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Abstract

Algorithmic decision-making in high-stakes domains often involves assigning de-
cisions to agents with incentives to strategically modify their input to the algorithm.
In addition to dealing with incentives, in many domains of interest (e.g. lending
and hiring) the decision-maker only observes feedback regarding their policy for
rounds in which they assign a positive decision to the agent; this type of feedback is
often referred to as apple tasting (or one-sided) feedback. We formalize this setting
as an online learning problem with apple-tasting feedback where a principal makes
decisions about a sequence of T" agents, each of which is represented by a context
that may be strategically modified. Our goal is to achieve sublinear strategic regret,
which compares the performance of the principal to that of the best fixed policy in
hindsight, if the agents were truthful when revealing their contexts. Our main result
is a learning algorithm which incurs O(v/T) strategic regret when the sequence
of agents is chosen stochastically. We also give an algorithm capable of handling
adversarially-chosen agents, albeit at the cost of O(T(@+1)/(d+2)) strategic regret
(where d is the dimension of the context). Our algorithms can be easily adapted to
the setting where the principal receives bandit feedback—this setting generalizes
both the linear contextual bandit problem (by considering agents with incentives)
and the strategic classification problem (by allowing for partial feedback).

1 Introduction

Algorithmic systems have recently been used to aid in or automate decision-making in high-stakes
domains (including lending and hiring) in order to, e.g., improve efficiency or reduce human bias
[12, 1]. When subjugated to algorithmic decision-making in high-stakes settings, individuals have an
incentive to strategically modify their observable attributes to appear more qualified. Such behavior
is often observed in practice. For example, credit scores are often used to predict the likelihood an
individual will pay back a loan on time if given one. Online articles with titles like “9 Ways to Build
and Improve Your Credit Fast” are ubiquitous and offer advice such as “pay credit card balances strate-
gically” in order to improve one’s credit score with minimal effort [46]. In hiring, common advice
ranges from curating a list of keywords to add to one’s resume, to using white font in order to “trick”
automated resume scanning software [23, 2]. If left unaccounted for, such strategic manipulations
could result in individuals being awarded opportunities for which they are not qualified for, possibly
at the expense of more deserving candidates. As a result, it is critical to keep individuals’ incentives
in mind when designing algorithms for learning and decision-making in high-stakes settings.

In addition to dealing with incentives, another challenge of designing learning algorithms for high-
stakes settings is the possible selection bias introduced by the way decisions are made. In particular,
decision-makers often only have access to feedback about the deployed policy from individuals that
have received positive decisions (e.g., the applicant is given the loan, the candidate is hired to the job
and then we can evaluate how good our decision was). In the language of online learning, this type of
feedback is known as apple tasting (or one-sided) feedback. When combined, these two complications
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(incentives & one-sided feedback) have the potential to amplify one other, as algorithms can learn
only when a positive decision is made, but individuals have an incentive to strategically modify their
attributes in order to receive such positive decisions, which may interfere with the learning process.

1.1 Contributions

We formalize our setting as a game between a principal and a sequence of T strategic agents, each
with an associated context x; which describes the agent. At every time ¢ € {1,...,T'}, the principal
deploys a policy m;, a mapping from contexts to binary decisions (e.g., whether to accept/reject a loan
applicant). Given policy 7, agent ¢ then presents a (possibly modified) context x} to the algorithm,
and receives a decision a; = m¢(x}). If a; = 1, the principal observes reward r:(a;) = r(1); if
a; = 0 they receive no feedback. r;(0) is assumed to be known and constant across rounds.! Our
metric of interest is strategic regret, i.e., regret with respect to the best fixed policy in hindsight,
if agents were truthful when reporting their contexts.

Our main result is an algorithm which achieves O( VT ) strategic regret (with polynomial per-round
runtime) when there is sufficient randomness in the distribution over agents (Algorithm 1). At a high
level, our algorithm deploys a linear policy at every round which is appropriately shifted to account for
the agents’ strategic behavior. We identify a sufficient condition under which the data received by the
algorithm at a given round is “clean”, i.e. has not been strategically modified. Algorithm 1 then online-
learns the relationship between contexts and rewards by only using data for which it is sure is clean.

In contrast to performance of algorithms which operate in the non-strategic setting, the regret
of Algorithm 1 depends on an exponentially-large constant c(d, §) = (1 — §)~¢ due to the one-sided
feedback available for learning, where d is the context dimension and § € (0, 1) is a parameter
which represents the agents’ ability to manipulate. While this dependence on ¢(d, 9) is insignificant
when the number of agents 7" — oo (i.e. is very large), it may be problematic for the principal
whenever T is either small or unknown. To mitigate this issue, we show how to obtain O(d - T2/3)
strategic regret by playing a modified version of the well-known explore-then-commit algorithm
(Algorithm 2). At a high level, Algorithm 2 “explores” by always assigning action 1 for a fixed
number of rounds (during which agents do not have an incentive to strategize) in order to collect
sufficient information about the data-generating process. It then “exploits” by using this data learn
a strategy-aware linear policy. Finally, we show how to combine Algorithm 1 and Algorithm 2 to

achieve O(min{c(d, §) - VT, d - T?/3}) strategic regret whenever T" is unknown.

While the assumption of stochastically-chosen agents is well-motivated in general, it may be overly
restrictive in some specific settings. Our next result is an algorithm which obtains O(T(d+1)/ (dH))
strategic regret when agents are chosen adversarially (Algorithm 4). Algorithm 4 uses a variant of
the popular Exp3 algorithm to trade off between a carefully constructed set of (exponentially-many)
policies [6]. As a result, it achieves sublinear strategic regret when agents are chosen adversarially,
but requires an exponentially-large amount of computation at every round.

Finally, we note that while our primary setting of interest is that of one-sided feedback, all of our
algorithms can be easily extended to the more general setting in which the principal receives bandit
feedback at each round, i.e. r;(0) is not constant and must be learned from data. To the best of our
knowledge, we are the first to consider strategic learning in the contextual bandit setting.

1.2 Related work

Strategic responses to algorithmic decision-making There is a growing line of work at the inter-
section of economics and computation on algorithmic decision-making with incentives, under the
umbrella of strategic classification or strategic learning [27, 3, 41, 22] focusing on online learning
settings [21, 19], causal learning [52, 31, 29, 34], incentivizing desirable behavior [39, 28, 11, 42],
incomplete information [30, 25, 37]. In its most basic form, a principal makes either a binary or
real-valued prediction about a strategic agent, and receives full feedback (e.g., the agent’s label) after
the decision is made. While this setting is similar to ours, it crucially ignores the one-sided feedback
structure present in many strategic settings of interest. In our running example of hiring, full feedback
would correspond to a company not offering an applicant a job, and yet still getting to observe whether
they would have been a good employee! As a result, such methods are not applicable in our setting.
Concurrent work [18] studies the effects of bandit feedback in the related problem of performative
prediction [47], which considers data distribution shifts at the population level in response to the

'We relax this assumption at later parts of the paper with virtually no impact on our results.



deployment of a machine learning model. In contrast, our focus is on strategic responses to machine
learning models at the individual level under apple tasting and bandit feedback. Ahmadi et al. [4]
study an online strategic learning problem in which they consider “bandit feedback™ with respect to
the deployed classifier. In contrast, we use the term “bandit feedback” to refer to the fact that we only
see the outcome when for the action/decision taken.

