
Supplementary Material for
Estimating the Rate-Distortion Function by

Wasserstein Gradient Descent

Anonymous Author(s)
Affiliation
Address
email

We review probability theory background and explain our notation from the main text in Section 1,1

elaborate on the connections between the R-D estimation problem and variational inference/learning2

in Section 2, give proofs of formal results for Wasserstein gradient descent in Section 3, provide3

an example implementation in Section 4 (the full implementation can be found in the zip file), and4

finally provide additional experimental results and details in Section 5.5

1 Notions from probability theory6

In this section we collect notions of probability theory used in the main text. See, e.g., [Çinlar, 2011]7

or [Folland, 1999] for more background.8

Marginal and conditional distributions. The source and reproduction spaces X ,Y are equipped9

with sigma-algebras AX and AY , respectively. Let X × Y denote the product space equipped with10

the product sigma algebra AX ⊗AY . For any probability measure π on X × Y , its first marginal is11

π1(A) := π(A× Y), A ∈ AX ,

which is a probability measure on X . When π is the distribution of a random vector (X,Y), then π112

is the distribution of X . The second marginal of π is defined analogously as13

π2(B) := π(X ×B), B ∈ AY .

A Markov kernel or conditional distribution K(x, dy) is a map X ×AY → [0, 1] such that14

1. K(x, ·) is a probability measure on Y for each x ∈ X ;15

2. the function x 7→ K(x,B) is measurable for each set B ∈ AY .16

When speaking of the conditional distribution of a random variable Y given another random vari-17

able X , we occasionally also use the notation QY |X from information theory [Polyanskiy and Wu,18

2014]. Then, QY |X=x(B) = K(x,B) is the conditional probability of the event {Y ∈ B} given19

X = x.20

Suppose that a probability measure µ on X is given, in addition to a kernel K(x, dy). Together they21

define a unique measure µ⊗K on the product space X ×Y . For a rectangle set A×B ∈ AX ⊗AY ,22

µ⊗K(A×B) =

∫
A

µ(dx)K(x,B), A ∈ AX , B ∈ AY .

The measure π := µ⊗K has first marginal π1 = µ.23

The classic product measure is a special case of this construction. Namely, when a measure ν on Y is24

given, using the constant kernel K(x, dy) := ν(dy) (which does not depend on x) gives rise to the25

product measure µ⊗ ν,26

µ⊗ ν(A×B) = µ(A)ν(B), A ∈ AX , B ∈ AY .

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Table 1: Guide to notation and their interpretations in various problem domains. “LVM” stands
for latent variable modeling, “NPMLE” stands for non-parametric MLE. The R-D problem (3)
is equivalent to a “projection” problem in entropic optimal transport (discussed in Sec. 2.2) and
statistical problems involving maximum-likelihood estimation (see discussion in Sec. 2.3 and below).

Context µ = PX ρ(x, y) K = QY |X ν = QY

OT source distribution transport cost “transport plan” target distribution
R-D data distribution distortion criterion compression algorithm codebook distribution

LVM/NPMLE data distribution “− log p(x|y)” variational posterior prior distribution
deconvolution noisy measurements “noise kernel” — noiseless model

Under mild conditions (for instance when X ,Y are Polish spaces equipped with their Borel sigma27

algebras, as in the main text), any probability measure π on X ×Y is of the above form. Namely, the28

disintegration theorem asserts that π can be written as π = π1 ⊗K for some kernel K. When π is29

the joint distribution of a random vector (X,Y), this says that there is a measurable version of the30

conditional distribution QY |X .31

Optimal transport. Given a measure µ on X and a measurable function T : X → Y , the32

pushforward (or image measure) of µ under T is a measure on Y , given by33

T#µ(B) = µ(T−1(B)), B ∈ AY .

If T is seen as a random variable and µ as the baseline probability measure, then T#µ is simply the34

distribution of T .35

Suppose that µ and ν are probability measures on X = Y = Rd with finite second moment. As36

introduced in the main text, Π(µ, ν) denotes the set of couplings, i.e., measures π on X × Y with37

π1 = µ and π2 = ν. The 2-Wasserstein distance W2(µ, ν) between µ and ν is defined as38

W2(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
∥y − x∥2π(dx, dy)

)1/2

.

