq. (9)

wi ←
{

SGD update if i /∈ I
aiwr(t) + bi if i ∈ I ▷ in accordance with Eq. (11), where if i ∈ I then ai, bi are

fixed in time
if (t− F )%L == 0 then

Diff ←
√
(Aold −A)2 + (Bold −B)2 ▷ excluding reference weights and embedded

weights
{A,B}old ← {A,B}
I ← I

⋃
{indices of the bottom P percentile of Diff}

end if
end for
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E.2 DIFFERENT EMBEDDING SCHEDULING

We examine different values for P, as well as several approaches to define P , in our experiments.
P can be defined as the percentage from all the weights in the model, this is noted as the basic
case. In this case using a constant value P will lead to the same number of weights embedded in
each embedding epoch. A different way to define P is the percentage of the not embedded weights.
This relative percentage approach is noted as relative P . Applying a constant value P will lead to a
reducing number of weights embedded on each embedding epoch, as the number of not embedded
weights reduces. Reducing the value of P is another approach. One can decrease the value of
P linearly, exponentially, etc. In addition a scheduled decrease can be used as well. In Sec. 5,
in the federated learning experiments, a combined approach involving both a constant P and an
exponentially decreasing P is used (see Appendix F.1). We demonstrate these different approaches
bellow in Fig. 19. We examined different P values {10, 20}, for the basic case and the relative P
case. In addition we used a pre defined scheduled decreasing P, starting from P = 20. We used
ResNet18 trained and tested on CIFAR10. The CMD warm-up phase is 20 epochs and L = 10 in
all cases. The mean test accuracy of 5 different training cycles is presented, with the final accuracy
and standard deviation available in the legend. Overall, from the five different options presented,
embedding the A,B vectors iteratively, with P = 20% and using the relative percentage approach
yields the best results. However, results are very similar for most cases.

Figure 19: Gradual Weight Embedding with Different P Scheduling. Results are improved com-
pared to SGD training, while there is some drop in performance compared to the regular CMD. The
results are very close, most options achieving nearly the same results. The only drop in performance
occurs in the basic approach with p = 20, where after only 70 epochs (five embedding epochs) all
of the weights are embedded.

E.3 EMBEDDED CMD VS ONLINE CMD

We compare the Online CMD algorithm (Algorithm 3) to the gradual CMD embedding algorithm
(Algorithm 4) on different models, see Table 10. In these experiments the implementation details
are the same as the experiments in Table 1. The Embedding algorithm parameters are fixed for all
experiments - L = 10, P = 10, using the basic constant P embedding approach. The gradually
embedded CMD method introduces weight freezing which enhances efficiency. Therefore, a limited
drop in performance is reasonable. For some models the chosen hyper-parameters achieve better
results than the full online CMD method.

Table 10: Comparing Online CMD vs Embedded CMD. In some cases the Embedded CMD
outperforms the Online method, in other cases the online method with no embedding is superior.

Model Baseline SGD Online CMD Embedded CMD
ResNet18 90.91%± 0.52 92.34%± 0.42 91.80%± 0.30
WideRes 92.70%± 0.48 93.21%± 0.50 92.36%± 0.77

PreRes164 90.64%± 0.98 91.34%± 1.20 91.71%± 0.58
GoogleNet 92.05%± 0.48 93.07%± 0.49 93.36%± 0.14
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F FEDERATED LEARNING DETAILS

F.1 FEDERATED LEARNING EXPERIMENT DETAILS

We closely followed the experimental setting provided in the original paper: 50 Clients with disjoint
datasets of non-IID class distribution that is drawn independently for each client from a Dirichlet dis-
tribution with α = 1. 10% of the clients are sampled for synchronization , i.e. |C[ts]| = 0.1|C|∀ts.
1,500 rounds. Each synchronization round, each client completes 10 epochs. The APF thresh-
old is set to T = 0.05 , and whenever the number of embedded coefficints crosses 80%, perform
thresh← thresh

2 . To conform with this scheduling, we also perform for our method P ← P
2 under

the same circumstances. For CMD we set P = 5%. The ’aggressiveness’ parameter schedule of
A-APF is set as min

(
round
2000 , 0.5

)
.

F.2 APF CODE

Weight freezing can be combined with other strategies to enhance efficiency in Federated Learning.
GlueFL He et al. (2023) stands out as a framework that adeptly merges weight freezing with client
sampling, ensuring optimized communication overhead, especially crucial in cross-device settings
like mobile or IoT devices. They have open-sorce code, including comparison to Chen et al. (2021)
in here. We used their project for our APF implementation.