Apple tasting and online learning Helmbold et al. [32] introduce the notion of apple-tasting
feedback for online learning. In particular, they study a binary prediction task over “instances”
(e.g., fresh/rotten apples), in which a positive prediction is interpreted as accepting the instance (i.e.
“tasting the apple”) and a negative prediction is interpreted as rejecting the instance (i.e., nof tasting
the apple). The learner only gets feedback when the instance is accepted (i.e., the apple is tasted).
While we are the first to consider classification under incentives with apple tasting feedback, similar
feedback models have been studied in the context of algorithmic fairness [9], partial-monitoring
games [5], and recidivism prediction [24]. A related model of feedback is that of contaminated
controls [40], which considers learning from (1) a treated group which contains only treated members
of the agent population and (2) a “contaminated” control group with samples from the entire agent
population (not just those under control). Technically, our results are also related to a line of work
in contextual bandits which shows that greedy algorithms without explicit exploration can achieve
sublinear regret as long as the underlying context distribution is sufficiently diverse [49, 8, 38, 53, 48].

Bandits and agents A complementary line of work to ours is that of Bayesian incentive-compatible
(BIC) exploration in multi-armed bandit problems [43, 35, 50, 36, 44, 45]. Under such settings, the
goal of the principal is to persuade a sequence of 1" agents with incentives to explore across several
different actions with bandit feedback. In contrast, in our setting it is the principal, not the agents,
who is the one taking actions with partial feedback. As a result there is no need for persuasion, but
the agents now have an incentive to strategically modify their behavior in order to receive a more
desirable decision/action.

Other related work Finally, our work is broadly related to the literature on learning in repeated
Stackelberg games [7, 55], online Bayesian persuasion [16, 17, 13], and online learning in principal-
agent problems [20, 33, 56]. In the repeated Stackelberg game setting, the principal (leader) commits
to a mixed strategy over a finite set of actions, and the agent (follower) best-responds by playing
an action from a finite set of best-responses. Unlike in our setting, both the principal’s and agent’s
payoffs can be represented by matrices. In contrast, in our setting the principal commits to a pure
strategy from a continuous set of actions, and the agent best-responds by playing an action from a
continuous set. In online Bayesian persuasion, the principal (sender) commits to a “signaling policy”
(a random mapping from “states of the world” to receiver actions) and the agent (receiver) performs
a posterior update on the state based on the principal’s signal, then takes an action from a (usually
finite) set. In both this setting and ours, the principal’s action is a policy. However in our setting
the policy is a linear decision rule, whereas in the Bayesian persuasion setting, the policy is a set of
conditional probabilities which form an “incentive compatible” signaling policy. This difference in
the policy space for the principal typically leads to different algorithmic ideas being used in the two
settings. Strategic learning problems are, broadly speaking, instances of principal-agent problems. In
contract design, the principal commits to a contract (a mapping from “outcomes” to agent payoffs).
The agent then takes an action, which affects the outcome. In particular, they take the action which
maximizes their expected payoff, subject to some cost of taking the action. The goal of the principal
is to design a contract such that their own expected payoff is maximized. While the settings are
indeed similar, there are several key differences. First, in online contract design the principal always
observes the outcome, whereas in our setting the principal only observes the reward if a positive
decision is made. Second, the form of the agent’s best response is different, which leads to different
agent behavior and, as a result, different online algorithms for the principal.

2 Setting and background

We consider a game between a principal and a sequence of T' agents. Each agent is associated
with a context x; € X C R?, which characterizes their attributes (e.g., a loan applicant’s credit
history/report). At time ¢, the principal commits to a policy m; : X — {1,0}, which maps from
contexts to binary decisions (e.g., whether to accept/reject the loan application). We use a; = 1 to
denote the the principal’s positive decision at round ¢ (e.g., agent ¢’s loan application is approved),
and a; = 0 to denote a negative decision (e.g., the loan application is rejected). Given m;, agent
t best-responds by strategically modifying their context within their effort budget as follows:



Definition 2.1 (Agent best response; lazy tiebreaking). Agent t best-responds to policy m, by
modifying their context according to the following optimization program.

/ ]]_ ! — 1
x; €argmax 1{m (x) = 1}
st ||x —x4lla <6

Furthermore, we assume that if an agent is indifferent between two (modified) contexts, they choose
the one which requires the least amount of effort to obtain (i.e., agents are lazy when tiebreaking).

In other words, every agent wants to receive a positive decision, but has only a limited ability to
modify their (initial) context (represented by /5 budget §).2 Such an effort budget may be induced
by time or monetary constraints and is a ubiquitous model of agent behavior in the strategic learning
literature (e.g., [39, 28, 19, 10]). We focus on linear thresholding policies where the principal assigns
action 7(x’) = 1, if and only if (3,x’) > ~ for some B € R%, v € R. We refer to (3,x}) = v
as the decision boundary. For linear thresholding policies, the agent’s best-response according
to Definition 2.1 is to modify their context in the direction of 3/|| 3|2 until the decision-boundary
is reached (if it can indeed be reached). While we present our results for lazy tiebreaking for ease
of exposition, all of our results can be readily extended to the setting in which agents best-respond
with a “trembling hand”, i.e. trembling hand tiebreaking. Under this setting, we allow agents who
strategically modify their contexts to “overshoot” the decision boundary by some bounded amount,
which can be either stochastic or adversarially-chosen. See Appendix D for more details.

The principal observes x; and plays action a; = m(x}) according to policy 7. If a; = 0, the
principal receives some known, constant reward r:(0) := ro € R. On the other hand, if the principal
assigns action a; = 1, we assume that the reward the principal receives is linear in the agent’s
unmodified context, i.e.,

re(1) = (W x,) + e (1)
for some unknown 6V € R¢, where ¢, is i.i.d. zero-mean sub-Gaussian random noise with (known)
variance 2. Note that 74(1) is observed only when the principal assigns action a; = 1, and not when
at = 0. Following Helmbold et al. [32], we refer to such feedback as apple tasting (or one-sided)
feedback. Mapping to our lending example, the reward a bank receives for rejecting a particular
loan applicant is the same across all applicants, whereas their reward for a positive decision could
be anywhere between a large, negative reward (e.g., if a loan is never repaid) to a large, positive
reward (e.g., if the loan is repaid on time, with interest).

The most natural measure of performance in our setting is that of Stackelberg regret, which compares
the principal’s reward over 7' rounds with that of the optimal policy given that agents strategize.

Definition 2.2 (Stackelberg regret). The Stackelberg regret of a sequence of policies {7 },c1) on
agents {X; }ie[r) is

Reggpaceer (T) 1= D> (7 (%0) = Y re(me(x}))
te[T) te(T)

where X; is the best-response from agent t to policy 7" and 7* is the optimal-in-hindsight policy,
given that agents best-respond according to Definition 2.1.

A stronger measure of performance is that of strategic regret, which compares the principal’s reward
over T rounds with that of the optimal policy had agents reported their contexts truthfully.

Definition 2.3 (Strategic regret). The strategic regret of a sequence of policies {m},c |1 on agents
{Xt}te[T] is
Regstrat (T) = Z Tt(ﬂ-* (Xt)) - Z Tt (Trt (X;))

te[T) te(T]

where 7 (x) = 1if (01, x,) > ro and 7*(x;) = 0 otherwise.

2Our results readily extend to the setting in which the agent’s effort constraint takes the form of an ellipse
rather than a sphere. Under this setting, the agent effort budget constraint in Definition 2.1 would be HAI/ 2(x' —

x¢)|l2 < &, where A € R**¢ is some positive definite matrix. If A is known to the principal, this may just be
viewed as a linear change in the feature representation.



