
A. Algorithms1

A.1 Iterative inference algorithm2

Algorithm 1: Iterative Inference Algorithm
Input: observation x, viewpoint v, latent Gaussian parameters λt = {(µtk, σtk)}
ModelParameters Φ, θ, and the number of single-view iterations L(default : 5)
Initialize λt(l) = λt, ELBOt = 0
for l = 1 to L do

zt(l) ∼ N (zt(l); λt(l)) ; // sample from a prior–-make a guess
pθ(x

t(l)|zt(l), v) = gθ(z
t(l), v) ; // render and verify

ELBOt(l) = − log pθ(x
t(l)|zt(l), v) +DKL(N (zt ;λt(l))||N (zt ;λt)) ;

λt(l) = Φ(x,ELBOt(l),λt(l)) ; // refine and then repeat (until l = L)
ELBOt+ = (1/L) ·ELBOt(l)

Output ELBOt,λt(l) = {(µt(l)k , σ
t(l)
k )}

A.2 Testing algorithm3

Algorithm 2: DyMON Testing Algorithm
Input: Trained parameters Φ, θ, and latent Gaussian parameters λ0 = {(µk = 0, σk = I)}
Initialize λt = λ0 ;
while Access (xt, vt) do

ELBOt, λt = iterative_inferenceΦ,θ(x
t, vt,λt) ;

Output λt = {(µtk, σtk)} ;

B. Implementation Details4

B.1 Training configurations5

We show the training configurations used in this work in Table 1.

Table 1: Training Configurations

TYPE THE TRAININGS OF DYMON, MULMON, GSWM

OPTIMIZER ADAM
INITIAL LEARNING RATE η0 3e−3

LEARNING RATE AT STEP s max{0.1η0 + 0.9η0 · (1.0− s/1e6), 0.1η0}
TOTAL GRADIENT STEPS 300k FOR DYMON VS. GSWM, 200k FOR DYMON VS. MULMON
BATCH SIZE 2 (2 seqs× 40 images = 80 images)
NUMBER OF GPU/PER TRAINING 1 (Mem >= 11GB)
* THE SAME SCHEDULER AS THE ORIGINAL GQN EXCEPT FOR FASTER ATTENUATION

6

B.2 Model implementation7

We show the designs of the generative mapping function gθ and the refinement function in Table 28

and 3 respectively. After obtaining a set of K RGBM outputs from this function, i.e. {(µxk, m̂xk)}9

(see Table 2), we render (i.e. compose) an image as: x =
∑
k softmax(m̂xk) · xk, where xk ∼10

N (xk; µxk, 0.1
2I),11
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Table 2: Generator function gθ

Parameters Type Channels (out) Activations. Descriptions

θ1 (projection)
Input D + d zt ∼ N (zt; λt), vt

Linear 256 Relu
Linear D Linear z̃t = gθ1(zt, vt)

θ2 (rendering)
Input D z̃tk = gθ2(ztk, v

t)
Broadcast D+2 * Broadcast to grid

Conv 3× 3 32 Relu
Conv 3× 3 32 Relu
Conv 3× 3 32 Relu
Conv 3× 3 32 Relu
Conv 3× 3 4 Linear RGBM: rgb µxk + mask logits m̂xk

D: the dimension of a latent representation, set to 16 for all experiments
d: the dimension of a viewpoint vector, set to 3 for all experiments
*: see spatial broadcast decoder [6]
Stride= 1 set for all Convs.

Table 3: Refinement Network Φ

Parameters Type Channels (out) Activations. Descriptions

Φ
Input 17 * Auxiliary inputs a(xt)

Conv 3× 3 32 Relu
Conv 3× 3 32 Relu
Conv 3× 3 64 Relu
Conv 3× 3 64 Relu

Flatten
Linear 256 Relu
Linear 128 Linear
Concat 128+4*D

LSTMCell/GRUCell 128
Linear 128 Linear output ∆λ

D: the dimension of a latent representation, set to 16 for all experiments
Stride= 1 set for all Convs.
* see IODINE[3] for details
LSTMCell/GRUCell channels: the dimensions of the hidden states