F.3 CALCULATION OF THE NEGLIGIBLE ADDED COMMUNICATION

Let us show that
2N
E

N̂ not-embedded(|C|+|C|) ∼ 10−4. In our setup of ResNet18, we have N ∼ 107. Following
Chen et al. (2021) we have |C| = 50, |C| = 5. As shown in Fig. 5 these result with convergence for

E ∼ 103. Thus we have
2N
E

N̂ not-embedded(|C|+|C|) ∼
2N
E

N̂ not-embedded|C| =
2

E|C|
N

N̂ not-embedded = 2
5·104

N
N̂ not-embedded . In

our experiments N̂ not-embedded

N ≈ 0.5, resulting with 1
5·104 ≈ 10−4.

F.4 POTENTIAL OF GENERALIZED DYNAMICS MODELING IN FEDERATED LEARNING

Our work with CMD in FL has demonstrated promising preliminary results. A key contribution
here is leveraging dynamics modeling for efficient communication in distributed learning, and is
not restricted to CMD. This section discusses the potential of extending the framework to include
various dynamics modeling approaches, emphasizing the value it may serve in FL.

The core of this generalized approach remains the use of dimensionality reduction. By communicat-
ing low-dimensional representations of model parameters between clients and the central server, the
volume of transmitted data can be significantly reduced. Alongside the transmission of compressed
data, it is crucial for client models to effectively reconstruct the original dynamics from the reduced
information. Maintaining local copies of necessary data and mappings enables clients to accurately
translate the low-dimensional representations back to the full parameter space.

With dimensionality reduction at its core, we believe this approach may allow for a more inter-
pretable understanding of the model’s behavior. For instance, by focusing on a reduced set of pa-
rameters, it becomes easier to trace and understand how these parameters influence the learning
outcome. This is particularly beneficial in FL environments, where understanding the contribution
of individual clients to the collective model is often complex and opaque. The ability to map back
and forth between the full and reduced parameter spaces not only ensures efficient communication
but also provides a clearer insight into the dynamics of the learning process. This transparency has
the potential to aid in diagnosing the learning process for various issues.

As the field of dynamics modeling continues to evolve, new dynamics modeling approaches will
emerge. A generalized framework, not limited to CMD, can seamlessly integrate these techniques,
ensuring continued effectiveness and relevance in a rapidly evolving domain. Moreover, a natural
extension is to generalize the framework to accommodate a range of dynamics modeling techniques.
This generalization will utilize the most suitable dynamics model for specific tasks.

In summary, the generalization of the CMD framework to include a variety of dynamics modeling
approaches presents an intriguing prospect. We believe such an approach can remain relevant and

31

https://github.com/TCtower/GlueFL


Published as a conference paper at ICLR 2024

adapt for future advancements in FL as well as dynamics modeling. The goal is to enhance the
adaptability, efficiency, and scalability of FL, providing a foundation for further research and de-
velopment in this area. The addition of explainability to this framework not only aids in effective
communication but may also enhance our understanding of distributed learning processes. Thus we
believe this could be a valuable tool for future advancements in the field.

G CMD LANDSCAPE VISUALIZATION: EXTENSION

Figure 20: Loss and Accuracy Landscapes for Post-hoc CMD. Left - CMD with a single mode,
1D curves; Right - CMD with two mode, 2D landscapes. The optimal models from each dataset,
and the original model are marked on each landscape and described in the legend.

A different feature available due to the reduced number of parameters of the model is a visualization
feature. Shifting the reference weight values of CMD with a single mode will lead to a 1D loss
curve. In the 2 modes case a 2D loss landscape is created. Starting from post-hoc CMD with a
single mode, in Fig. 20 we present the 1D curves and 2D landscapes representing the train loss
and validation accuracy metrics for different values of the reference weights. The values of the
reference weights determine the value of all the other reconstructed weights in the model, as shown
in Eq. (7). Changing the reference weights values changes the values of all the other weights as
well, creating a new model, easily calculated. An array of values are tested in the area of the
original reference weights values - [w0 − |w0

2 |, w0 + |w0

2 |] with w0

50 increments (1D case), or -
[w0 − |w0

2 |, w0 + |w0

2 |]× [w1 − |w1

2 |, w1 + |w1

2 |] with w0

50 ,
w1

50 increments (2D case).

