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A Implementation Details

A.1 Datasets and Classifiers

The datasets and DNN models used in our experiments are summarized in Table 4.

Table 4: Detailed information of the datasets and classifiers used in our experiments.

Dataset Labels Input Size Training Images Classifier
CIFAR-10 10 32 x 32 x 3 50000 WideResNet-16-1
GTSRB 43 32 x 32 x 3 39252 WideResNet-16-1

ImageNet subset 12 224 x 224 x 3 12406 ResNet-34

A.2 Attack Details

We trained backdoored model for 100 epochs using Stochastic Gradient Descent (SGD) with an initial
learning rate of 0.1 on CIFAR-10 and the ImageNet subset (0.01 on GTSRB), a weight decay of 10−4,
and a momentum of 0.9. The learning rate was divided by 10 at the 20th and the 70th epochs. The
target labels of backdoor attacks were set to 0 for CIFAR-10 and ImageNet, and 1 for GTSRB. Note
that the implementation of the Dynamic attack proposed in the original paper is different from the
traditional settings of data poisoning. We used their pre-trained generator model to create a poisoned
training dataset to train the backdoored model on. We did not use any data augmentation techniques
to avoid side-effects on the ASR. The details of backdoor triggers are summarized in Table 5.

Table 5: Attack settings of 6 backdoor attacks. ASR: attack success rate; CA: clean accuracy.

Attacks Trigger Type Trigger Pattern Target Label Poisoning Rate
BadNets Fixed Grid 0, 1 10%
Trojan Fixed Reversed Watermark 0, 1 10%
Blend Fixed Random Pixel 0, 1 10%

Dynamic Varied Mask Generator 0, 1 10%
SIG Fixed Sinusoidal Signal 0, 1 10%
CL Fixed Grid and PGD Noise 0, 1 10%
FC Fixed Optimization-based source 1, target 0 10%

DFST Fixed Style Generator 0 10%
LBA Fixed Optimization-based 0 10%
CBA Varied Mixer Construction 0 10%

A.3 Defense Details

For Fine-pruning (FP)*, we pruned the last convolutional layer of the model until the CA of the
network became lower than that of the other defense baselines. For model connectivity repair (MCR)†,
we trained the loss curve for 100 epochs using the backdoored model as an endpoint and evaluated the
defense performance of the model on the loss curve. We adopted the open-source code‡ used in NAD
and finetuned the backdoored student network for 10 epochs with 5% of clean data. The distillation
parameter β for CIFAR-10 was set to be identical to the value given in the original paper. We
cautiously selected the β value for GTSRB and ImageNet to achieve the best trade-off erasing results
between ASR and CA. All these defense methods were trained using the same data augmentation
techniques, i.e., random crop (padding = 4), horizontal flipping, and Cutout (1 patch with 9 length).

For our ABL defense, we trained the model for 20 epochs with a learning rate of 0.1 on CIFAR-10
and ImageNet subset (0.01 on GTSRB) before the turning epoch. After isolating 1% of potential
backdoor examples, we further trained the model for 60 epochs on the full training dataset (this helps
recover the model’s clean accuracy), and in the last 20 epochs, we trained the model using the LGGA

loss with the 1% isolated backdoor examples and a learning rate of 0.0001. Note that for ABL, the

*https://github.com/kangliucn/Fine-pruning-defense
†https://github.com/IBM/model-sanitization/tree/master/backdoor/backdoor-cifar
‡https://github.com/bboylyg/NAD
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data augmentations are only used for the mid-stage of 60 epochs, which can help improve clean
accuracy.

All experiments were run on a hardware equipped with a RTX 3080 GPU and an i7 9700K CPU.

A.4 Details of Alternative Isolation and Unlearning Methods

For the two explored isolation methods, i.e., the flooding loss and the label smoothing, we set the
flooding level to 0.5 and the smoothing value to 0.2 and 0.4, respectively. The explored unlearning
methods are defined as follows:

• Pixel Noise. This method randomly adds Gaussian noise to D̂b then trains the model on the
resulting dataset D̂∗

b ∪ D̂c.

• Grad Noise. This method adds Gaussian noise to D̂b at the quarter quantile with the largest gradient
then trains the model on the resulting dataset D̂∗

b ∪ D̂c.