C. Datasets12

C.1 DRoom (DynamicRoom)13

Simulation Environment We created the DRoom simulation on the top of the CLEVR Blender14

environment [4, 1]. Like other multi-object datasets [2], we initialized every sequence by randomly15

selecting and placing 2-5 scene objects in a simulated room (with background and walls specified).16

These objects are randomized in terms of shapes (incl. deformations, sizes), colors, and textures.17

Under the Blender physics engine settings, we enabled foreground objects’ movements by setting18

their dynamics status to “active” and disabled the background objects’ (i.e. walls and ground’s)19

movements by setting their dynamics status to “passive”. We then created a centrifugal force field20

within a fixed center and range on the ground across all DRoom datasets. In this work, we sample the21

magnitude of the force using: random.choice(vals = 8500×{0, 0.1, 0.2, ..., 1}, probs = Cat(...)),22

which allows us to simulate scene object motions of different speeds by inputing different selection23

categorical probability Cat(...). Moreover, we enabled object collisions to simulate scenes with24

rather complex object dynamics. The control of the observer (an RGB camera) motion is independent25

of the scene objects. We consider an observer or camera performing random walks on the surface26

of a dome (top half of a sphere) whose center aligns with the center of the ground—we randomly27

initialize the starting position of a camera and randomly sample its next move. Note that as the28

camera can only move on the dome (with a fixed radius r), we can use azi and ele, i.e. the29
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azimuth and elevation of the camera, to represent a camera location. We sample the increment ∆azi30

and ∆ele independently from: random.choiceazi(vals = 5.0 degs× {0, 0.1, 0.2, ..., 1}, probs =31

Catazi(...)) and random.choiceele(vals = 1.0 degs × {0, 0.1, 0.2, ..., 1}, probs = Catele(...)),32

which suggests that we can control the speed of the camera by inputting different Catazi(...)) and33

Catele(...)).34
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Figure 1: Left: DRoom simulation environment setup where yellow rings denote the force fields.
Right: One fast-camera-slow-object (FCSO) sample (top row) and slow-camera-fast-object (SCFO)
sample (bottom row). Both are randomly selected from the DR-Lvl.3 dataset.

Dataset We rendered all scenes using a resolution of 64× 64 for 40 frames (4-second motions)—35

record 40 images with their corresponding viewpoints {(xt, vt)}1:40, where we represent the view-36

points using their 3-D Cartesion coordinates. The sampler specifications, i.e. the categorical37

distributions Cat(...)), used to generate the five DRoom subsets are listed in Table 4. As discussed38

in Sec.3.3, we clustered all the data samples based on their average camera speeds across each39

sequence to assign them into the FCSO and SCFO partitions. We visualize the clustering results for40

DR-Lvl.1 ∼ 3 in Figure 241

Table 4: DRoom Generator Specs

Force Magnitude Camera Random Walk Next Move
Subsets (constant in its range) (for both azi and ele)

DR0-|fz| — {1, 0, 0, ..., 0} {0, 0, 0, 0, 0, 0, 0.01, 0.11, 0.28, 0.3, 0.3}

DR0-|fv| — {0, 0, 0, 0, 0, 0.02, 0.08, 0.15, 0.35, 0.35, 0.05} {1, 0, 0, ..., 0}

DR-Lvl.1 FCSO {0.05, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095} {0.05, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095}
SCFO {0.05, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095} {0.05, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095, 0.095}

DR-Lvl.2 FCSO {0.2, 0.2, 0.2, 0.2, 0.2, 0, 0, 0, 0, 0, 0} {0, 0, 0, 0, 0, 0, 0.2, 0.2, 0.2, 0.2, 0.2}
SCFO {0, 0, 0, 0, 0, 0.2, 0.2, 0.2, 0.2, 0.2, 0} {0.2, 0.2, 0.2, 0.2, 0.2, 0, 0, 0, 0, 0, 0}

DR-Lvl.3 FCSO {0.25, 0.38, 0.33, 0.02, 0.02, 0, 0, 0, 0, 0, 0} {0, 0, 0, 0, 0, 0, 0.01, 0.11, 0.28, 0.3, 0.3}
SCFO {0, 0, 0, 0, 0, 0.02, 0.08, 0.15, 0.35, 0.35, 0.05} {0.3, 0.3, 0.28, 0.11, 0.01, 0, 0, 0, 0, 0, 0}
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Figure 2: Visualization of the data assignment results on the DR-Lvl.1 ∼ 3 datasets.