The main visual difference between the landscapes of the training loss and the validation accuracy
in both cases is that the training set loss is smooth and the validation set accuracy is not. For the
training set case there is a clear global minimum. For the validation set case there are many local
maximum points, around the global maximum. We will note that the training set accuracy behaves
similarly to the training set loss function and that the validation set loss behaves similarly to the
validation set accuracy function. The smooth landscape in the training set case indicates that the
CMD model is much more stable on the training set, compared to the validation set. Generated from
the training data, this is an expected feature of the CMD model.

Fine tuning the model on a specific class (or classes) of data could also be done via this visualization
method. An example is presented in Fig. 21, where each 2D landscape presents the validation ac-
curacy landscape for images of a specific class. For each class different values of (w0, w1) optimize
the validation set accuracy. The 2D landscapes produced per class show different behaviour from
the full validation set accuracy landscapes presented earlier in this section. These 2D landscapes are
divided into regions with the same exact performance. These different landscapes show how each
model calculated with different reference weights values affects each class differently. The caption
of each sub-figure contains the name of the class and the test accuracy of the optimized model in
brackets. The original test accuracy, before any optimization, is 91.99%. Some classes lead to better
optimized models (bird, frog, etc.) and others lead to a lower overall test accuracy (airplane, deer,
etc.).

A different approach is embedding a subset of the CMD model parameters into the model trained by
SGD. The embedded parameters are dependant on the reference weights and the other parameters
have fixed values. In Fig. 22 we illustrate an example (ResNet18 on CIFAR10) where 10% of all the
model weights are embedded, 30% are embedded and 100% of the model weights are embedded. As
expected, when more weights are embedded, and linked to the reference weights, a more significant
change is visible in the 2D loss landscape.
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(a) Airplane (91.7%) (b) Automobile (92.07%) (c) Bird (92.13%)

(d) Cat (92.01%) (e) Deer, (91.74)% (f) Dog (91.96%)

(g) Frog (92.1%) (h) Horse (91.65%) (i) Ship (92.13%)

(j) Truck (92.1%)

Figure 21: 2D Validation Accuracy per Class Landscapes for CMD with Two Modes. The
caption of each sub-figure contains the name of the class and the test accuracy of the optimized
model in brackets. The original test accuracy, before any optimization, is 91.99%. Some classes
lead to better optimized models (bird, frog, etc.) and others lead to a lower overall test accuracy
(airplane, deer, etc.).

To conclude this section, using the reduced number of parameters for visualization intents shows
interesting options for different subsets of the data or different subsets of the model parameters. The
visualization also leads us to the conclusion that there are many similar models, that achieve similar
results, in the area of the original CMD calculated model. By changing the values of the reference
weights we can easily calculate a new model, with different weight values, that achieves similar
results.

H DMD ANALYSIS FOR NEURAL NETWORKS

H.1 DYNAMIC MODE DECOMPOSITION

DMD is one of the common and robust tools for system analysis. It is widely applied in dynami-
cal systems in applications ranging from fluid dynamics through finance to control systems (Kutz
et al., 2016). DMD reveals the main modes of the dynamics in various nonlinear cases and yields
constructive results in various applications (Dietrich et al., 2020). Thus, it is natural to apply DMD-
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Figure 22: Loss Landscapes for Post-hoc CMD with Different Portions of the Embedded
Model. Left - 10% of the CMD model weights are embedded; Middle - 30% of the CMD model
weights are embedded; Bottom - 100% of the CMD model weights are embedded; A stable be-
haviour is maintained when different portions of the CMD model are embedded in the SGD trained
model. When a larger percentage of the CMD model weights are embedded, the changes are more
visible in the landscape. The maintained minima as well as smoothness throughout the subplots
suggests that incorporating partial CMD modeling in training, as in embedded CMD, is viable

type algorithms to model the process of neural network training in order to analyze the emerging
modes and to reduce its dimensions. For instance, in Naiman & Azencot (2021) it was proposed
to use DMD as a method to analyze already trained sequential networks such as Recurrent Neural
Networks (RNNs) to asses the quality of their trained hypothesis operator in terms of stability.

DMD is originally formulated as an approximation of Koopman decomposition (Mezić, 2005),
where it is argued that any Hamiltonian system has measurements which behave linearly under the
governing equations (Koopman, 1931). These measurements, referred to as Koopman eigenfunc-
tions, evolve exponentially in time. This fact theoretically justifies the use of DMD, where it can be
considered as an exponential data fitting algorithm (Askham & Kutz, 2018). The approximation of
Koopman eigenfunctions by DMD can generally not be obtained for systems with one or more of
the following characteristics (Cohen & Gilboa (2023)):

1. Finite time support.
2. Non-smooth dynamics - not differential with respect to time.
3. Non-exponential decaying profiles.