This indeed defines a metric on the space of probability measures with finite second moment.39

2 R-D estimation and variational inference/learning40

In this section, we give a more detailed explanation of how the the R-D problem (3) relates to41

variational inference and learning in latent variable models.42

To facilitate the discussion and make clearer the connections, we adopt notation more common in43

statistics and information theory. Table 1 summarizes the notation and the correspondence to the44

measure-theoretic notation used in the main text.45

In statistical modeling, the goal is to fit a density p̂(x) to the true (unknown) data distribution PX .46

Consider specifying p̂(x) as a latent variable model, where Y takes on the role of a latent space, and47

QY = ν is the distribution of a latent variable Y (which may encapsulate the model parameters). As48

we shall see, the optimization objective defining the rate functional (5) corresponds to an aggregate49

Evidence LOwer Bound (ELBO) [Blei et al., 2017]. Thus, computing the rate functional corresponds50

to variational inference [Blei et al., 2017] in a given model (see Sec. 2.2), and the parametric R-D51

estimation problem, i.e.,52

inf
ν∈H

LBA(ν),

is equivalent to estimating a model using the variational EM algorithm [Beal and Ghahramani, 2003]53

(see Sec. 2.3). The variational EM algorithm can be seen as a restricted version of the BA algorithm54

(see Sec. 2.3), whereas the EM algorithm [Dempster et al., 1977] shares its E-step with the BA55

algorithm but can differ in its M-step (see Sec. 2.4).56

2.1 Setup57

For concreteness, fix a reference measure ζ on Y , and suppose QY has density q(y) w.r.t. ζ. Often58

the latent space Y is a Euclidean space, and q(y) is the usual probability density function w.r.t. the59

2

Lebesgue measure ζ; or when the latent space is discrete/countable, ζ is the counting measure and q(y)60

is the usual probability mass function. We will consider the typical parametric estimation problem and61

choose a particular parametric form forQY indexed by a parameter vector θ. This defines a parametric62

family H = {Qθ
Y : θ ∈ Θ} for some parameter space Θ. Finally, suppose the distortion function ρ63

induces a conditional likelihood density, p(x|y) ∝ e−λρ(x,y), with a normalization constant that has64

no y-dependence.65

A latent variable model is then specified by the joint density q(y)p(x|y). We use it to posit a density66

for the data by67

p̂(x) =

∫
Y
p(x|y)dQY (y) =

∫
Y
p(x|y)q(y)ζ(dy). (16)

As a simple example, a Gaussian mixture model with isotropic component variances can be specified68

as follows. Let QY be a mixing distribution on X = Y = Rd parameterized by component weights69

w1,...,k and locations µ1,...,k, such that QY =
∑K

k=1 wkδµk
. Let p(x|y) = N (y, σ2) be a conditional70

Gaussian density with mean y and variance σ2. Now formula (16) gives the usual Gaussian mixture71

density on Rd.72

Maximum-likelihood estimation then ideally maximizes the population log (marginal) likelihood,73

Ex∼PX
[log p̂(x)] =

∫
log p̂(x)PX(dx) =

∫
log

(∫
Y
p(x|y)dQY (y)

)
PX(dx). (17)

To deal with the often intractable marginal likelihood in the inner integral, we turn to variational74

inference and learning [Jordan et al., 1999, Wainwright et al., 2008].75

2.2 Connection to variational inference76

Given a latent variable model and any data observation x, a central task in Bayesian statistics is to77

infer the Bayesian posterior [Jordan, 1999], which we formally view as a conditional distribution78

Q∗
Y |X=x. It is given by79

dQ∗
Y |X=x(y)

dQY (y)
=
p(x|y)
p̂(x)

,

or, using the density q(y) of QY , given by the following conditional density via the familiar Bayes’80

rule,81

q∗(y|x) = p(x|y)q(y)
p̂(x)

=
p(x|y)q(y)∫

Y p(x|y)q(y)ζ(dy)
.

Unfortunately, the true Bayesian posterior is typically intractable, as the (marginal) data likelihood82

in the denominator involves an often high-dimensional integral. Variational inference [Jordan et al.,83

1999, Wainwright et al., 2008] therefore aims to approximate the true posterior by a variational84

distribution QY |X=x ∈ P(Y) by minimizing their relative divergence H(QY |X=x|Q∗
Y |X=x). The85

problem is equivalent to maximizing the following lower bound on the marginal log-likelihood,86

known as the Evidence Lower BOund (ELBO) [Blei et al., 2017]:87

argmin
QY |X=x

H(QY |X=x|Q∗
Y |X=x) = argmax

QY |X=x

ELBO(QY , x,QY |X=x),

ELBO(QY , x,QY |X=x) = Ey∼QY |X=x
[log p(x|y)]−H(QY |X=x|QY)

= log p̂(x)−H(QY |X=x|Q∗
Y |X=x). (18)

Translating the definition of the rate functional (5) into the present scenario,88

LBA(QY) = inf
QY |X

Ex∼PX ,y∼QY |X=x
[− log p(x|y)] + Ex∼PX

[H(QY |X=x|QY)] + const

= inf
QY |X

Ex∼PX
[−ELBO(QY , x,QY |X=x)] + const, (19)

we recognize that the rate functional optimizes the population ELBO, and this optimization problem89

decouples over x and can be solved by the variational inference problem (18) involving QY |X=x.90

