A Transformer Models

The BERT model was initially introduced in [2]. It is a bidirectional transformer pre-trained using
a combination of masked language modeling and next sentence prediction tasks on a large corpus
comprising the Toronto Book Corpus and Wikipedia. We use the pre-trained BERT},,5, model
consisting of 12 layers and 12 multi-head self-attention modules. The hidden state size is set as 756.
There are 110 million parameters in total. The DistilBERT model was proposed in [36], which is a
lightweight and efficient Transformer model trained by distilling the BERT},55e model. It consists of
only 6 layers and 12 multi-head self-attention modules with a hidden state size of 756, resulting in
40% less parameters than the BERT},,5. model. DistilBERT runs 60% faster while preserving over
95% of BERT’s performance as measured on the GLUE language understanding benchmark. Liu et
al. [37] proposed the RoBERTa model, which is built on BERT with modified key hyper-parameters.
It is pre-trained using the masked language modeling task with much larger mini-batches and learning
rates. ROBERTa has a similar architecture as BERT but uses a byte-level BPE as a tokenizer. We
report the performance of the pre-trained models from Hugging Face on various data sets and tasks in
Tables 3 and 4. These results demonstrate that all these pre-trained models that we used for generating
their explanations achieve good performance on the corresponding tasks.

Datasets SST2 | QQP | MNLI | Amazon | Yelp | IMDB
BERTbase | 9243 | 92.40 | 84.00 94.65 96.30 | 91.90

Table 3: Accuracies of BERT},,s. model on test sets of the selected tasks.

Dataset SQuADvl1 SQuADv2
Metric EM F1 EM F1
BERThase | 80.90 | 88.20 | 76.54 | 83.00
DistilBERT | 79.12 | 86.90 | 75.14 | 81.50
RoBERTa | 83.00 | 90.40 | 79.87 | 82.91

Table 4: Evaluation results of the selected Transformer models on the question answering task. Exact
match (EM) measures the percentage of predictions that match any one of the ground truth answers
exactly. Macro-averaged F1 score (F1) measures the average overlap between the predicted and
ground truth answers. F1 is computed by treating the predicted and ground truth answers as bags of
tokens.

B Tasks and Datasets

Sentiment Analysis: The Stanford Sentiment Treebank (SST2) [38] and IMDB [40] consist of
sentences extracted from movie reviews with human annotations of the sentiments. They are designed
to predict the sentiment score for a given sentence in a binary scale. The Amazon and Yelp data sets
consist of reviews from Amazon and Yelp, respectively. The polarity data sets, which consider stars
1&2 as negative and stars 3&4 as positive, are constructed by [39] for binary sentiment classification.

Natural Language Inference: The Multi-Genre Natural Language Inference Corpus (MNLI) [41] is
a crowd-sourced collection of sentence pairs with textual entailment annotations. Given a premise
sentence and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis
(entailment), contradicts the hypothesis (contradiction), or neither (neutral).

Paraphrase Detection: The Quora Question Pairs2 (QQP) [42] is a collection of question pairs
from the community question-answering website Quora. The task is to determine whether a pair of
questions are semantically equivalent.

Question Answering: The Stanford Question Answering (SQuADv1 [43] and SQuADvV2 [44])
are reading comprehension data sets consisting of questions posed by crowd workers on a set of
Wikipedia articles. The answer to every question is a segment of text, or span, from the corresponding
reading passage, or the question is unanswerable.
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Figure 7: AOPC and LOdds scores of different methods in explaining BERT across the varying
corruption rates k on Yelp data set. The x-axis demonstrates removing or masking the k% of the
tokens in an order of decreasing saliency.