Classification under agent incentives with apple tasting feedback

Fort=1,...,T:

1. Principal publicly commits to a mapping 7 : X — {1, 0}.

2. Agent ¢ arrives with context x; € X (hidden from the principal).

3. Agent ¢ strategically modifies context from x; to x} according to Definition 2.1.
4. Principal observes (modified) context x} and plays action a; = m;(x}).

5. Principal observes (1) := (8!, x,) + ¢, if and only if a, = 1.

Figure 1: Summary of our model.
Proposition 2.4. Strategic regret is a stronger performance notion compared to Stackelberg regret,
i'e'y RegStackel(T) S Regstrat (T)

Proof. The proof follows from the corresponding regret definitions and the fact that the principal’s
reward is determined by the original (unmodified) agent contexts.

Rseackar (T) 1= > (7" (%)) — D re(mi(x}))

te[T] te[T]
= Z (7 (%)) — Z (7" (xe)) + Z (7" (xe)) — Z r(me(x}))
te[T) te(T) te(T) te(T)

S 0 + Rstrat (T)

where the last line follows from the fact that the principal’s reward from the optimal policy when the
agent strategizes is at most their optimal reward when agents do not strategize. O

Because of Proposition 2.4, we focus on strategic regret, and use the shorthand Reg,,,..(T) =
Reg(T) for the remainder of the paper. Strategic regret is a strong notion of optimality, as we are
comparing the principal’s performance with that of the optimal policy for an easier setting, in which
agents do not strategize. Moreover, the apple tasting feedback introduces additional challenges which
require new algorithmic ideas to solve, since the principal needs to assign actions to both (1) learn
about 8 (which can only be done when action 1 is assigned) and (2) maximize rewards in order to
achieve sublinear strategic regret. See Figure 1 for a summary of the setting we consider.

We conclude this section by pointing out that our results also apply to the more challenging setting
of bandit feedback, in which r,(1) is defined as in Equation (1), r;(0) := (8'”  x,) + ¢, and only
r+(ay) is observed at each time-step. We choose to highlight our results for apple tasting feedback
since this is the type of feedback received by the principal in our motivating examples. Finally, we

note that O (+) hides polylogarithmic factors, and that all proofs can be found in the Appendix.

3 Strategic classification with apple tasting feedback

In this section, we present our main results: provable guarantees for online classification of strategic
agents under apple tasting feedback. Our results rely on the following assumption.

Assumption 3.1 (Bounded density ratio). Let fya : X — R>q denote the density function of the
uniform distribution over the d-dimensional unit sphere. We assume that agent contexts {X; }c[r) are
drawn i.i.d. from a distribution over the d-dimensional unit sphere with density function f : X — R>q

such that ff()z)) S>>0 Vxe X3

yd (X
Assumption 3.1 is a condition on the initial agent contexts {X; },c[r), before they are strategically
modified. Indeed, one would expect the distribution over modified agent contexts to be highly discon-
tinuous in a way that depends on the sequence of policies deployed by the principal. Furthermore,
none of our algorithms need to know the value of ¢y. As we will see in the sequel, this assumption
allows us to handle apple tasting feedback by relying on the inherent diversity in the agent population

30ur restriction to the unit sphere is without loss of generality. All of our results and analysis extend readily
to the setting where contexts are drawn from a distribution over the d-dimensional sphere with radius R > 0.



ALGORITHM 1: Strategy-Aware OLS with Apple Tasting Feedback (SA-0LS)
Assign action 1 for the first d rounds.
Set Day1 = {(xs, 7))}y
fort=d+1,...,7T do
Estimate ") as 551) using OLS and data D;.
Assign action a; = 1 if (§£1>7x§) >4 ||§£1>H2 + 70.
if (521),%) > 6||5i1) l2 + 7o then
Conclude that x; = x;.
Dugr =DiU{(x ")}

else
Dit1 =Dy

for exploration; a growing area of interest in the online learning literature (see references in Sec-
tion 1.2). Moreover, such assumptions often hold in practice. For example, in the related problem
of (non-strategic) contextual bandits (we will later show how our results extend to the strategic
version of this problem), Bietti et al. [14] find that a greedy algorithm with no explicit exploration
achieved the second-best empirical performance across a large number of datasets when compared to
many popular contextual bandit algorithms. In our settings of interest (e.g. lending, hiring), such an
assumption is reasonable if there is sufficient diversity in the applicant pool. In Section 4 we show
how to remove this assumption, albeit at the cost of worse regret rates and exponential computational
complexity.

At a high level, our algorithm (formally stated in Algorithm 1) relies on three key ingredients to
achieve sublinear strategic regret:

1. A running estimate of 0 is used to compute a linear policy, which separates agents who
receive action 1 from those who receive action 0. Before deploying, we shift the decision
boundary by the effort budget d to account for the agents strategizing.

~(1
2. We maintain an estimate of 8% (denoted by 0( )) and only updating it when a; = 1 and
we can ensure that X} = x;.

3. We assign actions “greedily” (i.e. using no explicit exploration) w.r.t. the shifted linear
policy.
~(1
Shifted linear policy If agents were not strategic, assigning action 1 if <0£ ), x;) > 7o and action
~(1
0 otherwise would be a reasonable strategy to deploy, given that 8, ~ is our “best estimate” of o
so far. Recall that the strategically modified context x; is s.t., ||x} — x¢|| < 0. Hence, in Algorithm 1,

~(1
we shift the linear policy by § ||0( )H2 to account for strategically modified contexts. Now, action

(1 ~(1
1 is only assigned if (Gi ),xt> > 5||9( )||2 + 7o. This serves two purposes: (1) It makes it so that

any agent with unmodified context x such that (8, *,x) < r( cannot receive action 1, no matter how

~(1 ~(1
they strategize. (2) It forces some agents with contexts in the band rg < <0§ ), X) < 6||0( )||2 + 10

to strategize in order to receive action 1. Estimating 0 After playing action 1 for the first d

rounds, Algorithm 1 forms an initial estimate of 0" via ordinary least squares (OLS). Note that
since the first d agents will receive action 1 regardless of their context, they have no incentive to

modify and thus x; = x; for ¢ < d. In future rounds, the algorithm’s estimate of oW is only updated
whenever x; lies strictly on the positive side of the linear decision boundary. We call these contexts
clean, and can infer that x; = x; due to the lazy tiebreaking assumption in Definition 2.1 (i.e. agents
will not strategize more than is necessary to receive the positive classification).

Condition 3.2 (Sufficient condition for x’ = x). Given a shifted linear policy parameterized by
BY € R? we say that a context x' is clean if (31, x') > 6(18Y |5 + ro.

Greedy action assignment By assigning actions greedily according to the current (shifted) linear
policy, we are relying on the diversity in the agent population for implicit exploration (i.e., to

collect more datapoints to update our estimate of 0(1)). As we will show, this implicit exploration



is sufficient to achieve 5(\/T) strategic regret under Assumption 3.1, albeit at the cost of an
exponentially-large (in d) constant which depends on the agents’ ability to manipulate (9).

We are now ready to present our main result: strategic regret guarantees for Algorithm 1 under apple
tasting feedback.