At optimality, QY |X = Q∗
Y |X , the ELBO (18) is tight and recovers log p̂(x), and the rate functional91

takes on the form of a (negated) population marginal log likelihood (17), as given earlier by (6) in92

Sec. 2.1.93

3

2.3 Connection to variational EM94

The discussion so far concerns probabilistic inference, where a latent variable model (QY , p(x|y))95

has been given and we saw that computing the rate functional amounts to variational inference.96

Suppose now we wish to learn a model from data. The R-D problem (4) then corresponds to model97

estimation using the variational EM algorithm [Beal and Ghahramani, 2003].98

To estimate a latent variable model by (approximate) maximum-likelihood, the variational EM99

algorithm maximizes the population ELBO100

Ex∼PX
[ELBO(QY , x,QY |X=x)] = Ex∼PX ,y∼QY |X=x

[log p(x|y)]− Ex∼PX
[H(QY |X=x|QY)],

(20)

w.r.t. QY and QY |X . This precisely corresponds to the R-D problem infQY ∈H LBA(QY), using the101

form of LBA(QY) from (19).102

In popular implementations of variational EM such as the VAE [Kingma and Welling, 2013], QY and103

QY |X are restricted to parametric families. When they are allowed to range over all of P(Y) and all104

conditional distributions, variational EM then becomes equivalent to the BA algorithm.105

2.4 The Blahut–Arimoto and EM algorithms106

The BA and EM algorithms share the same objective function, namely the negative of the population107

ELBO from (20). Both also perform coordinate descent / alternating projection, but they define the108

coordinates slightly differently — the BA algorithm uses (QY |X , QY) with QY ∈ P(Y), whereas109

the EM algorithm uses (QY |X , θ) with θ indexing a parametric family H = {Qθ
Y : θ ∈ Θ}. Thus110

the coordinate update w.r.t. QY |X (the “E-step”) is the same in both algorithms, but the subseuquent111

“M-step” potentially differs depending on the role of θ.112

Given the optimization objective,113

Ex∼PX ,y∼QY |X=x
[− log p(x|y)] +H(PXQY |X |PX ⊗QY),

both the BA and EM algorithms optimize the transition kernel QY |X the same way in the E-step, as114

dQ∗
Y |X=x

dQY
(y) =

p(x|y)
p(x)

. (21)

For the M-step, the BA algorithm performs115

min
QY ∈P(Y)

H(PXQ
∗
Y |X ;PX ⊗QY),

whereas the EM algorithm minimizes the full objective w.r.t. the parameters θ of QY ,116

min
θ∈Θ

E(x,y)∼PXQ∗
Y |X

[− log p(x|y)] +H(PXQ
∗
Y |X ;PX ⊗QY). (22)

The difference comes from the fact that when we parameterize QY by θ in the parameter estimation117

problem, Q∗
Y |X — and consequently both terms in the objective of (22) — will have functional118

dependence on θ through the E-step optimality condition (21).119

In the Gaussian mixture example,QY =
∑K

k=1 wkδµk
, and its parameters θ consist of the components120

weights (w1, ..., wK) ∈ ∆d−1 and location vectors {µ1, ..., µK} ⊂ Rd. The E-step computes121

Q∗
Y |X=x =

∑
k wk

p(x|µk)
p(x) δµk

. For the M-step, if we regard the locations as known so that θ =122

(w1, ..., wK) only consists of the weights, then the two algorithms perform the same update; however123

if θ also includes the locations, then the M-step of the EM algorithm will not only update the weights as124

in the BA algorithm, but also the locations, due to the distortion term E(x,y)∼PXQ∗
Y |X

[− log p(x|y)] =125

−
∫ ∑

k wk
p(x|µk)
p(x) log p(x|µk)PX(dx).126

3 Wasserstein gradient descent127

3.1 Wasserstein gradient for the rate functional128

Below we compute the Wasserstein gradient of LBA(ν) =
∫
− log

∫
exp(−λρ(x, y))ν(dy)µ(dx).129

Under sufficient integrability on µ and ν to exchange the order of limit and integral, we can calculate130

4

the first variation as131

lim
ε→0

L((1− ε)ν + εν̃)− L(ν)
ε

= −
∫

lim
ε→0

1

ε
log

[∫
exp(−λρ(x, y))(ν + ε(ν̃ − ν))(dy)∫

exp(−λρ(x, y))ν(dy)

]
µ(dx)

= −
∫

lim
ε→0

1

ε
log

[
1 +

∫
exp(−λρ(x, y))ε(ν̃ − ν)(dy)∫

exp(−λρ(x, y))ν(dy)

]
µ(dx)