• Label Shuffling. This method applies a random permutation on the labels of examples from D̂b

then trains the model on the resulting dataset D̂∗
b ∪ D̂c.

• Label Uniform. This method corrupts the labels in D̂b with an uniform random class then trains
the model on the resulting dataset D̂∗

b ∪ D̂c.

• Label Smoothing. This method decreases the confidence of the original one-hot labels in the D̂b

then trains the model on the resulting dataset D̂∗
b ∪ D̂c.

• Self-learning. This method relabels D̂b with the model trained from scratch on D̂c, then trains the
model on the resulting dataset D̂∗

b ∪ D̂c.

• Finetuning All Layers. This method finetunes all layers of the backdoored model on D̂c.

• Finetuning Last Layers. This method finetunes the last flatten layer of the backdoored model on
D̂c.

• Finetuning ImageNet Model. This method finetunes the last block of a pre-trained ImageNet
model (i.e., Resnet-34) on D̂c.

• Re-training from Scratch. This method retrains a model from scratch on D̂c.

A.5 Examples of Backdoor Triggers

Figure 5 shows some backdoor examples used in our experiments.

B More Experimental Results

B.1 Training Loss under Different Poisoning Rates

Figure 6 shows the training loss for the BadNets attack under three different poisoning rates, i.e., 1%,
5%, and 10%. It is evident that the higher the poisoning rate, the faster the training loss declines on
backdoor examples.

B.2 Training Loss on More Datasets

Figure 10 show the results of the training loss on both clean and backdoor examples on GTSRB and
ImageNet subset.

B.3 Comparison of training data detection

We compared our ABL to two state-of-the-art backdoor data detection methods: Activation Cluster
(AC) and Spectral Signature Analysis (SSA). We reproduce these two methods using the open source
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Figure 5: Backdoored images by different attacks for CIFAR-10, GTSRB, and ImageNet.
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Figure 6: Training loss of BadNets with poisoning
rates of 1%, 5%, and 10% on CIFAR-10.
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Figure 7: Detection precision (TP/(TP + FP ))
of the 1% isolated backdoor examples by our ABL
and two other state-of-the-art backdoor detection
methods: Activation Cluster (AC) and Spectral
Signature Analysis (SSA).
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Figure 8: Performance of flooding loss based isolation against 4 backdoor attacks on CIFAR-10.
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Figure 9: Performance of label smoothing based isolation against 4 backdoor attacks on CIFAR-10.
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(a) BadNets(ASR: 100%)
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(b) Trojan(ASR: 99.80%)
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(c) Blend(ASR: 100%)
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(d) BadNets(ASR: 100%)
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(e) Trojan(ASR: 100%)
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Figure 10: The training loss of ResNet models on GTSRB (top row) and the ImageNet subset
(bottom row) under a poisoning rate 10%. WideResNet-16-1/ResNet-34 are used for GTSRB/the
ImageNet subset, respectively. ASR: attack success rate. Here, we only tested 3 classic attacks:
BadNets, Trojan, and Blend.

code§ following the default settings suggested in their papers. As can be seen in Figure 7, our ABL
defense achieves the best detection precision against all 6 backdoor attacks on the CIFAR-10 dataset.

B.4 Results of Tuning Epochs

Table 6 shows the performance of our ABL under four different turning epochs: the 10th, the 20th,
the 30th, and the 40th. The best turning epoch is epoch 20 (20% - 30% of the entire training process)
with the best defense results.

Table 6: Performance of our ABL with different tuning epochs on CIFAR-10. The isolation rate for
ABL is set to 1% while the poisoning rate of the 4 attacks is 10%.