C.2 MJC-Arm (Mujoco-Arm)42

Simulation Environment The environment is built with MuJoCo physics simulator [5], and the43

Franka Emika robot arm with a Barret hand attached it the main scene object. The arm has 7 degrees44

of freedom and the joints of robotic hand are fixed during the data generation. 8 different collision-free45
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robot arm motion trajectories are pre-defined, and each has unique initial and target joint configuration.46

Every joint is controlled in the position-derivative manner with a constant velocity, which is the47

product of the nominal velocity and the sampled weight. The nominal velocities for all 7 arm joints48

(from base to end-effector) are [0.65, 0.65, 0.27, 0.27, 0.03, 0.03, 0.005], which are related to the link49

lengths of the robot arm. The joint velocity weights for FCSO and SCFO data trials are sampled50

from random.choiceFCSO({0, 0.1, 0.2, ..., 1}, probs = {0.34, 0.34, 0.25, 0.07, 0.0, ..., 0.0}) and51

random.choiceSCFO({0, 0.1, 0.2, ..., 1}, probs = {0.0, ..., 0.0, 0.07, 0.25, 0.34, 0.34}). We also52

introduced a moving ball with random fixed direction and constant weighted velocity in the simulation.53

The control of the RGB camera is the same as introduced in the former section, with a fixed point of54

view towards the base link of the robot arm.55
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Figure 3: Left: Mujoco simulation environment. Right: One fast-camera-slow-object (FCSO)
sample (top row) and slow-camera-fast-object (SCFO) sample. Both are randomly selected from the
MJC-Arm dataset.

Dataset For each data sample, the scenes are rendered with resolution 64× 64 at 10Hz for 4 seconds56

(40 frames per sample). At the beginning of every trail, the textures of the robot arm and the moving57

ball are randomly selected from a colour set. The robot arm is initialised with the starting pose of the58

randomly selected motion trajectory.59

C.3 Real-world aataset (CubeLand)60

Figure 4: CubeLand data-collection platform.

Data-collection Environment We created CubeLand in a controlled real-world environment. Four61

cubes of different colours (i.e., red, blue, green and yellow) were placed on a table. To avoid glare,62

reflections and unnecessary background clutter, the surface of the table was made white by designing63

a bicolour data collection environment. A camera was mounted on the end effector of Franka (a64

robotic arm with 7 D.O.F.) as shown in Figure 4. The end effector has a fixed motion, i.e., it only65

rotates back and forth 120 degrees with no translation motion involved. The cubes were taped66

with threads at the bottom to move them freely and randomly. Moreover, the simulations had two67

configurations, i.e., slow camera, fast objects (SCFO) and fast camera, slow objects (FCSO) (see68

Figure 5). In the first configuration, the speed of the rotation of the end effector was 1.67 rpm (1069

degrees per second) while the objects were manually pulled and thrown back into the scene at an70

arbitrary faster speed. In the latter configuration, the speed of the rotation of the end effector was set71

to be 4.17 rpm (25 degrees per second) whereas the objects were pulled and pushed by hand back into72
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the scene at a slower rate. The height of the camera is 14.5 cm and the radius this assembly (centre of73

the end effector to the camera) spans is 19.5 cm.74

FCSO

SCFO

Figure 5: CubeLand data samples. Top: a fast camera, slow objects (FCSO) data sample. Bottom: a
slow camera, fast objects (SCFO) data sample.

Dataset All the frames collected were initially 480x480. During the post-processing steps, these75

frames were resized to 64x64 after applying a median filter (the centre of the kernel is replaced by76

the median of all the neighbouring pixels) of kernel size 9. Overall, 100 sequences of 50 frames each77

were extracted. Furthermore, each of the viewpoints was converted into 3D cartesian coordinates.78

The classification between SCFO and FCSO is solely based on the rotations per minute of the end79

effector.80

D. Additional Results81

D.1 Assumption Validation82

As discussed in Sec.3.1. of the main paper, the training of DyMON on multi-view-dynamic-scene is83

based upon two assumptions that favor high frame-rate image sequences and large difference between84

the speeds of an observer and scene objects. In this experiments, as we know that the average speed85

differences of DR-Lvl.1 ∼ 3 are in an ascending order, we can thus assess the robustness of DyMON86

against our assumptions. We trained DyMON on the DR-Lvl.1 ∼ 3 training sets respectively and87

then evaluated their performance on space-time-queried prediction of scene appearances on the88

