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A THEORETICAL ANALYSIS

Our proof follows similar lines to that of Cho et al. (2022) but with modifications based on our
problem formulation of having good and bad clients as well as our different skewness metrics and
local-global objective gap ρg, ρb, and Γg , respectively. To begin, we present some preliminary
lemmas that are useful for the proof of Theorem 1.

A.1 PRELIMINARY LEMMAS

Lemma 1. Assume Fk is L-smooth with global optimum at w∗
k. Then for any wk in the domain of

Fk,

∥∇Fk(wk)∥2 ≤ 2L(Fk(wk)− Fk(w
∗
k)).

Proof. Since Fk is L-smooth,

Fk(wk)− Fk(w
∗
k)− ⟨∇Fk(w∗

k), wk − w∗
k⟩ ≥

1

2L
∥∇Fk(wk)−∇Fk(w∗

k)∥2

and ∇Fk(w∗
k) = 0 since w∗

k is a minimizer, so this implies

Fk(wk)− Fk(w
∗
k) ≥

1

2L
∥∇Fk(wk)∥2

which yields the claim.

Lemma 2. For w(t)
k and w̄(t) = 1

m

∑
k∈S(t)

w
(t)
k ,

1

m
E

 ∑
k∈S(t)

∥w̄(t) − w
(t)
k ∥2

 ≤ 16η2t τ
2G2.

Proof. We have

1

m

∑
k∈S(t)

∥w̄(t) − w
(t)
k ∥2 ≤

∑
k∈S(t)

∥ 1

m

∑
k̃∈S(t)

w
(t)

k̃
− w

(t)
k ∥2 =

1

m2

∑
k∈S(t)

∑
k̃∈S(t)

∥w(t)

k̃
− w

(t)
k ∥2

=
1

m2

∑
k,k̃∈S(t)

k ̸=k̃

∥w(t)

k̃
− w

(t)
k ∥2,

where the inequality follows from ∥
∑n
i=1 xi∥2 ≤ n

∑n
i=1 ∥xi∥2. For k = k̃, the right hand side of

the above inequality is zero. Since the selected clients get updated at every τ for any t there exist t0
such that w(t0)

k̃
= w

(t)
k , where 0 ≤ t − t0 ≤ τ . Hence for any t, ∥w(t)

k̃
− w

(t)
k ∥2 is bounded above

by τ updates. With non-increasing ηt over t and ηt0 ≤ 2ηt, we can write the right hand side of the
above inequality as

1

m2

∑
k,k̃∈S(t)

k ̸=k̃

∥w(t)

k̃
− w

(t)
k ∥2 ≤ 1

m2

∑
k,k̃∈S(t)

k ̸=k̃

∥
t0+τ−1∑
i=t0

ηi

(
gk̃(w

(i)

k̃
, ξ

(i)

k̃
)− g

(i)
k (w

(i)
k , ξ

(i)
k )
)
∥2

≤
η2t0τ

m2

∑
k,k̃∈S(t)

k ̸=k̃

t0+τ−1∑
i=t0

[
2∥
(
gk̃(w

(i)

k̃
, ξ

(i)

k̃
)∥2 + 2∥g(i)k (w

(i)
k , ξ

(i)
k )
)
∥2
]
.
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Taking expectation and applying Assumption 4 gives

E
[ 1

m2

∑
k,k̃∈S(t)

k ̸=k̃

∥w(t)

k̃
− w

(t)
k ∥2

]
≤

2η2t0τ

m2
E

[ ∑
k,k̃∈S(t)

k ̸=k̃

t0+τ−1∑
i=t0

[
∥
(
gk̃(w

(i)

k̃
, ξ

(i)

k̃
)∥2 + ∥g(i)k (w

(i)
k , ξ

(i)
k )
)
∥2
]]

≤ 8η2t τ

m2

∑
k,k̃∈S(t)

k ̸=k̃

t0+τ−1∑
i=t0

(G2 +G2) =
8η2t τ

m2

∑
k,k̃∈S(t)

k ̸=k̃

2τG2

=
8η2t τ

m2
m(m− 1)2τG2 ≤ 16η2t τ

2G2.