Theorem 3.3 (Informal; detailed version in Theorem B.1). With probability 1 — ~, Algorithm 1
achieves the following performance guarantee:

Reg(T) < O (CO el 51) s \/dOQTlog(éldT/fy))

where cy is a lower bound on the density ratio as defined in Assumption 3.1, c¢1(d,d) =

Pyopa(x[1] > 6) > © ((17;7;1/2) for sufficiently large d and c3(d,§) = Ey_ya[x[2)?]|x[1] >

§)>(2-16—- l52) where x[i] denotes the i-th coordinate of a vector x.*

Proof sketch. Our analysis begins by using properties of the strategic agents and shifted linear deci-
sion boundary to upper-bound the per-round strategic regret for rounds ¢ > d by a term proportional

(1) . . L
to 0, " — 6W)||,, i.e., our instantaneous estimation error for 8. Next we show that

ey
= (S o 1T

||9 s

where Ap,in (M) is the minimum eigenvalue of (symmetric) matrix M, and I(l) = {(0, ( ) , Xg) >
~(1

) HGi )Hg + 7o} is the event that Algorithm 1 assigns action a; = 1 and can verify that x/, = x,. We

upper-bound the numerator using a variant of Azuma’s inequality for martingales with subgaussian

tails. Next, we use properties of Hermitian matrices to show that /\,m-n(zz:l xsxsTll{Igl)}) is
lower-bounded by two terms: one which may be bounded w.h.p. by using the extension of Azuma’s

inequality for matrices, and one of the form 22:1 Amin(Bs—1[xsx] 1{I§1) }1), where E;_; denotes
the expected value conditioned on the filtration up to time s. Note that up until this point, we have
only used the fact that contexts are drawn i.i.d. from a bounded distribution.

Using Assumption 3.1 on the bounded density ratio, we can lower bound A, (Es_ 1 [x,%] ]I{Iél) )

by Amin(Bpa s—1 [xsx;r]l{Is(l)}]), where the expectation is taken with respect to the uniform dis-
tribution over the d-dimensional ball. We then use properties of the uniform distribution to show

that )\,,nin(EUd7S_1[XSXI]I{Igl)}]) > O(cp - ¢(d,d)). Putting everything together, we get that

~(1
HO,E ) 0V |y < (co - e(d,d) - VI)~* with high probability. Via a union bound and the fact
that 3, ¢ (7 % < 2T, we get that Reg(7T") < O(F =(@5) V/T). Finally, we use tools from high-
dimensional geometry to lower bound the volume of a spherical cap and we show that for sufficiently

large d, ¢1(d,0) > © (W#) . O

3.1 High-dimensional contexts

While we typically think of the number of agents 7" as growing and the context dimension d as
constant in our applications of interest, there may be situations in which 7" is either unknown or small.
Under such settings, the 1/¢(d,5) dependence in the regret bound (where ¢(d, §) = ¢1(d, d) - c2(d, §))
may become problematic if 4 is close to 1. This begs the question: “Why restrict the OLS estimator
in Algorithm 1 to use only clean contexts (as defined in Condition 3.2)?” Perhaps unsurprisingly,

~(1
we show in Appendix B that the estimate 0( ) given by OLS will be inconsistent if even a constant
fraction of agents strategically modify their contexts.

*While we assume that & is known to the principal, Algorithm 1 is fairly robust to overestimates of 8, in
the sense that (1) it will still produce a consistent estimate for 0™ (albeit at a rate which depends on the over-
estimate instead of the actual value of §) and (2) it will incur a constant penalty in regret which is proportional to
the amount of over-estimation.



ALGORITHM 2: Explore-Then-Commit

Input : Time horizon 7, failure probability v
Set Tp according to Theorem B.9

Assign action 1 for the first Tj rounds
Estimate 81 as é(TIU) via OLS
fort=To+1,...,T do

Assign action a; = 1 if (@(Tlo>, x) >4 - ||9(Tlo) |l2 and action a; = 0 otherwise

Given the above, it seems reasonable to restrict ourselves to learning procedures which only use data
from agents for which the principal can be sure that x’ = x. Under such a restriction, it is natural to
ask whether there exists some sequence of linear polices which maximizes the number of points of
the form (x}, (1)) for which the principal can be sure that x; = x;. Again, the answer is no:

Proposition 3.4. For any sequence of linear policies {3, }+, the expected number of clean points is:

By oooxmtd | O 1{(xt, B > 8]Bell2} | = e1(d,0) - T

te[T)
when (initial) contexts are drawn uniformly from the d-dimensional unit sphere.

The proof follows from the rotational invariance of the uniform distribution over the unit sphere.

Intuitively, Proposition 3.4 implies that any algorithm which wishes to learn oW using clean samples
will only have ¢ (d, §) - T datapoints in expectation. Observe that this dependence on ¢4 (d, §) arises
as a direct result of the agents’ ability to strategize. We remark that a similar constant often appears
in the regret analysis of BIC bandit algorithms (see Section 1.2). Much like our work, [43] find that
their regret rates depend on a constant which may be arbitrarily large, depending on how hard it is
to persuade agents to take the principal’s desired action in their setting. The authors conjecture that
this dependence is an inevitable “price of incentive-compatibility”. While our results do not rule out
better strategic regret rates in d for more complicated algorithms (e.g., those which deploy non-linear
policies), it is often unclear how strategic agents would behave in such settings, both in theory (Def-
inition 2.1 would require agents to solve a non-convex optimization with potentially no closed-form
solution) and in practice, making the analysis of such nonlinear policies difficult in strategic settings.

We conclude this section by showing that polynomial dependence on d is possible, at the cost of

5(T2/ 3) strategic regret. Specifically, we provide an algorithm (Algorithm 3) which obtains the
following regret guarantee whenever 7' is small or unknown, which uses Algorithm 1 and a variant of
the explore-then-commit algorithm (Algorithm 2) as subroutines:

Theorem 3.5 (Informal; details in Theorem B.13). Algorithm 3 incurs expected strategic regret

5/2

E[Reg(T)] = O <min {(1d(§)d/2 VT,d- T2/3}) :

where the expectation is taken with respect to the sequence of contexts {xt}tE[T] and random noise
{ft}te[T]~

The algorithm proceeds by playing a “strategy-aware” variant of explore-then-commit (Algorithm 2)
with a doubling trick until the switching time 7* = ¢(d, ¢) is reached. Note that g(d, J) is a function
of both d and 9, not cq. If round 7* is indeed reached, the algorithm switches over to Algorithm 1 for
the remaining rounds.

Extension to bandit feedback Algorithm 1 can be extended to handle bandit feedback by explicitly

~(0 ~(1
keeping track of an estimate 0( ) of 0¥ via OLS, assigning action a; = 1 if and only if <0§ '

~(0 ~(0 ~(0
OE ), X)) >4 HBE ) Hi )||2, and updating the OLS estimate of 0( : whenever a; = 0 (since agents

will not strategize to receive action 0). Algorithm 3 may be extended to bandit feedback by “exploring”
for twice as long in Algorithm 2, in addition to using the above modifications. In both cases, the
strategic regret rates are within a constant factor of the rates obtained in Theorem 3.3 and Theorem 3.5.