=

∫∫
− exp(−λρ(x, y))∫

exp(−λρ(x, ỹ))ν(dỹ)
µ(dx) (ν̃ − ν)(dy),

where the last equality uses limε→0
1
ε log(1 + εx) = x and Fubini’s theorem. Thus the first variation132

ψν of LBA at ν is133

ψν(y) =

∫
− exp(−λρ(x, y))∫

exp(−λρ(x, ỹ))ν(dỹ)
µ(dx). (23)

To find the desired Wasserstein gradient of LBA, it remains to take the Euclidean gradient of ψν , i.e.,134

∇LBA(ν) = ∇ψν .135

3.2 Proof of Lemma 4.2 (convergence of Wasserstein gradient descent)136

We first provide an auxiliary result.137

Lemma 3.1. Let γ1 ≥ γ2 ≥ · · · ≥ 0 and at ≥ 0, t ∈ N, C > 0 satisfy
∑∞

t=1 γt = ∞,
∑∞

t=1 γ
2
t <138

∞,
∑∞

t=1 atγt <∞ and |at − at+1| ≤ Cγt for all t ∈ N. Then limt→∞ at = 0.139

Proof. The conclusion remains unchanged when rescaling at by the constant C, and thus without140

loss of generality C = 1.141

Clearly γt → 0 as
∑∞

t=1 γ
2
t <∞. Moreover, there exists a subsequence of (at)t∈N which converges142

to zero (otherwise there exists δ > 0 such that at ≥ δ > 0 for all but finitely many t, contradicting143 ∑∞
t=1 γtat <∞).144

Arguing by contradiction, suppose that the conclusion fails, i.e., that there exists a subsequence of145

(at)t∈N which is uniformly bounded away from zero, say at ≥ δ > 0 along that subsequence. Using146

this subsequence and the convergent subsequence mentioned above, we can construct a subsequence147

ai1 , ai2 , ai3 , . . . where ain ≈ 0 for n odd and ain ≥ δ for n even. We will show that148

i2n∑
t=i2n−1

atγt ≳ δ2/2 for all n ∈ N,

contradicting the finiteness of
∑

t γtat. (The notation ≈ (≳) indicates (in)equality up to additive149

terms converging to zero for n→ ∞.)150

To ease notation, fix n and set m = i2n−1 and M = i2n. We show that
∑M

t=m atγt ≳ δ2/2. To this151

end, using |at − at+1| ≤ γt we find152

at ≥ aM −
M−1∑
j=k

γj ≥ δ −
M−1∑
j=k

γj .

Since am ≈ 0, there exists a largest n0 ∈ N, n0 ≥ m, such that
∑M−1

j=n0
γj ≳ δ (and thus153 ∑M−1

j=n0
γj ≲ δ − γn0

≈ δ as well). We conclude154

M∑
t=m

γtat ≥
M∑

t=n0

γtat ≥
M∑

t=n0

γt

δ − M−1∑
j=k

γj

 ≳ δ2 −
M∑

t=n0

M∑
j=n0

γtγj1{j≥k}

= δ2 − 1

2

(
M∑

t=n0

γt

)2

− 1

2

M∑
t=n0

γ2t ≈ δ2/2,

where we used that
∑M

t=n0
γ2t ≈ 0. This completes the proof.155

5

Proof of Lemma 4.2. Using the linear approximation property in (15), we calculate156

L(ν(n))− L(ν(0)) =
n−1∑
t=0

L(ν(t+1))− L(ν(t))

=

n−1∑
t=0

−γt
∫

∥∇VL(ν(t))∥2 dν(t) + γ2t o

(∫
∥∇VL(ν(t))∥2 dν(t)

)
.

As L(ν0) is finite and L(ν(n)) is bounded from below, it follows that157

∞∑
t=0

γt

∫
∥∇VL(ν(t))∥2 dν(t) <∞.

The claim now follow by applying Lemma 3.1 with at =
∫
∥∇ψν(t)∥2 dν(t); note that the assumption158

in the lemma is satisfied due to the second inequality in (15).159

3.3 Proof of Proposition 4.3 (sample complexity)160

Recall that X = Y = Rd and ρ(x, y) = ∥x− y∥2 in this proposition. For the proof, we will need the161

following lemma which is of independent interest. We write ν ≤c µ if ν is dominated by µ in convex162

order, i.e.,
∫
f dν ≤

∫
f dµ for all convex functions f : Rd → R.163

Lemma 3.2. Let µ have finite second moment. Given ν ∈ P(Rd), there exists ν̃ ∈ P(Rd) with164

ν̃ ≤c µ and165

LEOT (µ, ν̃) ≤ LEOT (µ, ν).