Lemma 3. For any random selection strategy, E∥w̄(t) − w∗∥2 has the following upper bound:

E[∥w̄(t) − w∗∥2] ≤ 1

m
E[
∑
k∈S(t)

∥w(t)
k − w∗∥2].

Proof.

E[∥w̄(t) − w∗∥2] = E[∥ 1

m

∑
k∈S(t)

w
(t)
k − w∗∥2] = E[∥ 1

m

∑
k∈S(t)

(w
(t)
k − w∗)∥2]

≤ E[
1

m

∑
k∈S(t)

∥w(t)
k − w∗∥2].

A.2 PROOF OF THEOREM 1

Letting ḡ(t) = 1
m

∑
k∈S(t) gk(w

(t)
k , ξ

(t)
k ), and using the condensed notation ḡk = ḡk(w̄

(t)
k , ξ

(t)
k ) for

simplicity, we have

∥w̄(t+1) − w∗∥2 = ∥w̄(t) − ηtḡ
(t) − w∗∥2

= ∥w̄(t) − ηtḡ
(t) − w∗ − ηt

m

∑
k∈S(t)

∇Fk(w(t)
k ) +

ηt
m

∑
k∈S(t)

∇Fk(w(t)
k )∥2

= ∥w̄(t) − w∗ − ηt
m

∑
k∈S(t)

∇Fk(w(t)
k )∥2 + η2t ∥

1

m

∑
k∈S(t)

(∇Fk(w(t)
k )− ḡ

(t)
k )∥2

+ 2ηt⟨w̄(t) − w∗ − ηt
m

∑
k∈S(t)

∇Fk(w(t)
k ),

1

m

∑
k∈S(t)

(∇Fk(w(t)
k )− ḡ

(t)
k )⟩

= ∥w̄(t) − w∗∥2 − 2ηt⟨w̄(t) − w∗,
1

m

∑
k∈S(t)

∇Fk(w(t)
k ⟩

︸ ︷︷ ︸
A1

+

2ηt⟨w̄(t) − w∗ − ηt
m

∑
k∈S(t)

∇Fk(w(t)
k ),

1

m

∑
k∈S(t)

(∇Fk(w(t)
k )− g

(t)
k )⟩

︸ ︷︷ ︸
A2

+ η2t ∥
1

m

∑
k∈S(t)

∇Fk(w(t)
k ∥2

︸ ︷︷ ︸
A3

+ η2t ∥
1

m

∑
k∈S(t)

(∇Fk(w(t)
k )− ḡ

(t)
k )∥2

︸ ︷︷ ︸
A4

= ∥w̄(t) − w∗∥2 +A1 +A2 +A3 +A4. (8)
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We first bound the quantity A1 of inequality (8) as follows:

A1 = −2ηt
m

∑
k∈S(t)

⟨w̄(t) − w∗,∇Fk(w(t)
k )⟩

= −2ηt
m

∑
k∈S(t)

⟨w̄(t) − w
(t)
k ,∇Fk(w(t)

k )⟩ − 2ηt
m

∑
k∈S(t)

⟨w(t)
k − w∗,∇Fk(w(t)

k )⟩

≤ ηt
m

∑
k∈S(t)

(
1

ηt
∥w̄(t) − w

(t)
k ∥2 + ηt∥∇Fk(w(t)

k )∥2
)
− 2ηt

m

∑
k∈S(t)

⟨w(t)
k − w∗,∇Fk(w(t)

k )⟩

(using the AM-GM and Cauchy–Schwarz inequalities)

=
1

m

∑
k∈S(t)

∥w̄(t) − w
(t)
k ∥2 + η2t

m

∑
k∈S(t)

∥∇Fk(w(t)
k )∥2 − 2ηt

m

∑
k∈S(t)

⟨w(t)
k − w∗,∇Fk(w(t)

k )⟩

≤ 1

m

∑
k∈S(t)

∥w̄(t) − w
(t)
k ∥2 + 2Lη2t

m

∑
k∈S(t)

(
Fk(w

(t)
k )− F ∗

k

)
− 2ηt

m

∑
k∈S(t)