ALGORITHM 3: Strategy-aware online classification with unknown time horizon

Compute switching time 7* = g(d, §)
Leto =1
fori=1,23,...do
Let Ti = 2-Ti 1
if > _, 7 < 7" then
Run Algorithm 2 with time horizon 7; and failure probability 1/77
else
Break and run Algorithm 1 for the remainder of the rounds

4 Beyond stochastic contexts

In this section, we allow the sequence of initial agent contexts to be chosen by an (oblivious) adversary.
This requires new algorithmic ideas, as the regression-based algorithms of Section 3 suffer linear
strategic regret under this adversarial setting. Our algorithm (Algorithm 4) is based on the popular
EXP3 algorithm [6]. At a high level, Algorithm 4 maintains a probability distribution over “experts”,
i.e., a discretized grid &€ over carefully-selected policies. In particular, each grid point e € £ C R?

represents an “estimate” of 0W, and corresponds to a slope vector which parameterizes a (shifted)
linear threshold policy, like the ones considered in Section 3. We use a; ¢ to refer to the action played
by the principal at time ¢, had they used the linear threshold policy parameterized by expert e. At every
time-step, (1) the adversary chooses an agent x;, (2) a slope vector e; € £ is selected according to the
current distribution, (3) the principal commits to assigning action 1 if and only if (e;, x}) > d||e¢]|2,
(4) the agent strategically modifies their context x; — x}, and (5) the principal assigns an action a;
according to the policy and receives the associated reward 7;(a;) (under apple tasting feedback).

Algorithm EXP4, which maintains a distribution over experts and updates the loss of all experts based
on the current action taken, is not directly applicable in our setting as the strategic behavior of the
agents prevents us from inferring the loss of each expert at every time-step [? ]. This is because if x; #
x; under the thresholding policy associated with expert e), it is generally not possible to “back out” x;
given x}, which prevents us from predicting the counterfactual context the agent would have modified
to had the principal been using expert €’ instead. As a result, we use a modification of the standard
importance-weighted loss estimator to update the loss of only the policy played by the algorithm (and
therefore the distribution over policies). Our regret guarantees for Algorithm 4 are as follows:

Theorem 4.1 (Informal; detailed version in Theorem C.1). Algorithm 4 incurs expected strategic
regret E[Reg(T)] = O(T(d+1)/(d+2)),

We remark that Algorithm 4 may be extended to handle settings in which agents are selected by
an adaptive adversary by using EXP3.P [6] in place of EXP3.

Proof sketch. The analysis is broken down into two parts. In the first part, we bound the regret w.r.t.
the best policy on the grid. In the second, we bound the error incurred for playing policies on the
grid, rather than the continuous space of policies. We refer to this error as the Strategic Discretization
Error (SDE(T)). The analysis of the regret on the grid mostly follows similar steps to the analysis
of EXP3 / EXP4. The important difference is that we shift the reward obtained by a,, by a factor of
1+ A, where A is a (tunable) parameter of the algorithm. This shifting (which does not affect the
regret, since all the losses are shifted by the same fixed amount) guarantees that the losses at each
round are non-negative and bounded with high probability. Technically, this requires bounding the
tails of the subgaussian of the noise parameters ¢;.

We now shift our attention to bounding SDE(T). The standard analysis of the discretization error
in the non-strategic setting does not go through for our setting, since an agent may strategize very
differently with respect to two policies which are “close together” in /5 distance, depending on the
agent’s initial context. Our analysis proceeds with a case-by-case basis. Consider the best expert e*
in the grid. If a; ¢« = 7*(x;) (i.e., the action of the best expert matches that of the optimal policy),
there is no discretization error in round ¢. Otherwise, if a; ¢« # 7*(x;), we show that the per-round
SDE is upper-bounded by a term which looks like twice the discretization upper-bound for the
non-strategic setting, plus an additional term. We show that this additional term must always be
non-positive by considering two subcases (a;.ex = 1, 7*(x;) = 0 and a4 e« = 0, 7*(x;) = 1) and
using properties about how agents strategize against the deployed algorithmic policies. O



ALGORITHM 4: EXP3 with strategy-aware experts (EXP3-SAE)
Create set of discretized policies e € £ = [(1/€)?], where € = (do log(T)/T)"/(@+2).
Set parameters n = /<8UED = 2p\|€], and A = 1/2Tog T.

Tx2gl > Y
Initialize probability distribution p:(e) = 1/|&|, Ve € £.
for t € [T] do
Choose policy e; from probability distribution g:(e) = (1 — ) - p:(e) + \%I
Observe x;.
Play action as,e, = 1 if (e, x;) > J|/e:||2. Otherwise play action a¢,e, = 0.
Observe reward r+(at,e, ).
Update loss estimator for each policy e € &: £(e) = (1 + X — ri(are,)) - L{e = e }/q:(e).

Update probability distribution Ve € &: p,y1(e) x pi(e) - exp (—nz\t (e)).

Computational complexity While both Algorithm 1 and Algorithm 3 have O(d?) per-iteration
computational complexity, Algorithm 4 must maintain and update a probability distribution over a
grid of size exponential in d at every time-step, making it hard to use in practice if d is large. We view
the design of computationally efficient algorithms for adversarially-chosen contexts as an important
direction for future research.

Extension to bandit feedback Algorithm 4 may be extended to the bandit feedback setting by
maintaining a grid over estimates of 0 — 0 (instead of over 8V)). No further changes are required.

5 Conclusion

We study the problem of classification under incentives with apple tasting feedback. Such one-sided
feedback is often what is observed in real-world strategic settings including lending and hiring. Our

main result is a “greedy” algorithm (Algorithm 1) which achieves O(v/T) strategic regret when the
initial agent contexts are generated stochastically. The regret of Algorithm 1 depends on a constant
¢1(d, §) which scales exponentially in the context dimension, which may be problematic in settings
for which the number of agents is small or unknown. To address this, we provide an algorithm

(Algorithm 3) which combines Algorithm 1 with a strategy-aware version of the explore-then-commit

algorithm using a doubling trick to achieve (5(min{ Cl(‘/‘?g) ,d - T?/3}) expected strategic regret

whenever T is unknown. Finally, we relax the assumption of stochastic contexts and allow for

contexts to be generated adversarially. Algorithm 4 achieves O(T %E) expected strategic regret
whenever agent contexts are generated adversarially by running EXP3 over a discretized grid of
strategy-aware policies, but has exponential-in-d per-round computational complexity. All of our
results also apply to the more general setting of bandit feedback, under slight modifications to the
algorithms. There are several directions for future work:

Unclean data The regret of Algorithm 1 depends on a constant which is exponentially large in d,
due to the fact that it only learns using clean data (Condition 3.2). While learning using unclean data
will generally produce an inconsistent estimator, it would be interesting to see if the principal could
leverage this data to remove the dependence on this constant. Alternatively, lower bounds which
show that using unclean data will not improve regret would also be interesting.

Efficient algorithms for adversarial contexts Our algorithm for adversarially-chosen agent contexts
suffers exponential-in-d per-round computational complexity, which makes it unsuitable for use
in settings with high-dimensional contexts. Deriving polynomial-time algorithms with sublinear
strategic regret for this setting is an exciting (but challenging) direction for future research.

