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A Implementation Details

We train SpkDeblurNet on settings with blur windows e = 33 and e = 65. In the deblurring branch,
the RSTB blocks input with features which have 1

4 size from the input blurry image BH×W×3
e . In

the spike reconstruction branch, the spike stream S
H
2 ×W

2 ×T
e is first down-sampled by a factor of

two through a convolutional layer, so that the spikes and images are of the same size in the feature
domain. All RSTB blocks consist of 6 STB blocks. The values of λ1 and λ2 are set to 1 based on
empirical observations. To prepare the input image and spikes, we utilize the same seed for random
cropping, generating patches of size 256× 256 and 128× 128 respectively. Each GPU processes a
batch size of 8. Data augmentation techniques such as random flipping and rotation are employed.
We use AdamW [3] as the optimizer, setting the learning rate and weight decay to 1e-4. We train
for a total of 1e5 iterations, use a cosine scheduler to schedule the learning rate, and ensure that the
learning rate minimum is not lower than 1e-6. The quantitative metrics employed for evaluation are
peak signal-to-noise ratio (PSNR) and structural similarity (SSIM).

B Datasets Details

For the Spk-X4K1000FPS dataset, we follow the data partitioning scheme of X4K1000FPS [5]. The
training set consists of 4,408 clips of size 768×768, with most clips containing 65 consecutive frames.
The test set comprises 15 sequences of size 512×512, each with varying degrees of occlusion, optical
flow magnitudes, and scene diversity. Each sequence contains 33 frames. We use an interpolation
algorithm [5] to further increase the frame rate fourfold, and select center frames with equal interval
as ground truth. Blurry images with different motion magnitudes are generated by averaging the
surrounding 33 or 65 images. For spike data, we first downsample the interpolated dataset and
then used a spike camera simulator to generate the corresponding spike streams. The photoelectric
transformation coefficient of the simulator is set to 0.5.

For the Spk-GoPro dataset, to address the low frame rate of its original data [4], we applied a frame
interpolation algorithm [5] to increase the frame rate by 8 times. To ensure a fair comparison with
other methods, we utilized GoPro’s native blurred images and ground truth data, as well as maintained
the same data division. Specifically, the training set comprises 2,103 pairs of blurred images and
their corresponding sharp images, both sized at 1, 280 × 720. The test set consists of 1, 111 such
image pairs. Furthermore, since the GoPro dataset generates blurred images by averaging 7-13
consecutive frames, we selected the smallest window size to generate the spike stream. Consequently,
the exposure window for the generated spikes is 56.
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Table S1: Ablation Study of CAMMA on Deblurring with Different Input Representations.

Experiment settings PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
Input Representation CAMMA e = 33 e = 65
CSFI ✘ 35.96 0.956 34.00 0.950
CSFI ✔ 36.08 0.957 34.22 0.950
Cumulated Spikes ✘ 36.00 0.951 33.52 0.935
Cumulated Spikes ✔ 36.34 0.955 34.92 0.955
Spike Streams ✘ 37.20 0.967 35.64 0.965
Spike Streams ✔ 37.42 0.968 35.94 0.966

Table S2: Comparisons between different methods regarding computational complexity.

Method MACs Params Inference Time PSNR (on GoPro)
HINet [2] 170.49 G 88.67 M 20.2 ms 32.71 dB
NAFNet [1] 63.06 G 67.79 M 27.8 ms 33.69 dB
EFNet [6] 107.93 G 7.73 M 14.9 ms 35.46 dB
REFID [7] 4.36 T 88.81 M 781.2 ms 35.91 dB
Ours (e=65) 53.25 G 12.93 M 140.6 ms N/A
Ours (e=33) 53.18 G 12.92 M 107.9 ms N/A
Ours (e=56) 53.23 G 12.93 M 130.1 ms 36.12 dB

C Additional Ablation Studies of CAMMA

Figure S1: The prototype of our hybrid camera
system.

We further conduct ablation studies on different
combinations of three input representations and
the usage of the CAMMA branch for the deblur-
ring task on Spk-X4K1000FPS dataset. As shown
in Tab. S1, we observe that the introduction of
CAMMA also improves the performance of de-
blurring across all settings. The performance gains
range from 0.1 to 1.4 dB. This indicates that our
CAMMA branch enhances the performance of the
deblurring branch by improving the spike branch,
thus demonstrating the effectiveness of the bidirec-
tional complementary approach of the two modal-
ities proposed in this paper.