⟨w(t)
k − w∗,∇Fk(w(t)

k )⟩ (using Lemma 1)

≤ 1

m

∑
k∈S(t)

∥w̄(t) − w
(t)
k ∥2 + 2Lη2t

m

∑
k∈S(t)

(
Fk(w

(t)
k )− F ∗

k

)
− 2ηt

m

∑
k∈S(t)

[
Fk(w

(t)
k )− Fk(w

∗) +
µ

2
∥w(t)

k − w∗∥2
]
,

where the last inequality follows from µ strong convexity of Fk (Assumption 2). Hence, by Lemma
2, the expected value of A1 satisfies

E[A1] ≤16η2t τ
2G2 − ηtµ

m
E
[ ∑
k∈S(t)

∥w(t)
k − w∗∥2

]
+

2Lη2t
m

E
[ ∑
k∈S(t)

(
Fk(w

(t)
k )− F ∗

k

) ]
− 2ηt

m
E
[ ∑
k∈S(t)

(Fk(w
(t)
k )− Fk(w

∗))
]
. (9)

Leaving this bound aside for the moment, next notice that E[A2] = 0 because of the unbiased
gradient assumption (Assumption 3). We may then bound A3 by Lemma 2 as follows:

E[A3] = E

 η2t
m2

∥
∑
k∈S(t)

∇Fk(w(t)
k )∥2

 ≤ η2t
m

∑
k∈S(t)

E
[
∥∇Fk(w(t)

k ∥2
]

≤ 2Lη2t
m

E

 ∑
k∈S(t)

(Fk(w
(t)
k )− F ∗

k )

 . (10)

Finally, the bound for A4 is as follows:

E[A4] =E

 η2t
m2

∥
∑
k∈S(t)

(
∇Fk(w(t)

k )− g
(t)
k

)
∥2
 =

η2t
m2

ES(t)

 ∑
k∈S(t)

E∥(∇Fk(w(t)
k )− g

(t)
k )∥2


≤ η2tmσ

2

m2
=
η2t σ

2

m
, (11)

where the second equality and inequality use Assumption 3.

Using the bounds (9), (10), and (11) in (8), we have

E[∥w̄(t+1) − w∗∥2] ≤ E[∥w̄(t) − w∗∥2] +
4∑
i=1

E[Ai] ≤ E
[
∥w̄(t) − w∗∥2]− ηtµ

m
E[
∑
k∈S(t)

∥w(t)
k − w∗∥2

]
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+ 16η2t τ
2G2 +

η2t σ
2

m
+

4Lηt
m

E
[ ∑
k∈S(t)

(Fk(w
(t)
k )− F ∗

k )
]
− 2ηt

m
E
[ ∑
k∈S(t)

(Fk(w
(t)
k )− Fk(w

∗))
]

≤ (1− ηtµ)E[∥w̄(t) − w∗∥2] + 16η2t τ
2G2 +

η2t σ
2

m
+

4Lη2t
m

E
[ ∑
k∈S(t)

(Fk(w
(t)
k )− F ∗

k )
]

︸ ︷︷ ︸
A5

−2ηt
m

E
[ ∑
k∈S(t)

(Fk(w
(t)
k )− Fk(w

∗))
]

︸ ︷︷ ︸
A5

. (12)

The final inequality above utilizes Lemma 3.

Now we bound A5 as follows:

A5 =E
[4Lη2t
m

∑
k∈S(t)

Fk(w
(t)
k )− 2ηt

m

∑
k∈S(t)

Fk(w
(t)
k )− 2ηt

m

∑
k∈S(t)

(F ∗
k − Fk(w

∗))

+
2ηt
m

∑
k∈S(t)

F ∗
k − 4Lη2t

m

∑
k∈S(t)

F ∗
k

]
= E

[ 2ηt(2Lηt − 1)

m

∑
k∈S(t)

(Fk(w
(t)
k )− F ∗

k )
]

︸ ︷︷ ︸
A6

+2ηtE
[ 1
m

∑
k∈S(t)

(Fk(w
∗)− F ∗

k )
]
.