More than two actions Finally, it would be interesting to extend our algorithms for strategic
learning under bandit feedback to the setting in which the principal has three or more actions at
their disposal. While prior work [29] implies an impossibility result for strategic regret minimization
with three or more actions, other (relaxed) notions of optimality (e.g., sublinear Stackelberg regret;
recall Definition 2.2) may still be possible.
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A Useful concentration inequalities

Theorem A.1 (Matrix Azuma, Tropp [54]). Consider a self-adjoint matrix martingale {Ys :
s = 1,...,t} in dimension d, and let {X}cpy) be the associated difference sequence satisfy-
ing By_1Xs = 0gxq and X2 =< A2 for some fixed sequence {As}se of self-adjoint matrices. Then
forall o > 0,

P (Amaz (Y — BY;) > @) < d - exp(—a?/80?),

2._ ||t 2
where 0% 1= st:l Az

2

Theorem A.2 (A variant of Azuma’s inequality for martingales with subgaussian tails, Shamir [51]).
Let Z1,Zs, ... Z; be a martingale difference sequence with respect to a sequence W1, Wao, ... W,
and suppose there are constants b > 1, ¢ > 0 such that for any s and any o > 0, it holds that

max{P(Z, > a|X1,..., X 1),P(Zs < —a|X1,..., Xs 1)} < b-exp(—ca?).
Then for any v > 0, it holds with probability 1 — -y that

¢
Z 7. < 28blog(1/7)
pa cr

B Proofs for Section 3
B.1 Proof of Theorem 3.3

Theorem B.1. Let fi;a : X — R denote the density function of the uniform distribution over the

d-dimensional unit sphere. If agent contexts are drawn from a distribution over the d-dimensional unit

sphere with density function f : X — R such that ffi)zx) >co >0, Vx € X, then Algorithm 1
- U

achieves the following performance guarantee:

8

co - c1(6,d) - ea(6,d

with probability 1 — v, where 0 < ¢1(0,d) = Py pya(x[1] > §) and 0 < c2(d,d) :=

Epa[x[2]%[x[1] > ).

Reg(T) < 4d +

] V/14do?T log(4dT /)

Proof. We start from the definition of strategic regret. Note that under apple tasting feedback,
0 =o.

T
Reg(T) = Y (0 01" x,)
t=1
L @) atan - (a7) . (ar)
= Z<0t i —Ot ' ;Xt> + <0(at) _et ' 7Xt> + <9t ' _e(at)axt>
t=1

S0l 00

T
5D ~(0)
<> (6~ 8| ez + [0 - 67| il

t=1
d ) ©)
<odt 0 606" + 6@ - 0.7
t=2d+1

where the first inequality follows from Lemma B.2, the second inequality follows from the Cauchy-
Schwarz, and the third inequality follows from the fact that the instantaneous regret at each time-step
is at most 2 and we use the first d rounds to bootstrap our OLS. The result follows by Lemma B.3, a

union bound, and the fact that ZdT 11 \/g < 2V/T. O

Lemma B.2.
~(ap)  ~(ar)
t t

(6 -0, ,x:) <0
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Proof If at = at, the condition is satisfied trivially. If at # af, then either (1) ( - 0 x;) —

518 — 8|, > 0 and (0 — 0@y < 0or2) @ — 8", x) — 58" ,E)

(oM — 0<0>> > 0.
Case 1: (8. — 8" x) = 518" =8I, > 0 and 6V — 0©) < 0. (a? = 0, a; = 1)
By Definition 2.1, we can rewrite

~(1)  ~(0) ~(1)  ~(0)
0, —0, 7x2>_6”0t -6, [2>0

l2 < 0 and

as
8® _g® A1) S0
0, =0, %))+ (5" =)0, =6, >0

for some ¢’ < 4. Since (&’ )||0 EO)HQ <0, (@il) - gi()),xt) > 0 must hold.

Case2: (0. — 0" x) — 518" — 8"l < 0and (81 — 0 > 0. (a = 1, a; = 0)

~(0
Since modification did not help agent ¢ receive action a; = 1, we can conclude that (0( ) 705/ ), X)) <

0. O

Lemma B.3. Let fr;a : X — R denote the density function of the uniform distribution over

the d-dimensional unit sphere. If T > d and agent contexts are drawn from a distribution over

the d-dimensional unit sphere with density function f : X — Rxq such that flx ()) > co € Ry,

Vx € X, then the following guarantee holds under apple tasting feedback.

2 \/14d02 log(2d/~+)
c1(6,d) - c2(6,d) t

~(1)
1o — 0; 102 <

with probability 1 — ~;.

Proof. Let TV = {(éil), Xs) > (5\\9 |2 + 70 }. Then, from the definition of 0§+1 we have:

Ailﬂ = (Z XX T]l{I(l)}> Zx re(1)1{ZV} (closed form solution of OLS)
B (Z xsxlﬂ{IS)}) 3" (700 4 ) 1{Z) (plug in (1))
s=1 s=1

t -1y
g (z xsxzmg”}) S i1 (20}
s=1

s=1

Re-arranging the above and taking the /5 norm on both sides we get:

t -1y
(Z sz;r]l{I:gl)}) szes]l{zél)}
s=1 s=1

2

¢
szes]l{zgl)}
s=1 2

o®
o =0,

IN

(Cauchy-Schwarz)

¢ —1
(St vtz )
s=1 9
¢ (1)
L xee 1{Z }H2

Omin (T xex] L{ZMY)
22:1 Xsesl{zs(l)}HQ
Amin (ZZ:1 szz]l{Igl)})
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where for a matrix M, o,y is the smallest singular value o, (M) := minj, = [|Mz|| and Ayin

is the smallest eigenvalue. Note that the two are equal since the matrix Zi:l sz;r]l{l'gl)} is PSD
as the sum of PSD matrices (outer products induce PSD matrices). The final bound is obtained by
applying Lemma B.4, Lemma B.5, and a union bound. O

Lemma B.4. The following bound holds on the {5-norm of 22:1 xses]l{Igl)} with probability
1— Yt

t
szes]l{I‘gl)}
s=1

< 2y/14dotlog(d/~;)
2

Proof. Let x[i] denote the i-th coordinate of a vector x. Observe that 3%, e,x,[i] 11{151)} is a sum
of martingale differences with Z := e,x; [i]l{Iél)}, Xy =30 €oXy [i]]l{Is(,l)}, and

max{P(Z, > a|X1,..., Xs_1),P(Zs < —a|X1,..., X 1)} < exp(—a?/20?).
By Theorem A.2,

t
> eax [i{ZV} < 2¢/1402tlog(1/7,)
s=1

with probability 1 — ;. The desired result follows via a union bound and algebraic manipulation. []

Lemma B.5. The following bound holds on the minimum eigenvalue of 3"\ _| x,x] IL{IS)} with
probability 1 — ~:

t
t
)‘min s TI[ I(l) > 44/2t1 d
(Z:lxxs 17 Z 6. d) -e6.d) V/2tlog(d/ )

Proof.

t
)\min (Z sz;r 1{151) }>

s=1

t t
Z /\’min (Z szjl{zgl)} - Es—l[xsle{zél)}]> + /\min (Z Es—l[xsxz]l{zgl)}]>

s=1 s=1

t t
> Ain <Z x.x, 1{Z(M} — Es_l[xsxjﬂ{zs“)}]) +3 A (]Es_l[xSxST]l{Igl)}]) 2)
s=1

s=1

where the inequalities follow from the fact that A, (A + B) > Apin(A) + Apin(B) for
two Hermitian matrices A, B. Note that the outer products form Hermitian matrices. Let

V=3, XSXZ]].{IQ)} - Es,l[xsx;—]l{l's(l)}]. Note that by the tower rule, EY; = EY; = 0.
Let — X, := E,_1[x,x] 1{Z"}], then E,_; [~ X,] = 0, and (—X,)? < 41,. By Theorem A.1,

P(Amaz(~Yy) > @) < d- exp(—a®/32t).
Since —Anaz(—Y2) = Amin(Yz),

P(Anaz(Y:) < @) < d-exp(—a?/32t).
Therefore, Ayin (Y:) > 4\/m with probability 1 — ;. We now turn our attention to lower
bounding Apin (Es_1 [xsx] 1{Z{V]).
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)\mm(Es,l[xst]l{Igl)}]):: min wTES,l[xsx;r]l{Is(l)}]w

wesd—1
= min w!' (/ xsx;r]l{Is(l)}f(xs)dxs> w

wesa-1
>co- min w B,y gafxex] M w

wesd-1 ’
= Cowggjlﬂ_l E, 1 pal{w,%:)2(By, %s) > 0|8, 2] - Po_y (B x5) > 8|8, ]12)
c1(8,d)