D Complexity analysis

We have added comparisons regarding computa-
tional complexity and inference time in Tab. S2
(note that the settings for e=33 and e=65 are only
applicable to the Spk-X4K1000FPS dataset). Our
approach achieves a favorable balance between
complexity and performance, as evident from our
results.

E Additional Qualitative Results

E.1 Additional Qualitative Results on Real-World Scenes

Fig. S1 presents our hybrid camera system. More qualitative results on real-world scenes can be
found in Fig. S2. We can find that our method in the third sequence will make the scene darker, and
we attribute it to the spike camera’s sensitivity to ambient light. We will explore this issue in future
research.
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Real-World Blur HINet NAFNet Ours

Figure S2: More Qualitative Results on Real-World Scenes.

E.2 Extend to Blur Decomposition

As mentioned in Sec.3.3 of the main paper, we can extend our algorithm to the blur decomposition
task. Since our algorithm recovers the central scene of the spike stream from the blurry image,
our network can decompose a blurry image into different timestamps by shifting the spike stream
in the temporal axis, and the frame rate of the blur decomposition depends on the frame rate of
the spike stream. The temporal cues provided by the spike stream also mitigate the directional
ambiguity issues [8, 9] commonly encountered in blur decomposition tasks. Fig. S3 illustrates
the blur decomposition results of two sequences under exposure window e = 65, where we can
observe that the blurry image is successfully decomposed into several consecutive and sharp images.
Furthermore, even with slight misalignment in spatial and temporal domains after shifting the spike
stream in the temporal axis, our algorithm is still able to accurately recover the sharp image at the
specified timestamp, which demonstrates the robustness of our algorithm in handling the alignment
problem between the two modalities.

E.3 More Qualitative Results on Synthetic Datasets

In this section, we present additional qualitative results on synthetic datasets. Fig. S4 shows the
qualitative results on Spk-X4K1000FPS, where we also showcase the spike reconstruction results. We
can observe that although state-of-the-art methods such as NAFNet [1] and HINet [2] perform well at
e = 33, their performance significantly deteriorates when e = 65. On the other hand, our method is
able to restore clear textures under both exposure windows. Fig. S5 illustrates the qualitative results
on Spk-GoPro dataset, our method preserves more details. Zoom in to examine more details.
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Blurry image (e = 65) Ground truth at t = 32/65 Result at t = 17/65 Result at t = 20/65 Result at t = 23/65 Result at t = 26/65

Result at t = 29/65 Result at t = 32/65 Result at t = 35/65 Result at t = 38/65 Result at t = 41/65 Result at t = 44/65

Blurry image (e = 65) Ground truth at t = 32/65 Result at t = 17/65 Result at t = 20/65 Result at t = 23/65 Result at t = 26/65

Result at t = 29/65 Result at t = 32/65 Result at t = 35/65 Result at t = 38/65 Result at t = 41/65 Result at t = 44/65

Figure S3: Blur Decomposition Results on Spk-X4K1000FPS Dataset.
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Ground Truth Blurry Image ( e=33 ) NAFNet HINet Spike Reconstruction Ours

Blurry Image ( e=65 ) NAFNet HINet Spike Reconstruction Ours

Ground Truth Blurry Image ( e=33 ) NAFNet HINet Spike Reconstruction Ours

Blurry Image ( e=65 ) NAFNet HINet Spike Reconstruction Ours

Ground Truth Blurry Image ( e=33 ) NAFNet HINet Spike Reconstruction Ours

Blurry Image ( e=65 ) NAFNet HINet Spike Reconstruction Ours

Figure S4: More Qualitative Results on Spk-X4K1000FPS Datasets.
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Blurry Image HINet HINet+

EFNet Ours Ground Truth

Blurry Image HINet HINet+

EFNet Ours Ground Truth

Blurry Image HINet HINet+

EFNet Ours Ground Truth

Figure S5: More Qualitative Results on Spk-GoPro Datasets.
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