Take ηt < 1/(4L) and define υt = 2ηt(1− 2Lηt) ≥ 0; then we can bound A6 as

− υt
m

∑
k∈S(t)

(Fk(w
(t)
k )− F ∗

k )

= −υt
m

∑
k∈S(t)

(Fk(w
(t)
k )− Fk(w̄

(t)) + Fk(w̄
(t))− F ∗

k )

= −υt
m

∑
k∈S(t)

[
Fk(w

(t)
k )− Fk(w̄

(t))
]
− υt
m

∑
k∈S(t)

[
Fk(w̄

(t))− F ∗
k

]
≤ −υt

m

∑
k∈S(t)

[
⟨∇Fk(w(t)), w

(t)
k − w̄(t)⟩+ µ

2
∥w(t)

k − w̄(t)∥2
]
− υt
m

∑
k∈S(t)

[
Fk(w̄

(t))− F ∗
k

]
≤ νt
m

∑
k∈S(t)

[
ηtL(Fk(w̄

(t))− F ∗
k ) + (

1

2ηt
− µ

2
)∥w(t)

k − w̄(t)∥2
]
− υt
m

∑
k∈S(t)

[
Fk(w̄

(t))− F ∗
k

]
(using the Cauchy-Schwarz inequality, the AM-GM inequality, and Lemma 1)

= −νt
m
(1− ηtL)

∑
k∈S(t)

(Fk(w̄
(t))− F ∗

k ) +
( νt
2ηtm

− νtµ

2m

) ∑
k∈S(t)

∥w(t)
k − w̄(t)∥2

≤ −νt
m
(1− ηtL)

∑
k∈S(t)

(Fk(w̄
(t))− F ∗

k ) +
1

m

∑
k∈S(t)

∥w(t)
k − w̄(t)∥2. (13)

The first inequality above uses µ strong convexity of Fk, the subsequent inequality uses L–
smoothness of Fk, and the final inequality follows because νt(1−ηtµ)

2ηt
≤ 1. Hence, we can bound A5

as follows:
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E[A5] ≤ −νt
m
(1− ηtL)E

[ ∑
k∈S(t)

(Fk(w̄
(t))− F ∗

k )
]
+

1

m
E
[ ∑
k∈S(t)

∥w(t)
k − w̄(t)∥2

]
+

2ηt
m

E
[ ∑
k∈S(t)

(Fk(w
∗)− F ∗

k )
]

≤ −νt
m
(1− ηtL)E

[ ∑
k∈S(t)

(Fk(w̄
(t))− F ∗

k )
]
+ 16η2t τ

2G2 +
2ηt
m

E
[ ∑
k∈S(t)

(Fk(w
∗)− F ∗

k )
]

= −νt
m
(1− ηtL)E

[ ∑
k∈S(t)∩G

(Fk(w̄
(t))− F ∗

k ) +
∑

k∈S(t)∩B

(Fk(w̄
(t))− F ∗

k )
]
+ 16η2t τ

2G2

+
2ηt
m

E
[ ∑
k∈S(t)∩G

(Fk(w
∗)− F ∗

k ) +
∑

k∈S(t)∩B

(Fk(w
∗)− F ∗

k )
]

= 16η2t τ
2G2 − νt(1− ηtL)

m
E
[(
pρg(S(π, w̄

(τ⌊t/τ⌋)), w̄(t))

+ qρb(S(π, w̄
(τ⌊t/τ⌋)), w̄(t))

)
(Fg(w̄

(t))−
∑
k∈G

pkF
∗
k

]
+

2ηt
m

E[
(
pρg(S(π, w̄

(τ⌊t/τ⌋)), w∗)

+ qρb(S(π, w̄
(τ⌊t/τ⌋)), w∗)(Fg(w

∗)−
∑
k∈G

pkF
∗
k )]

≤ 16η2t τ
2G2 −νt(1− ηtL)

m

[
pρ̄g + qρ̄b

]
(E[Fg(w̄(t) −

∑
k∈G

pkF
∗
k )︸ ︷︷ ︸

A7

+
2ηt
m

(pρ̃g + qρ̃b)Γg

(14)
We used the definition of ρ(S(π,w), w′) and Γg to arrive at (14). We can get a bound for A7 in (14)
as follows:

A7 = −νt(1− ηtL)

m

[
pρ̄g + qρ̄b

]∑
k∈G

pk
(
E[Fk(w̄(t))]− F ∗ + F ∗ − F ∗

k )

= −νt(1− ηtL)

m

[
pρ̄g + qρ̄b

]∑
k∈G

pk

(
E[Fk(w̄(t))]− F ∗ + F ∗ − F ∗

k

)
= −νt(1− ηtL)

m

[
pρ̄g + qρ̄b

]∑
k∈G

pk
(
E[Fk(w̄(t))]− F ∗)

− νt(1− ηtL)

m

[
pρ̄g + qρ̄b

]∑
k∈G

pk
(
F ∗ − F ∗

k

)
= −νt(1− ηtL)

m

[
pρ̄g + qρ̄b

](
E[Fg(w̄(t))]− F ∗)− νt(1− ηtL)

m

[
pρ̄g + qρ̄b

]
Γg

(using the definition of Γg)

≤ −
νt(1− ηtL)µ

[
pρ̄g + qρ̄b

]
2m

E
[
∥w̄(t) − w∗∥2

]
− νt(1− ηtL)

m

[
pρ̄g + qρ̄b

]
Γg

(using µ strongly convexity)

= −
2ηt(1− 2Lηt)(1− ηtL)µ

[
pρ̄g + qρ̄b

]
2m

E
[
∥w̄(t) − w∗∥2

]
− 2ηt(1− 2Lηt)(1− ηtL)

m

[
pρ̄g + qρ̄b

]
Γg

≤ −
3ηtµ

[
pρ̄g + qρ̄b

]
8m

E
[
∥w̄(t) − w∗∥2

]
−

2ηt
[
pρ̄g + qρ̄b

]
Γg

m
+

6η2t
[
pρ̄g + qρ̄b

]
LΓg

m
(15)
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where equation (15) is due to µ strong convexity and we used −2ηt(1 − 2Lηt)(1 − Lηt) ≤ − 3
4ηt

and −(1− 2Lηt)(1− Lηt) ≤ −(1− 3Lηt). Hence, the bound of A5 is as follows:

4Lηt
m

E
[ ∑
k∈S(t)

[
(Fk(w

(t)
k )− F ∗

k )−
2ηt
m

(Fk(w
(t)
k − Fk(w

∗))
]]

≤ −
3ηtµ

[
pρ̄g + qρ̄b

]
8m

E
[
∥w̄(t) − w∗∥2 + η2t

(
6
[
pρ̄g + qρ̄b

]
LΓg

m
+ 16τ2G2

)

−
2ηt
[
pρ̄g + qρ̄b

]
Γg

m
+

2ηt
[
pρ̃g + qρ̃b

]
Γg

m
. (16)

Finally, using equation (12), and (16) we can bound ∥w̄(t+1) − w∗∥ as follows:

E
[
∥w̄(t+1) − w∗∥

]
≤
[
1− ηtµ

[
1 +

3(pρ̄g + qρ̄b)

8m

]]
E
[
w̄(t) − w∗∥2

]
+ η2t

[
32τ2G2 +

σ2

m
+

6(pρ̄g + qρ̄b)LΓg
m

]
+

2ηtΓg
m

(pρ̃g + qρ̃b − pρ̄g − qρ̄b)

≤
[
1− ηtµ

[
1 +

3(pρ̄g + qρ̄g)

8m

]]
E
[
w̄(t) − w∗∥2

]
+ η2t

[
32τ2G2 +

σ2

m
+

6(pρ̄b + qρ̄b)LΓg
m

]
+

2ηtΓ

m
(pρ̃g + qρ̃b − pρ̄g − qρ̄g). (17)

Equation (17) is obtained using ρ̄g ≤ ρ̄b, which gives

E
[
∥w̄(t+1) − w∗∥

]
≤
[
1− ηtµ

[
1 +

3ρ̄g
8

]]
E
[
w̄(t) − w∗∥2

]
+ η2t

[
32τ2G2 +

σ2

m
+ 6ρ̄bLΓg

]
+

2ηtΓg
m

(pρ̃g + qρ̃b −mρ̄g).