Method SST2 QQP MNLI Amazon Yelp IMDB
AOPCT [ LOdds] | AOPC [ LOdds | AOPC [ LOdds | AOPC | LOdds | AOPC [ LOdds | AOPC | LOdds
RawAtt 0.164 -0.516 0.139 | 0.251 0.218 | 0.178 | 0.118 | -0.262 | 0.142 | -0.697 | 0.148 | -0.457
Rollout 0.212 -0.675 0.132 | 0.278 | 0.206 | 0.105 | 0.157 | -0.358 | 0.152 | -0.613 | 0.110 | -0.465
Grads 0.214 -0.717 0.122 | 0.214 | 0.208 | 0.195 | 0.119 | -0.214 | 0.126 | -0.624 | 0.115 | -0.501
AttGrads 0.210 -0.706 0.125 | 0.199 | 0.210 | 0.186 | 0.123 | -0.206 | 0.118 | -0.538 | 0.112 | -0.524
PartialLRP | 0.159 -0.475 0.519 | 0.281 0218 | 0.190 | 0.151 | -0.290 | 0.146 | -0.711 | 0.142 | -0.515
TransAtt 0.139 -0.324 0.045 | 0.283 0.211 0.239 | 0.115 | -0.192 | 0.111 | -0.359 | 0.134 | -0.308
CAT 0.207 -0.458 0.134 | 0.276 | 0.216 | 0.180 | 0.117 | -0.201 | 0.124 | -0.526 | 0.142 | -0.323
AttCAT 0.121 -0.320 0.112 | 0326 | 0.183 | 0.245 | 0.108 | -0.039 | 0.098 | 0.025 | 0.088 | -0.154

Table 5: AOPC and LOdds scores of various methods in explaining BERT model prediction on
different data sets. Lower AOPC and higher LOdds scores are better. Best results are in bold face.

C Additional Results

We report the AOPC and LOdds scores of different methods in explaining BERT model prediction by
deleting or masking bottom k% words on different data sets in Table 5. Our AttCAT achieves the
lowest AOPC and highest LOdds, further demonstrating that AttCAT cfficiently captures the most
impactful tokens for model predictions.

Figure 7 illustrates how the evaluation metrics, namely AOPC and LOdds, change over the varying
corruption rates (via removing or masking the k% top-scored words) on Yelp data set. Our AttCAT
achieves the highest AOPC and the lowest LOdds scores with the corruption rate k of 50% or less,
further demonstrating that AttCAT’s capability of detecting the most important words for model
predictions.

We show the Precision@K (i.e., K = 10, 30, 40, 50) scores of the selected explanation methods for
various Transformer models on SQuAD data sets in Figure 8, 9, 10, 11. The max scores of SQuADv1
and SQuADvV2 are 3.72 and 3.84, respectively. These results further demonstrate that our AttCAT
outperforms other baselines on various models. The higher scores mean that AttCAT can generate
more faithful explanations with different K values. Especially, AttCAT outperforms others in a
largest margin in terms of Precision@ 10 score, demonstrating that it captures the most impactful
answer tokens in the TOP-10 sorted tokens shown in Figure 8.

All the examples from SST2 shown in Figure 12 present a positive sentiment. Our method AttCAT
captures the most impactful tokens, such as ‘fresh’, ‘like’, ‘thanks’, and ‘compelling’ (shown in dark
shade of green), which contribute mostly to the positive sentiment prediction. Besides these positive
tokens, the AttCAT method also identifies other tokens that contribute inversely to the positive
sentiment, e.g., ‘neither’ and ‘nor’ (shown in dark shade of red). However, TransAtt is not capable
of differentiating positive and negative contributions. Both RawAtt and Rollout methods seemingly
generate uniformly distributed importance scores for the tokens.

The example from the Yelp Polarity data set shown in Figure 13 has a positive sentiment. Both
our AttCAT and TransAtt methods are able to capture the most important tokens for the positive
sentiment prediction, such as ‘better’, ‘best’, and ‘worth’. However, the TransAtt method also
generates higher scores for some irrelevant tokens, i.e., ‘am’, ‘always’, and ‘selection’. RawAtt and
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Figure 10: Precision@40 scores. Figure 11: Precision@50 scores.

Rollout only generate the uniformly distributed importance scores for the tokens, demonstrating
unfaithful explanations.

The ground truth answer of the question answering example shown in Figure 14 is “nevada”. AttCAT
successfully captures this token with the darkest green shade, corresponding to the highest impact
score. Nevertheless, all other baselines fail to give faithful explanations for this question answering
task directly.
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Figure 12: Visualization of impact scores generated by the selected methods in three showcase
examples of SST2 on sentiment analysis task.
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Figure 13: Visualizations of the impact scores generated by the selected methods of a showcase
example in Yelp Polarity on sentiment analysis task.
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Figure 14: Visualizations of the impact scores generated by the selected methods of a showcase
example in SQuAD on Q&A task.
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