Tuning Epoch BadNets Trojan Blend Dynamic
ASR CA ASR CA ASR CA ASR CA

10 1.12% 85.30% 5.04% 85.12% 16.34% 84.22% 25.33% 84.12%
20 3.04% 86.11% 3.66% 87.46% 16.23% 84.06% 18.46% 85.34%
30 3.22% 85.60% 3.81% 87.25% 19.87% 83.83% 20.56% 85.23%
40 4.05% 84.28% 4.96% 85.14% 18.78% 81.53% 19.15% 83.44

§https://github.com/ain-soph/trojanzoo
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B.5 Results of Detection Rate under different γ

Table 7 shows the isolation performances under four different values of γ. We use BadNets with a
poisoning rate 10% as an example attack and run experiments with our ABL on CIFAR-10, GTSRB,
and the ImageNet subset. Table 7 shows the precision of the 1% isolation of backdoor examples. The
isolation is executed at the end of the 20th training epoch with (γ ≥ 0.5) or without (γ = 0) our LGA.
As the table indicates, the isolation precison is extremely low if LGA is not used. Once we select a
γ ≥ 0.5, the precision immediately goes up to 100%, meaning all the isolated backdoor examples are
true backdoor examples. Arguably, adaptive attacks could enforce large loss values to circumvent our
loss threshold γ. Until now however, it is not clear in the current literature how to design such attacks
without manipulating the training procedure. We will leave this question as future work.

Table 7: Detection precision (TP/(TP + FP )) of the 1% isolated examples under different γ, using
BadNets as an example attack.

Dataset γ = 0 γ = 0.5 γ = 1.0 γ = 1.5
CIAFR-10 26% 100% 100% 100%

GTSRB 89% 100% 100% 100%
ImageNet Subset 21% 100% 100% 100%

B.6 Results of Alternative Backdoor Isolation Methods

The flooding loss [36] is a regularization technique to improve model generalization by avoiding
zero training loss. Here, we replace our local gradient ascent (LGA) by the flooding loss to isolate
potential backdoored data while fixing the unlearning method to our global gradient ascent (GGA).
Note the flooding level is set to 0.5. Figure 8 compares the results of flooding loss based defense to
our ABL defense. We find that the two methods achieve a similar performance against 4 backdoor
attacks on CIFAR-10. This indicates that the flooding loss is also capable of isolating backdoored
data, which may be an unexpected benefit of overfitting-mitigation techniques. Our LGA outperforms
the flooding loss against the Blend and the Dynamic attacks in terms of reducing the attack success
rate, though only mildly. We would like to point out that LGA serves only one part of our ABL and
can potentially be replaced by any backdoor detection methods, and the effectiveness of GLA with
1% of isolated data is also a key to the success of ABL.

As label smoothing (LS) can also alleviate the overconfidence output of the deep networks, we also
try to train a model using LS to isolate the examples with higher output confidence levels (often refer
to backdoor examples). The comparison results are shown in Figure 9. Unfortunately, we find that
LS-based defense achieves much poorer ASR performance against the Dynamic, the Trojan, and
the Blend attacks, even with the smoothing value set to 0.4. This might be caused by the similar
confidence distribution between clean and backdoor examples.

B.7 Results of Alternative Backdoor Unlearning Methods

Here, we report the unlearning results of the set of explored unlearning methods under the isolation
rate p = 0.01 (1%). The results are shown in Table 8. It shows that all these unlearning methods
except for our ABL failed to defend against any backdoor attack, with the 100% ASR almost
unchanged. This may be caused by the high ratio of backdoored data (9%) remaining in the potential
clean set D̂c.

B.8 Results of Computational Complexity for ABL

Here, we report the time cost of the isolation operation of our ABL on CIFAR-10 and the ImageNet
subset in Table 9. The additional computational cost is less than 10% and 3% of the standard training
time on CIFAR-10 (∼ 40 minutes for 100 epochs) and the ImageNet subset (∼ 80 minutes for 100
epochs), respectively.
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Table 8: Performance of various unlearning methods against the BadNets attack on CIFAR-10 under
the 1% isolation rate by our ABL.

Backdoor Unlearning Methods Method Type Discard
D̂b

Backdoored After Unlearning
ASR CA ASR CA

Pixel Noise Image-based No 100% 85.43% 100% 84.72%
Grad Noise Image-based No 100% 85.43% 100% 84.63%

Label Shuffling Label-based No 100% 85.43% 99.98% 82.76%
Label Uniform Label-based No 100% 85.43% 99.92% 83.47%

Label Smoothing Label-based No 100% 85.43% 100% 84.71%
Self-Learning Label-based No 100% 85.43% 100% 83.91%

Finetuning All Layers Model-based Yes 100% 85.43% 100% 85.02%
Finetuning Last Layers Model-based Yes 100% 85.43% 100% 67.32%

Finetuning ImageNet Model Model-based Yes 100% 85.43% 100% 73.43%
Re-traing from Scratch Model-based Yes 100% 85.43% 100% 85.24%

ABL (Ours) Model-based No 100% 85.43% 3.04% 86.11%

Table 9: The average time (second) of the isolation operation of ABL on CIFAR10 and the ImageNet
subset; CPU: Intel(R) Core(TM) i5-9400F CPU @ 2.90GHz 2.90 GHz); GPU: 1 NVIDIA GeForce
RTX 1080 TI.