By setting ∆t+1 = E
[
∥w̄(t+1) − w∗∥2

]
, B = 1 +

3ρ̄g
8 , C = 32τ2G2 + σ2

m + 6ρ̄bLΓg, D =
2Γg

m (pρ̃g + qρ̃b −mρ̄g), we get

∆t+1 ≤ (1− ηtµB)∆t + η2tC +Dηt.

For a decreasing stepsize, ηt = β
t+γ for some β > 1

µB , γ > 0, we have that ∆t ≤ ψ
t+γ , where

ψ = max

{
(γ + 1)∥w̄(1) − w∗∥2, β

2C + βD(t+ γ)

βµB − 1

}
.

This can be shown by induction on t (see Lemma 4 below). Then using the L−smoothness of F (·)
we get

E
[
F (w̄(t)]− F ∗ ≤ L

2
∆t ≤

L

2

ψ

γ + t
.

Now for β = 1
µ , we get

E[F (w̄(T ))]− F ∗ ≤ 1

(T + γ)

[
4L(32τ2G2 + σ2/m)

3µ2ρ̄g
+

8L2Γg
µ2

ρ̄b
ρ̄g

+
L(γ + 1)(∥w̄(1) − w∗∥2)

2

]
+

8LΓg
3µ

(
pρ̃g + qρ̃b
mρ̄g

− 1

)
,

which completes the proof of the theorem.
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Lemma 4. For a decreasing stepsize, ηt = β
t+γ for some β > 1

µB , γ > 0,

∆t ≤
ψ

t+ γ
(18)

where,

ψ = max
{
(γ + 1)∥w̄(1) − w∗∥2, 1

βµB − 1
(β2C +Dβ(t+ γ))

}
(19)

and
∆t+1 ≤ (1− ηtµB)∆t + η2tC + ηtD.

Proof. For t = 1, equation (18) holds clearly as (using (19))

∆1 ≤ ψ

γ + 1
≤ ∥w̄(1) − w∗∥2 = ∆1

Assume that it holds for some t, then

∆t+1 ≤ (1− ηtµB)∆t + η2tC + ηtD

≤ (1− β

t+ γ
µB)

ψ

t+ γ
+

β2

(t+ γ)2
C +

β

t+ γ
D

=
t+ γ − βµB

(t+ γ)2
ψ +

β2C + βD(t+ γ)

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
ψ +

β2C + βD(t+ γ)

(t+ γ)2
− βµB − 1

(t+ γ)2
ψ

=
t+ γ − 1

(t+ γ)2
ψ (Using (19))

≤ t+ γ − 1

(t+ γ)2 − 1
ψ =

ψ

t+ γ + 1

B DATASET AND MODEL DESCRIPTION - EXTENDED

B.1 DATASETS

We utilize four prominent datasets: MNIST, CIFAR10, FEMNIST, and the SHAKESPEARE dataset,
widely referenced in the literature McMahan et al. (2017); Li et al. (2020c).

MNIST LeCun et al. (2010). Renowned for handwriting recognition, this dataset consists of 70,000
gray-scale 28×28 images. It includes 60,000 training samples and 10,000 test samples, spanning ten
classes (digits 0-9). We distribute MNIST training data evenly among 100 clients for the IID case.
For Non-IID, each client possesses one dominant class with 80% of the data, while the remaining
classes share 20%. In the extreme Non-IID scenario, a class contributes data to at most two clients.
The standard test set evaluates global model performance.