This inequality is strict if ν ̸≤cµ. In particular, any optimizer ν∗ of (8) satisfies ν∗ ≤c µ.166

Proof. Because this proof uses disintegration over Y , it is convenient to reverse the order of the167

spaces in the notation and write a generic point as (x, y) ∈ Y × X . Consider π ∈ Π(ν, µ) and its168

disintegration π = ν(dx)⊗K(x, dy) over x ∈ Y . Define T : Rd → Rd by169

T (x) :=

∫
y K(x, dy).

Define also π̃ := (T, id)#π and ν̃ := π̃1. From the definition of T , we see that π̃ is a martingale,170

thus ν̃ ≤c µ. Moreover, ν̃ ⊗ µ = (T, id)#ν ⊗ µ. The data-processing inequality now shows that171

H(π̃|ν̃ ⊗ µ) ≤ H(π|ν ⊗ µ).

On the other hand,
∫
∥
∫
ỹ K(x, dỹ) − y∥2K(x, dy) ≤

∫
∥x − y∥2K(x, dy) since the barycenter172

minimizes the squared distance, and this inequality is strict whenever x ̸=
∫
ỹK(x, dỹ). Thus173 ∫

∥x− y∥2 π̃(dx, dy) ≤
∫

∥x− y∥2 π(dx, dy),

and the inequality is strict unless T (x) = x for ν-a.e. x, which in turn is equivalent to π being a174

martingale. The claims follow.175

Proof of Proposition 4.3. Subgaussianity of the optimizer follows directly from Lemma 3.2.176

Recalling that infν LEOT (ν) and infν λ
−1LBA(ν) have the same values and minimizers, it suffices177

to show the claim for L = LEOT . Let ν∗ be an optimizer of (8) and νn its empirical measure from n178

samples, then clearly179 ∣∣∣∣ min
νn∈Pn(Rd)

LEOT (µ, νn)− min
ν∈P(Rd)

LEOT (µ, ν)

∣∣∣∣ = min
νn∈Pn(Rd)

LEOT (µ, νn)− min
ν∈P(Rd)

LEOT (µ, ν)

≤ E [|LEOT (µ, ν
n)− LEOT (µ, ν

∗)|]

where the expectation is taken over samples for νn. The first inequality of Proposition 4.3 now180

follows from the sample complexity result for entropic optimal transport in [Mena and Niles-Weed,181

2019, Theorem 2].182

6

Denote by ν∗m the optimizer for the problem (8) with µ replaced by µm. Similarly to the above, we183

obtain184

E
[∣∣∣∣ min

ν∈P(Rd)
LEOT (µ, ν)− min

ν∈P(Rd)
LEOT (µ

m, ν)

∣∣∣∣]
≤ E

[
max

ν∈{ν∗,ν∗
m}

|LEOT (µ, ν)− LEOT (µ
m, ν)|

]
,

where the expectation is taken over samples from µm. In this situation, we cannot directly apply185

[Mena and Niles-Weed, 2019, Theorem 2]. However, the bound given by [Mena and Niles-Weed,186

2019, Proposition 2] still applies, and the only dependence on ν ∈ {ν∗, ν∗m} is through their187

subgaussianity constants. By Lemma 3.2, these constants are bounded by the corresponding constants188

of µ and µm. Thus, the arguments in the proof of [Mena and Niles-Weed, 2019, Theorem 2] can be189

applied, yielding the second inequality of Proposition 4.3.190

The final inequality of Proposition 4.3 follows from the first two inequalities (the first one being191

applied with µm) and the triangle inequality, where we again use the arguments in the proof of192

[Mena and Niles-Weed, 2019, Theorem 2] to bound the expectation over the subgaussianity constants193

of µm.194

4 Example implementation of WGD195

We provide a self-contained minimal implementation of Wasserstein gradient descent on LBA, using196

the Jax library [Bradbury et al., 2018]. To compute the Wasserstein gradient, we evaluate the first197

variation of the rate functional in compute_psi_sum according to (23), yielding
∑n

i=1 ψ
ν(xi), then198

simply take its gradient w.r.t. the particle locations x1,...n using Jax’s autodiff tool on line 51.199

The implementation of WGD on LEOT is similar, except the first variation is computed using200

Sinkhorn’s algorithm. Both versions can be easily just-in-time compiled and enjoy GPU acceleration.201

1 # Wasserstein GD on the rate functional L_{BA}.
2 import jax.numpy as jnp
3 import jax
4 from jax.scipy.special import logsumexp
5

6 # Define the distortion function \rho.
7 squared_diff = lambda x, y: jnp.sum((x - y) ** 2)
8 pairwise_distortion_fn = jax.vmap(jax.vmap(squared_diff, (None, 0)), (0, None))
9

10

11 def wgrad(mu_x, mu_w, nu_x, nu_w, rd_lambda):
12 """
13 Compute the Wasserstein gradient of the rate functional, which we will use
14 to move the \nu particles.
15 :param mu_x: locations of \mu atoms.
16 :param mu_w: weights of \mu atoms.
17 :param nu_x: locations of \nu atoms.
18 :param nu_w: weights of \nu atoms.
19 :param rd_lambda: R-D tradeoff hyperparameter.
20 :return:
21 """
22