Time Cost CIFAR-10 ImageNet subset
Data Size: 50,000 Data Size: 12,480

BadNets ∼230 s ∼140 s
Trojan ∼228 s ∼140 s
Blend ∼232 s ∼138 s
SIG ∼228 s ∼136 s

B.9 Results of ABL Defense under Low Poisoning Rate (1%)

Table 10 shows the results of ABL with 1% isolated data against the 1% poisoning rate on CIFAR-10
with WRN-16-1. Compared to the 10% poisoning results in Table 1, ABL achieved more ASR
reduction with similar clean ACC against 1% poisoning, as expected.

Table 10: ABL unlearning with 1% isolated data against 1% poisoning rate on CIFAR-10.

Poisoning Rate 1%
BadNets Trojan Blend Dynamic SIG CL

ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC
Baseline 99.52 85.56 97.11 83.46 99.48 83.32 99.87 82.15 62.13 84.01 54.39 83.78

ABL (Ours) 3.01 88.13 3.16 87.56 8.58 84.43 13.36 85.09 0.01 88.78 0 88.54

Table 11: ABL can help unlearn the backdoors from backdoored models on CIFAR-10. ABL
unlearning was applied on 500 trigger patterns reverse-engineered by Neural Cleanse (NC) based on
500 clean training images.

BadNets Trojan Blend SIGDefense ASR ACC ASR ACC ASR ACC ASR ACC
Baseline 100 85.43 100 82.14 100 84.51 100 84.16

NC + ABL Unlearning (Ours) 0.12 85.38 5.33 79.78 1.17 83.11 3.21 80.53

B.10 ABL Unlearning Combined with Neural Cleanse

The threat models of backdoor attacks are mainly classified into three types: a) poisoning the training
data [1, 11, 23], b) poisoning the training data and manipulating the training procedure [18, 34, 31],
or c) directly modifying parameters of the final model [23]. Our threat model refers to the threat
model a), which is one of the widely accepted threat models for backdoor attacks. Different defense
settings benefit different types of users (defenders). Particularly, defenses developed under our threat
model could benefit companies, research institutes, or government agencies who have the resources
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to train their own models but rely on outsourced training data. It also benefits MLaaS (Machine
Learning as a Service) providers such as Amazon ML and SageMaker, Microsoft Azure AI Platform,
Google AI Platform and IBM Watson Machine Learning to help users train backdoor-free machine
learning models. Note that our focus is the traditional machine learning paradigm with a single
dataset and model. Backdoor attacks on federate learning (FL) follow a different setting thus require
different defense strategies [42, 43].

Here, we show that our ABL method can also help other defense settings, where the defender can
only purify a backdoored model with a small subset of clean data (e.g., only 1% clean training data
is available). In this case, ABL can leverage existing trigger pattern detection methods like Neural
Cleanse [4] to reverse engineer a set of trigger patterns, then unlearn the backdoor from the model
via its maximization term (defined on the reverse-engineered trigger patterns and their predicted
labels). Table 11 shows the effectiveness of this simple approach. ABL can effectively and effortlessly
unlearn the trigger from a backdoored model with the reversed trigger patterns. This demonstrates the
usefulness of our ABL in purifying backdoored models, closing the gap between backdoor detection
and backdoor erasing.

B.11 Visualization of the Isolated Backdoor Examples

Figure 11 and Figure 12 show a few examples of those isolated backdoor images under the BadNets
attack on CIFAR-10, with or without our ABL isolation.

Figure 11: Backdoor images isolated without our ABL (γ = 0) under the BadNets attack on CIFAR-
10.

Figure 12: Backdoor images isolated with our ABL (γ = 0.5) under the BadNets attack on CIFAR-10.
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