CIFAR10 Krizhevsky (2009). Comprising 60,000 color 32 × 32 images, the CIFAR10 dataset
encompasses 50,000 training images and 10,000 test images across ten classes. Similar to MNIST,
we consider three distribution types: IID, Non-IID, and extreme Non-IID. Dividing the dataset
into 100 clients, each IID client receives 500 samples. For Non-IID scenarios, one dominant class
constitutes 80% of a client’s data, while the rest is shared among other classes. In the extreme Non-
IID case, each class contributes data to a maximum of two clients. The test set is used to evaluate
the performance of the global model

FEMNIST Caldas et al. (2018). Derived from the LEAF dataset and implemented using Tensor-
Flow Federated, FEMNIST involves 3,383 unique users (first 1000 used). It offers 341,873 training
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examples and 40,832 test examples, featuring gray-scale 28× 28 images. The dataset creates a non-
IID and heterogeneous setting, with each user representing a distinct client. Test sets from distinct
clients are collected together to evaluate global performance.

SHAKESPEARE Caldas et al. (2018). Based on ”The Complete Works of William Shakespeare”,
this dataset uses speaking roles in plays to represent individual clients. It encompasses 715 genuine
users (71 clients with at least 60 test data points), providing 16,068 training examples and 2,356
test examples in text format. Like FEMNIST, the SHAKESPEARE dataset is non-IID and hetero-
geneous, associating each user with a unique client.

Table 1: Dataset and Model
Dataset Training Test #Client Distribution Model
MNIST 60,000 10,000 300 IID/Non-IID LR
CIFAR10 50,000 10,000 300 IID/Non-IID CNN
FEMNIST 341,873 40,832 3383 Non-IID LR
SHAKESPEARE 16,068 2,356 715 Non-IID RNN

B.2 MODEL PARAMETERS

In the context of an edge setup with IoT devices as clients, we prioritize lightweight models to
accommodate limited power and computational capabilities.

MNIST. For the MNIST dataset, we adopt a simple Multi-Layer Perceptron (MLP) classifier using
TensorFlow Keras. The architecture includes two hidden layers with ReLU activation: one with 200
neurons, the other with 100 neurons. An output layer with 10 neurons and softmax activation handles
classification. Input features are flattened, and labels are one-hot encoded. The model employs the
Adam optimizer with a learning rate of 0.001 and categorical cross-entropy loss. Training spans 300
epochs for all distribution cases.

CIFAR10. Employing the CIFAR10 dataset, we employ a lightweight Convolutional Neural Net-
work (CNN) classifier using TensorFlow Keras. The CNN architecture involves two sets of con-
volutional layers, max-pooling layers, dropout layers, and fully connected layers. ReLU activation
functions operate in the convolutional layers, while softmax is used for the output layer. The model
employs categorical cross-entropy loss, the Adam optimizer with varying learning rates, and trains
until 300 rounds.

FEMNIST. Addressing the FEMNIST dataset, we use a simple MLP with two hidden layers. These
layers consist of fully connected dense layers with ReLU activation. The model input shape is
784 (pixels in each image), featuring 64 neurons in the first hidden layer. The output layer, with
10 neurons, lacks an activation function to complement the Sparse-Categorical-Crossentropy loss
function. The optimization employs a learning rate of 0.001. Training spans 300 epochs.

SHAKESPEARE. Utilizing the SHAKESPEARE dataset, we deploy a Recurrent Neural Network
(RNN) featuring a GRU layer with stateful=True. Input data is preprocessed via an ASCII character-
to-index lookup table, forming sequences of length 50+1. The architecture integrates an embedding
layer, a GRU layer with varying units, and a dense layer with 86 output units. A custom evaluation
metric gauges the model’s character prediction accuracy across the input sequence. There are 150
rounds of training across the clients.

Evaluation Scenarios We consider three different scenarios that reflect potential data corruption
due to sensor quality and aging:

Label shuffling. In this scenario, we consider sensors’ label interpretations are incorrect, leading to
the assignment of random labels to data. We experiment with varying percentages of clients whose
labels are randomly shuffled.

Label flipping. Here, a random label is assigned to each client, with the same labels across its data
(e.g., all of Client 1’s data is labeled 2). We consider a fraction of sensors that consistently produce
a fixed, random label output.