23 def compute_psi_sum(nu_x):
24 """
25 Here we compute a surrogate loss based on the first variation \psi, which
26 allows jax autodiff to compute the desired Wasserstein gradient.
27 :param nu_x:
28 :return: psi_sum = \sum_i \psi(nu_x[i])
29 """
30 C = pairwise_distortion_fn(mu_x, nu_x)

7

31 scaled_C = rd_lambda * C # [m, n]
32 log_nu_w = jnp.log(nu_w) # [1, n]
33

34 # Solve BA inner problem with a fixed nu.
35 phi = - logsumexp(-scaled_C + log_nu_w, axis=1, keepdims=True) # [m, 1]
36 loss = jnp.sum(mu_w * phi) # Evaluate the rate functional. Eq (6) in paper.
37

38 # Let's also report rate and distortion estimates (discussed in Sec. 4.4 of the paper).
39 # Find \pi^* via \phi
40 pi = jnp.exp(phi - scaled_C) * jnp.outer(mu_w, nu_w) # [m, n]
41 distortion = jnp.sum(pi * C)
42 rate = loss - rd_lambda * distortion
43

44 # Now evaluate \psi on the atoms of \nu.
45 phi = jax.lax.stop_gradient(phi)
46 psi = - jnp.sum(jnp.exp(jax.lax.stop_gradient(phi) - scaled_C) * mu_w, axis=0)
47 psi_sum = jnp.sum(psi) # For computing gradient w.r.t. each nu_x atom.
48 return psi_sum, (loss, rate, distortion)
49

50 # Evaluate the Wasserstein gradient, i.e., \nabla \psi, on nu_x.
51 psi_prime, loss = jax.grad(compute_psi_sum, has_aux=True)(nu_x)
52 return psi_prime, loss
53

54

55 def wgd(X, n, rd_lambda, num_steps, lr, rng):
56 """
57 A basic demo of Wasserstein gradient descent on a discrete distribution.
58 :param X: a 2D array [N, d] of data points defining the source \mu.
59 :param n: the number of particles to use for \nu.
60 :param rd_lambda: R-D tradeoff hyperparameter.
61 :param num_steps: total number of gradient updates.
62 :param lr: step size.
63 :param rng: jax random key.
64 :return: (nu_x, nu_w), the locations and weights of the final \nu.
65 """
66 # Set up the source measure \mu.
67 m = jnp.size(X, 0)
68 mu_x = X
69 mu_w = 1 / m * jnp.ones((m, 1))
70 # Initialize \nu atoms using random training samples.
71 rand_idx = jax.random.permutation(rng, m)[:n]
72 nu_x = X[rand_idx] # Locations of \nu atoms.
73 nu_w = 1 / n * jnp.ones((1, n)) # Uniform weights.
74 for step in range(num_steps):
75 psi_prime, (loss, rate, distortion) = wgrad(mu_x, mu_w, nu_x, nu_w, rd_lambda)
76 nu_x -= lr * psi_prime
77 print(f'step={step}, loss={loss:.4g}, rate={rate:.4g}, distortion={distortion:.4g}')
78

79 return nu_x, nu_w
80

81

82 if __name__ == '__main__':
83 # Run a toy example on 2D Gaussian samples.
84 rng = jax.random.PRNGKey(0)
85 X = jax.random.normal(rng, [10, 2])
86 nu_x, nu_w = wgd(X, n=4, rd_lambda=2., num_steps=100, lr=0.1, rng=rng)

8

5 Further experimental results202

Our deconvolution experiments were run on Intel(R) Xeon(R) CPUs, while the rest of the experiments203

were run on Titan RTX GPUs.204

In most experiments, we use the Adam [Kingma and Ba, 2015] optimizer for updating the ν particle205

locations in WGD and for updating the variational parameters in other methods. For our hybrid206

WGD algorithm, which adjusts the particle weights in addition to their locations, we found that207

applying momentum to the particle locations can in fact slow down convergence, and therefore use208

plain gradient descent with a decaying step size.209

5.1 Deconvolution210

Loss curves and solutions from various methods. In Figure 1 we plot both the training and test211

losses for the various methods. The test losses are evaluated on freshly drawn samples from the212

source distribution, and provide estimates of the true population losses. As expected, the train losses213

appear similar to the test losses since we use a large sample size for training.214

In Figure 2, we visualize the fitted ν measure after performing the optimization illustrated in Figure 1.215

We plot the location of the n = 20 particles from the BA, WGD, and hybrid algorithms, additionally216

coloring the particles from BA and the hybrid algorithm by their weights. To visualize the (continuous)217