Below we demonstrate a simple example of applying DMD on a single-layer linear network, show-
ing that already in this very simple case we reach the limits stated above when using augmentation.

H.2 DMD IN NEURAL NETWORKS

The training process of neural networks is highly involved. Some common practices, such as aug-
mentation, induce exceptional nonlinear behaviors, which are very hard to model. Here we examine
the capacity of DMD to characterize a gradient descent process with augmentation. We illustrate
this through a simple Toy example of linear regression.

Toy example – linear regression with augmentation. Let us formulate a linear regression prob-
lem as follows,

L(x,w; y) = 1

2
||y − wx||2F (24)

where ||·||F denotes the Frobenius norm, x ∈ Rm×n, y ∈ Rd×n and w ∈ Rd×m. In order to
optimize for w, the gradient descent process, initialized with some random weights w0, is

wk+1 = wk + ηk
(
y − wkx

)
xT , (25)

where the superscript k denotes epoch number k, T denotes transpose and ηk is a (possibly adaptive)
learning rate. We note that introducing an adaptive learning rate by itself already makes the dynamic
nonlinear, as η denotes a time interval. Let us further assume an augmentation process is performed,
such that at each epoch we use different sets of x and corresponding y matrices, that is,

wk+1 = wk + ηk(yk − wkxk)(xk)T . (26)
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Then, the smoothness in Eq. (25) becomes non-smooth in the augmented process, Eq. (26). Actu-
ally, we obtain a highly nonlinear dynamic, where at each epoch the operator driving the discrete
flow is different. We generally cannot obtain Koopman eigenfunctions and cannot expect DMD to
perform well. Our experiments show that this is indeed what happens in practice. In the modeling
of simple networks, DMD can model the dynamics of classical gradient descent but fails as soon
as augmentation is introduced. Fig. 23 presents an experiment of CIFAR10 classification using a
simple CNN (Fig. 10a) with standard augmentations, usually performed on this dataset (horizontal
flips and random cropping). In this experiment in order to reconstruct the dynamics, we perform
DMD with different dimensionality reduction rates (r = 10, 50, 90) using Koopman node operator,
as described in Dogra & Redman (2020). The results presented in Fig. 23 show that when the
dimensionality reduction is high (r = 10) DMD fails to reconstruct the network’s dynamics. How-
ever, when the dimensionality reduction is mild (r = 90) DMD reconstruction is also unstable and
oscillatory. An example of DMD performed on a more complex network (ResNet18), with no data
augmentation, is also available in Fig. 23.

Figure 23: DMD Experiments. CIFAR10 classification results, Original Gradient Descent (GD)
training Vs. DMD modeling. Top: SimpleNet architecture, with augmentations. Bottom: more
complex model - ResNet18, no augmentations. 3 values of dimensionality reduction parameter r per
experiment. DMD fails to achieve comparable results in all cases.

H.3 DMD AND CMD

The common ground between DMD and CMD is the intention to approximate a complex dynamic
with a simpler one. In both cases, the original dynamic is decomposed into time profiles and spatial
structures. The main difference is that DMD uses for its modes pre-known eigenfunctions, in a linear
approach, which is limited to exponential profile representation. CMD is nonlinear, using a single
representative with improved adaptability. DMD employs Eq. (1), while we employ the special case
of Eq. (2).

Several key differences exist - first, DMD is computed by finding a linear operator that approximates
the dynamic with a least-squares problem. The operator is later decomposed into spatial structures
(modes) and eigenvalues yielding exponential profiles in time. CMD, conversely, is not based on pre-
known temporal functions, but rather assumes correlation between parameters and uses time profiles
present in the dynamic itself. They are not computed using an eigen-decomposition but rather by
clustering a correlation matrix and finding a single representative profile in each cluster. Secondly,
there is no operator approximation in CMD, thus it does not have, at least directly, the option to
extrapolate the dynamic by continuing applying the operator to the end of the training data. Thirdly,
decomposition in CMD is ”transposed” in relation to DMD, in the sense that the CMD ”modes” are
groups with similar temporal behavior (a cluster of the correlation matrix), while in DMD each mode
is a spatial function that has to be multiplied by an exponent to form its contribution to the total. To
match this logic, the CMD modes should have been a vector including all coefficient vectors (a,
b) from all clusters. But then, the whole vector does not have the same temporal behavior, as it
is divided to clusters. For CMD with a single mode - the coefficient vector is similar to the DMD
notion of a spatial mode.
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