Noisy data. This scenario involves correct label interpretation but noisy feature spaces. To simulate
this, we introduce Gaussian noise to the features. For selected clients, the input data is first normal-
ized to [0, 1] and then we add Gaussian noise x = x+ ϵ, where ϵ ∼ N(0, 0.7). The resulting values
are clipped again to [0, 1].
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C EVALUATION - EXTENDED

C.1 COMPARISON WITH BENCHMARK ALGORITHMS - EXTENDED

(a) FEMNIST (b) CIFAR10 (c) MNIST (d) SHAKESPEARE

Figure 6: Comparison of global accuracy of FedSRC with other state of the arts algorithm for the
FEMNIST, CIFAR10, MNIST and SHAKESPEARE datasets.

(a) MNIST iid (b) MNIST non-iid ex-
treme

(c) CIFAR10 iid (d) CIFAR10 non-iid ex-
treme

Figure 7: Comparison of loss of FedSRC with other state-of-the-arts algorithm for the CIFAR10
and MNIST datasets.

(a) MNIST iid (b) MNIST non-iid ex-
treme

(c) CIFAR10 iid (d) CIFAR10 non-iid ex-
treme

Figure 8: Comparison of accuracy of FedSRC with other state-of-the-arts algorithm for the
CIFAR10 and MNIST datasets.

To comprehensively evaluate the effectiveness of FedSRC compared to state-of-the-art algorithms,
we have conducted extensive assessments across diverse datasets, including FEMNIST, CIFAR10,
MNIST, and SHAKESPEARE. These evaluations were carried out under our default settings, involv-
ing 30% data corruption. In this context, we present an in-depth evaluation focusing on MNIST and
CIFAR10 datasets, considering both the IID (Independent and Identically Distributed) and Non-IID
extreme cases.

In our evaluation, we blocked 30% of clients in FedSRC, Trimmed Mean, and Krum algorithms.
In contrast, FedASL excludes clients falling outside one standard deviation, which accounts for
discarding approximately 32% of clients. Notably, FedAVG does not discard any clients. The per-
formance metrics displayed are the loss and accuracy of the global model when assessed against the
test dataset.

Specifically, we present the outcomes in Figs. 7 represent the loss plot and 8 and 6 represent
the accuracy plot. Our experiments reveal that FedSRC consistently outperforms other benchmark
algorithms resulting in better global performance in the presence of corrupted clients.

C.2 INTEGRATION WITH EXISTING ALGORITHMS

We demonstrate the effectiveness of integrating FedSRC with other algorithms by implementing it at
the client level while maintaining aggregation protocols such as FedAVG, FedASL, Trimmed Mean,
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Figure 9: Performance comparison with integrating FedSRC with existing algorithms for FEMNIST.

Krum, and Median on the server side. As shown in Fig. 9, our integration approach enhances the
performance of these pre-existing algorithms (about 6% increase in accuracy) and reduces the error
loss (about 33% decrease in loss) in the presence of unreliable clients all the while also reducing
computation and communication costs.

C.3 SENSITIVITY ANALYSIS

Impact of blocking percentage. To understand the effects of user-defined blocking percentage,
we evaluate the FEMNIST dataset with 30% data corruption. We vary client blocking from 0% to
90%. The goal is to find how the performance FedSRC is impacted by different degrees of client
exclusion. The results, as depicted in Fig. 10, show that the optimal performance achieved when
correctly estimating a 30% threshold. However, there is no significant degradation, especially when
overestimating the blocking percentage.

Figure 10: Effect of our cutoff (range) in performance of FedSRC for FEMNIST dataset.

The results highlight the robustness of our approach.

Figure 11: Performance comparison of FedSRC with other algorithms in the presence of different
percentages of bad clients for FEMNIST dataset in shuffling.

Impact of Different Percentage of Bad Client: To assess our algorithm against varying levels of
corrupted data, we use FEMNIST dataset with different percentages of bad clients and set the client
blocking parameters of FedSRC and benchmark algorithms. Fig. 11 shows that as the percentage
of unreliable clients increases, conventional algorithms’ accuracy declines. In contrast, our FedSRC
demonstrates remarkable robustness, effectively managing up to 60% of clients with erroneous be-
havior. Naturally, as our algorithm utilizes clients’ loss statistics, its performance falters drastically
with a higher percentage of bad clients.
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