ν learned by RD-VAE and NERD, we plot a scatter of 300 random samples drawn from each.218

Characterizing the optimal solution. In the deconvolution problem, µ = S ∗ N (0, σ2I), and219

whenever λ ≥ 1
σ2 the optimal solution to the R-D problem (3) is given by ν∗ = S ∗ N (0, σ2 − 1

λ)220

and K∗(x, dy) = N (x, 1
λ). This follows from a basic property of the Gaussian distribution and an221

argument based on characteristic functions.222

Knowing the optimal ν∗, we can therefore numerically compute the optimal loss,223

OPT := LBA(ν
∗) =

∫
X
− log

(∫
Y
e−λρ(x,y)ν∗(dy)

)
µ(dx), (24)

using the plug-in Monte Carlo estimator224

1

m

m∑
i=1

− log

 1

n

n∑
j=1

e−λρ(xi,yj)

 , (25)

where x1,...,m are drawn from µ and y1,...,n from ν∗. To reduce the bias of this estimator (also225

discussed in the context of NERD in Sec. 3.2), we use m = 10000 and the very large n = 106 in our226

Monte-Carlo estimation above.227

Similarly, we can sample {(xi, yi)}mi=1 from ν∗ ⊗K∗ to compute the ground truth distortion and228

rate with high accuracy as follows,229

D =
1

m

m∑
i=1

ρ(xi, yi),

R = OPT − λD.

We can thus obtain the segment of the ground truth R(D) where λ ≥ 1
σ2 .230

R-D upper bounds. We rerun the various algorithms with λ ∈ {1, 3, 10, 30, 100, 300} to produce231

upper bounds on R(D), and plot the results in Figure 3-Right. We observe that WGD gives the232

tightest upper bound out of all the methods (the hybrid WGD algorithm produces overlapping curves233

and is omitted for clarity). As we increase n to 50 and 1000 (Figure 3-Middle, Left), the various234

methods increase linearly in their computational complexity (except for RD-VAE, which used a235

fixed architecture and didn’t benefit noticeably from further increase in its neural network sizes), and236

eventually give qualitatively similar R-D upper bounds that generally agree with the true R(D). Note237

that in large scale problems (e.g., those considered in Sec. 5.3), we are much more likely to operate238

in the “small n” regime due to computational constraints.239

9

101 102 103 104

Iteration

2.5

2.6

2.7

2.8

2.9

3.0

L
os

s

Blahut–Arimoto

WGD (proposed)

Hybrid algorithm (proposed)

Yang & Mandt (2022)

Lei et al. (2023)

OPT

101 102 103 104

Iteration

2.5

2.6

2.7

2.8

2.9

3.0

L
os

s

Blahut–Arimoto

WGD (proposed)

Hybrid algorithm (proposed)

Yang & Mandt (2022)

Lei et al. (2023)

OPT

Figure 1: Left: The objective functions of the various methods across training iterations. Right:
The same objective functions evaluated on random empirical measures of the source. The curve for
each method is averaged over 5 reruns with different random seeds, with the shading corresponding
to one standard deviation. The proposed WGD algorithms (orange, green) converge quickly to
the theoretically optimal value OPT (cyan). BA [Blahut, 1972, Arimoto, 1972] (blue) converges
quickly to a highly suboptimal solution, while the RD-VAE [Yang and Mandt, 2022] (red) converges
more slowly, also to an inferior solution. NERD [Lei et al., 2023] (purple) fails to converge due
to inaccuracy of its Monte-Carlo estimator when n is relatively small (see discussion in Sec. 3.2),
leading to oscillating objective values.

−1 0 1 2

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

λ = 10.0

Blahut–Arimoto

WGD (proposed)

Hybrid WGD (proposed)

Yang & Mandt (2022)

Lei et al. (2023)

−1 0 1 2

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

λ = 2.0

Blahut–Arimoto

WGD (proposed)

Hybrid WGD (proposed)

Yang & Mandt (2022)

Lei et al. (2023)

Figure 2: Visualizing the optimized ν measures from various algorithms. Left: λ = 10 = 1
σ2 ,

the same as in Fig. 1. Here ν∗ is precisely the uniform distribution on the unit circle, colored in
cyan. The proposed WGD algorithm places almost all its ν atoms (green crosses) exactly on the
circle. The proposed hybrid algorithm occasionally places atoms off the circle, and assigns them
lower weights (orange stars) than the ones on the circle (red stars). This extra flexibility explains its
faster convergence compared to the plain WGD algorithm seen in Fig. 1, while achieving the same
optimized loss close to OPT . The BA algorithm is stuck with the randomly initialized set of ν atoms
(blue) and can only manage to assign higher weights to atoms closer to the unit circle. RD-VAE
and NERD have difficulty learning the true ν∗, as seen from the misplaced samples of ν from the
two methods (faint red dots for RD-VAE and purple squares for NERD, respectively). Right: We
repeat the experiment but with λ = 2. ν∗ is now uniform on a circle with a smaller radius. The
algorithms maintain their respective behavior from the λ = 10 case, with the BA, RD-VAE, and
NERD algorithms failing to recover the support of ν∗. As λ → 0, ν∗ shrinks towards the mean of
µ (the origin in this case), making it exceedingly difficult for the BA algorithm with a randomly
discretized Y-space to locate the true support of ν∗.