=co-c1(0,d) min E,, pal{w,x:)2(B,, %) > 0|3, ]l2] 3)

wesd—1

Throughout the remainder of the proof, we surpress the dependence on U? and note that unless stated
otherwise, all expectations are taken with respect to U¢. Let B, € R¢*“ be the orthonormal matrix

such that the first column is Bé/HfﬂéHg Note that Be; = 3,/|8, |2 and B,x ~ U*.
Es-1[xsx; [(B,xs) > 6]18, /] = Eso1[(Boxs)(Bsxs) '[(B,, Bsxs) > 0]
= BBy [x,x] [x] B |B,]l2Bser > 6+ [|B, 2] B
= B,E,_1[x.x/ |x,[1] > 6]B]
Observe that for j # 1, i # j, E[x4[j]xs[i]|xs[1] > ] = 0. Therefore,

+ (Epea(Ux,(1) > 8] — B[22 [1] > 8)) 2 ( 3 )

and

A7nin(IEs—1[)(.S>C‘ST]1‘{I§1)}]) Z Co - C1 (67 d) Hg(? (E[XS[2]2|XS[1] Z 6]”‘“)”2
wesd—1

~ 2
+ (B [12[x[1] > 0] — Efx,[2]*[x,[1] > d]) <w, o, > )

>cor (67 d) . 62(67 d)

Lemma B.6. For sufficiently large values of d,

>0 (U207,

Proof. Lemma B.6 is obtained via a similar argument to Theorem 2.7 in Blum et al. [15]. As in Blum
et al. [15], we are interested in the volume of a hyperspherical cap. However, we are interested
in a lower-bound, not an upper-bound (as is the case in [15]). Let A denote the portion of the

d-dimensional hypersphere with x[1] > d‘ﬁ and let H denote the upper hemisphere.
vol(A)
vol(H)

In order to lower-bound ¢4 (6, d), it suffices to lower bound vol(A) and upper-bound vol(H ). In what
follows, let V' (d) denote the volume of the d-dimensional hypersphere with radius 1.

c1(0,d) := Py pa(x[1] > 6) =

18



Lower-bounding vol(A): As in [15], to calculate the volume of A, we integrate an incremental
volume that is a disk of width dx[1] and whose face is a ball of dimension d— 1 and radius /1 — x[1]2.

The surface area of the disk is (1 — x[1]?) = V(d — 1) and the volume above the slice x[1] > ¢ is

vol(A) = /5 (1 —x[1]%) = V(d — 1)dx[1]

To get a lower bound on the integral, we use the fact that 1 — 22 > 1 — 2 for « € [0, 1]. The integral
now takes the form

V(d-1) dt1

vol(A) > /5 (1—x[1)) = V(d - 1)dx[1] = ST -0

Upper-bounding vol(H ): We can obtain an exact expression for vol(H) in terms of V' (d — 1) using
the recursive relationship between V' (d) and V' (d — 1):

vol(H) = 3V(d) = YT 272

C1 (5, d) Z

(1-6)% T(¢+
d
5+

where the equality follows from Stirling’s approximation. O

Lemma B.7. The following bound holds on c2(0,d):

1 /3 1. 1,\°
> —(S—26—- :
e2(6.d) > 5 (4 50 45>

Proof. We begin by computing E[x[2]?|x[1] = ¢'], for &’ € (0,1). If x[1] = ¢, then x[2]* + ... +
x[d)? < 1 — (6")2. Using this fact, we see that

1 1
Epx(212x(1] = ') = SErmtmigion -y lr] = 51— (0"

Since E[x[2]?[x[1] > 6] > E[x[2]?[x[1] = § + 152],

S+17 1 (3 1. 1,)\°
Bpc2 el 2 4] > B [Pt = 25| = 0 (- 3o - 1)
O
B.2 Proof of Proposition 3.4
Proposition B.8. For any sequence of linear threshold policies 31, . . ., Br,
T
Ex, . xpmti | O 1{(xe, Be) = 811Byllo} | = T - Pewpra(x[1] 2 6)
t=1
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Proof. Let B, € R% 4 be the orthonormal matrix such that the first column is 3,/||3; 2. Note that
Bix ~ U%ifx ~ U and Bie; = 3,/|B,]/2-

»ﬁ

T
x1, Lxp~U9 Z XtaIBt > 6||16t|| } ZPXtNU”(<Xtv/6t> > 5HﬁtH2)

t=1 t=1

T
= ZthNUd(<BtXt,,8t> > 6[|B¢|l2)
t=1

T
> Panva(x] B ||By]|2Brer > 6118, 2)
t=1

Py, v (X Tger > 6|2)

Il Il
> 1M

Pyrpa(x[1] = 6]l2)

B.3 Explore-Then-Commit Analysis
Theorem B.9. Let fr;a : X — Rx( denote the density function of the uniform distribution over the
d-dimensional unit sphere. If agent contexts are drawn from a distribution over the d-dimensional
unit sphere with density function f : X — R>¢ such that f]; (Z;z) >co >0, Vx € X, then Algorithm 2
achieves the following performance guarantee

8-631/3

Reggro(T) < ————do?3T?/* 1og'/3(4d /)
Co

with probability 1 — ~ if Ty := 4 - 631/352/34T2/310g/3 (4d/~).

Proof.

T
Regppc(T Z — 0 x;)

t=1

T
< Ty + S0 — 0 x,)
t=

1
Lo @) s (a) (ar)
=To + Z <gTot/2 0T0/27Xt> + (0“0 — 9Tt/2’Xt> <0T/2 0), x,)

t=Tp+1

T
H(1) ;(0)
<To+ Z (6" — O7,/2:%¢)| + (0 — 01, /2:%4)|

~(0)
<To+ Z o™ — 0T0/2H %cll2 + 116 — 6, o212
t=To+1
~(1) (0)
<To+T-[6W - Or, 2l + T 16 — 0T0/2||2

24d do? log(4d
<7, 1. 24 7do?log(4d/v)
Co To

with probability 1 — ~, where the last inequality follows from Lemma B.10 and a union bound. The
result follows from picking T = 4 - 631/3da2/3T2/3 10g!/3 (4d /). O

Lemma B.10. Let fya : X — R>( denote the density function of the uniform distribution over the
d-dimensional unit sphere. If T > 2d and agent contexts are drawn from a distribution over the
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d-dimensional unit sphere with density function f : X — Rx>q such that ACIRES co >0, Vx e X,

fu(x) =
then the following guarantee holds for a € {0,1}.
(@) 12d [7do?log(2d/:)
169 — 8,7 < == | 2=
Co 0
with probability 1 — ;.
Proof. Observe that
@ To/2 -1 To/2
O1,/2 = Z Xa-&-kxé-x-k Z Xs+k7“§i)k
To/2 12
= | D xerrxlin > Xot (X010 + €sir)
s=1
To/2 -t To/2
Z Xs-‘rkxsT.Hg Z Xs+k€s+k
s=1 s=1
where £k = 0if a = 0 and k = T} if a = 1. Therefore,
@) To/2 -1 To/2
Hg(a) - 0T0/2||2 = Z xs+kx;r+k Z Xs+k€s+k
2
-1
S Z Xs+kx;r+k Z Xs+k€s+k
s=1 ) = 9
To/2
[ xvc],
f"min(X:sTO/l2 Xs-&-kx;rk)
HZTO/l Xs+k€s+k ’
mm(ze 1 X8+kxg+k)
The desired result is obtained by applying Lemma B.11, Lemma B.12, and a union bound. O

Lemma B.11. The following bound holds on the {5-norm ofz 21 Xs+k65+k with probability 1 —

To/2
Z Xs+k€s+k <2 7d0’2T0 log(d/’y)
2

Proof. Observe that ZS | ® €hysXpssli] is a sum of martingale differences with Zp,, :=
€k+€Xk+€[ ] Xk—i—e = Z r—1 €45/ Xk+s' [T [ ], and

max{]P’(Zk+s > OZ|X]§+1, Ce 7Xk+571)7P(Z]€+3 < —Oé|)(k+17 . ,XkJrS,l)} < -exp(—a2/202).