DR-Lvl.1 ∼ 3 test sets. We visualize the MSE as a function of increased levels of speed differences89

in Figure 6. As shown, 1) there is no significant performance drops across different training and
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Figure 6: The space-time-queried scene appearance prediction performance comparison between
three DyMONs that are trained on three levels of scene-observer speed differences, i.e. DR-Lvl.1 ∼ 3,
respectively. Left: Averaged MSE achieved by the three models on three DRoom testing sets, i.e.
the testing sets of DR-Lvl.1 ∼ 3. Right: The performance of the three models on each of the three
testing sets.

90
test sets, 2) the faster the observer speeds and the scene speeds, the better the models perform. This91

holds for both training (see the overall performance on the left Figure) and testing (see a model’s92

testing performance against different test sets on the right Figure). These supports our claims about93

DyMON’s robustness against complex and potentially dynamic environments.94
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D.2 Ablation Study95

Figure 7: Ablation study results. Top: Space-time queried view synthesis MSE vs. nested ∆tz and
∆tv. Bottom left: MSE vs. different β (in log2 space). Bottom middle: MSE vs. different ∆tz
(MSE computed by averaging across different ∆tv). Bottom right: MSE vs. different ∆tv (MSE
computed by averaging across different ∆tz).

We highlight two hyperparameters that play significant roles in the training of DyMON: 1) the96

updating periods of v and z, i.e. ∆tv and ∆tz, 2) weighting coefficient of viewpoint-queried97

generative log likelihood β. We varied these two groups of parameters and visualized their influences98

on DyMON—similar to Sec.D.1, we measure DyMON’s novel-view synthesis performance at every99

time point and visualize them as a function of these hyperparameters. We varied ∆tz and ∆tv with100

values that are selected from discrete sets {3, 5} and {5, 6, 8}, this allows us to show the joint effects101

of these two updating periods in a 2× 3 grid (see top half of Figure 7). To analyze the independent102

effects of ∆tz and ∆tv , we “squeezed” the 2× 3 grid by computing the MSE averaged over the ∆tz103

axes and ∆tv axes of the grid (see bottom right two plots of Figure 7 for the results). One can see104

that a short updating period for ∆tz is preferred as this allows to capture more detailed scene object105

motions, while the selection of ∆tv is relative subtler. One might run pre-analysis before training, e.g.106

visually look several sequences, to select a better ∆tv . Similarly, we varied β by setting its values to107

0.5, 1.0, and 2.0 respectively and we show the results in the bottom left of Figure 7.108

D.3 T-GQN Results109

We used the official implementation of T-GQN (https://github.com/singhgautam/snp) and110

trained a T-GQN on the DR-Lvl.3 data. Although the training has converged (see Figure 8), we111
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observe that it fails to represent the underlying 3D scenes (see Figure 9) and training T-GQN with112

a posterior dropout, i.e. T-GQN-PD, does not fix the issue. We speculate that this is because it113

lacks multiple views at each time steps to resolve the temporal entanglement issue. However, future114

investigations are required to validate our speculation.

Figure 8: T-GQN training curves. We train t-GQN on our DRoom data until it converges.
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Figure 9: Qualitative results of T-GQN on DR-Lvl.3 test data.

115

D.4 Additional Qualitative Results116
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Figure 10: Spatial-temporal factorization results of a DRoom scene.
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Figure 12: Qualitative comparisons of DyMON and MulMON on DRoom. Left: reconstruction
performance. Right: spatial-temporal factorization performance. We train DyMON on DR-Lvl.3
and train MulMON on DR0-|fz|.
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Figure 13: Qualitative comparisons of DyMON and GSWM on DR0-|fv|. Top: reconstruction
performance. Bottom: segmentation performance (we observe that DyMON outperforms GSWM in
segmenting scenes).
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Figure 14: Dynamics replay of a MJC-Arm scene.
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Figure 15: Dynamics replay of a real scene (i.e. CubeLand data). We conduct experiments on
real-world data to show DyMON’s potential for real-world applications.
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