10

0.00 0.25 0.50

0

1

2

3

4

5

R
at

e
(n

at
s

p
er

sa
m

pl
e)

n = 1000

Blahut–Arimoto R̂U(D)

Yang & Mandt R̂U(D)

Lei et al. R̂U(D)

Proposed WGD R̂U(D)

True R(D)

0.00 0.25 0.50
Distortion (1/2 squared error)

n = 50

0.00 0.25 0.50

n = 20

Figure 3: Final R-D upper bounds for the source µ = S ∗ N (0, 0.1I) in the maximum-likelihood
deconvolution problem (Sec. 5.2), with different settings of n for BA [Blahut, 1972, Arimoto, 1972],
NERD [Lei et al., 2023], and the WGD algorithm. The result using the hybrid WGD algorithm
(Sec. 4.2) overlaps with that of WGD, hence is omitted for better readability. The ground truth R(D)
is known analytically for λ ≥ 1

σ2 and computed numerically (see discussion in the text), and is drawn
in cyan. The RD-VAE upper bound (orange; the same in each subplot) agrees fairly well with the
true R(D) except for some looseness when the distortion is between 0.1 and 0.25. Left: when the
number of particles is large (n = 1000), BA, WGD, and NERD give similarly R-D upper bound
estimates close to the true R(D). Middle: as we allow ourselves to use fewer particles, e.g., n = 50,
the bounds from BA, WGD, and NERD start to deviate from the true R(D), with WGD appearing
the least affected out of the three. Right: as we decrease n further to 20, WGD still mostly preserves
the true R(D), while BA and NERD shows much larger deviation.

11

References240

Erhan Çinlar. Probability and stochastics, volume 261. Springer, 2011.241

Gerald B Folland. Real analysis: modern techniques and their applications, volume 40. John Wiley242

& Sons, 1999.243

Yury Polyanskiy and Yihong Wu. Lecture notes on information theory. Lecture Notes for ECE563244

(UIUC) and, 6(2012-2016):7, 2014.245

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.246

Journal of the American statistical Association, 112(518):859–877, 2017.247

MJ Beal and Z Ghahramani. The variational bayesian em algorithm for incomplete data: with248

application to scoring graphical model structures. Bayesian statistics, 7(453-464):210, 2003.249

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data250

via the em algorithm. Journal of the royal statistical society: series B (methodological), 39(1):251

1–22, 1977.252

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to253

variational methods for graphical models. Machine learning, 37:183–233, 1999.254

Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families, and variational255

inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305, 2008.256

Michael Irwin Jordan. Learning in graphical models. MIT press, 1999.257

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint258

arXiv:1312.6114, 2013.259

Gonzalo Mena and Jonathan Niles-Weed. Statistical bounds for entropic optimal transport: sample260

complexity and the central limit theorem. Advances in Neural Information Processing Systems, 32,261

2019.262

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal263

Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and264

Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL265

http://github.com/google/jax.266

Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic gradient descent. In267

International Conference on Learning Representations, 2015.268

R. Blahut. Computation of channel capacity and rate-distortion functions. IEEE Transactions on269

Information Theory, 18(4):460–473, 1972. doi: 10.1109/TIT.1972.1054855.270

Suguru Arimoto. An algorithm for computing the capacity of arbitrary discrete memoryless channels.271

IEEE Transactions on Information Theory, 18(1):14–20, 1972.272

Yibo Yang and Stephan Mandt. Towards empirical sandwich bounds on the rate-distortion function.273

In International Conference on Learnning Representations, 2022.274

Eric Lei, Hamed Hassani, and Shirin Saeedi Bidokhti. Neural estimation of the rate-distortion275

function with applications to operational source coding. IEEE Journal on Selected Areas in276

Information Theory, 2023.277

12

http://github.com/google/jax

	Notions from probability theory
	R-D estimation and variational inference/learning
	Setup
	Connection to variational inference
	Connection to variational EM
	The Blahut–Arimoto and EM algorithms

	Wasserstein gradient descent
	Wasserstein gradient for the rate functional
	Proof of Lemma 4.2 (convergence of Wasserstein gradient descent)
	Proof of Proposition 4.3 (sample complexity)

	Example implementation of WGD
	Further experimental results
	Deconvolution