By Theorem A.2,
To/2

> enpsXipsli] < 2¢/70%Ty log(1/7:)
s=1

with probability 1 — ;. The desired result follows via a union bound and algebraic manipulation. [J
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Lemma B.12. The following bound holds on the minimum eigenvalue of Z?i/lz x8+kx;r+k with

probability 1 — ~:

To/2 T
Amin sinXi | > 22+ 44/Tplog(d
;XMXSM Z 6d+ o log(d/v)
Proof.
To/2 To/2 To/2
Amzn(z Xs+szT+k) > /\min(z Xs-&-k’x;r-i-k- - E[Xs+kx;~r+kD + /\mm(z E[Xs+kxsT+k-])
s=1 s=1 s=1
To/2 To/2
> )\min(z Xs4kXqpk — EXs X, pk]) + Z Anin (BXs+5% 4 1))
s=1 s=1

where the inequalities follow from the fact that A\, (A + B) > Apin(A4) + Amin(B) for two
Hermitian matrices A, B. Let Yz, /5 := ZsTi/f xs+kxsT+k — E[xs+kx;r+k]. Note that EY7, o =
EYy =0, = X4 := Elxepix ;] E[-Xs44] = 0, and (—X45)? < 41;. By Theorem A.1,

P(Anaz (=Y, 2) > ) < d- exp(fa2/16To).
Since *)\max(*YTO/Q) = Amin(YTo/Q)v
P()\maz(YTo/2) <a)<d- exp(fa2/16T0).

Therefore, Anin (Y7, /2) > 4+/Tolog(d/~) with probability 1 — . We now turn our attention to
lower bounding A1, (E[xs+kx;k]).

Amin(EXstxX0y,]) = min w ! Elxgixx,,,lw
wesd-1

. 1
= min wT—Idw
wesd—1 3d

1
Y

B.4 Proof of Theorem 3.5

Theorem B.13. Let Regoro(T) be the strategic regret of Algorithm 1 and Reggrc(T) be the
strategic regret of Algorithm 2. The expected strategic regret of Algorithm 3 is

E[Reg(T)] < 4 - min{E[Regqy,s(T)], E[Reggrc(T)]}

Proof. Case 1: T' < 7* From Theorem B.9, we know that

8- 631/3
Regpra(mi) < 7‘1‘72/37}2/3 10g1/3(4d7'1-2)
Co

with probability 1 — 1/72. Therefore,

8. 631/3 2
daQ/BTZ-Q/?’ log1/3(4d7'i2) + —
.

E[Regprc(Ti)] < -
0 i

Observe that Z;;ll E[Reggrc(75)] < E[Reggrc(7:)]. Suppose 75,1 < T < 7; for some i. Under
such a scenario,
E[Reg(T)] < 2E[Regprc(:)]
< 2E[Reggrc(27)]
< 4E[Regprc(T)]
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Case 2: T' > 7* Let t* denote the actual switching time of Algorithm 3.

t* T

Reg(T) := > (0" =01 x,) + >~ (61 — 0(*) x;)

t=1 t=t*+1

E[Reg(T)] < 2-E[Reggppc(t”)] + E[Regors (T —t7)]

<2-E[Regors(t")] + E[Regors(T)]

<2-E[Regors(77)] + E[Regors (T)]

< 3-E[Regors(T)]

where the first line follows from case 1, the second line follows from the fact that t* < 7* (and so

E[Regrrc(t*)] < E[Regors(t*)]), the third line follows from the fact that ¢* < 7*, and the fourth
line follows from the fact that T" > 7*. O

B.5 Inconsistency of OLS when using all data

Theorem B.14. lim;_, égl

lim; oo SO0, xXix] 1{a, = 1}.

0 if and only if lim_,ee 22:1 x'x, " 1{a, = 1} =

Proof.

t -1y
. '\(1) . T 1
tlfﬂo 0,1 = tliﬁlo <§ x.x, Has = 1}> §71X;T§ "1{a, =1}

t -1y

1 1 T _ / T (1) _

= tlggo < > x.x, 1{as = 1}) sz(xs 0, +e5)l{as =1}
t

BT 1T _ 1) _

= t]ggo (2:1 x.X, 1{as = 1}) szx 0, ’1{as =1}

-1
. 1T _ / _
+ tlgrolO ( x.x, 1{as = }) szes]l{as =1}

t
T T _ — (1)
= tlggo < x,x, 1{as = 1}) ( E x\x] 1{a, = 1}) 0,

C Proofs for Section 4
C.1 Proof of Theorem 4.1

1/(d+2)
Theorem C.1. Algorithm 4 with n = ,/1;%\9@?, v = 2nM\E|, and € = (%) incurs
expected strategic regret:

E[Reg(T)] < 6T(d+1)/(d+2)(da log T)l/(d+2) -0 (T(d+1)/(d+2)) .

Proof. Let a; . correspond to the action chosen by a grid point e € £. We simplify notation to
a; = a¢ ¢, to be the action chosen by the sampled grid point e; at round ¢. For the purposes of the
analysis, we also define £;(e) =1+ A — r4(ae, ).
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We first analyze the difference between the loss of the algorithm and the best-fixed point on the grid
e*, i.e.,

E[Reg®(T)] = maxE | > ry(are:)| —E | > re(ar)

e*e&
te[T) te(T)

=E th et —g}é%E Zﬁt

te[T) te[T]

where the equivalence between working with ¢;(-) as opposed to r;(-) holds because ¢;(-) are just a
shift from r;(-) that is the same across all rounds and experts. For the regret of the algorithm, we

show that: 0d
E[Reg™(T")] = O <T -d- (i) -log (i)) “

We define the “good” event as the event that the reward is in [0, 1] for every round ¢: C = {r; €
[0,1],Vt € [T]}. Note that this depends on the noise of the round &;. We will call the complement
of the “good” event, the “bad” event =C. The regret of the algorithm depends on both C and —C as
follows:

E[Reg?(T)] = E[Reg? (T)[C] - Pr{C] + E[Reg® (T)|~C] - Pr[~C] < E[Reg"(T)|C] +T-Pr[-C] (5)

where the inequality is due to the fact that Pr[C] < 1 and that in the worst case, the algorithm must
pick up a loss of 1 at each round.

We now upper bound the probability with which the bad event happens.

Pr[-C] =Pr[3¢t : r, ¢ [0,1]] Z Prir, ¢ (union bound)
te[T)]

< ) Prfley] > A < 2exp(—A?/0?) - T < (substituting \)

te[T]

Nl

Plugging Pr[—C] to Equation (5) we get:
E[Reg® (T)] < E[Reg?(T)|C] + 2 ©)

So for the remainder of the proof we will condition on the clean event C and compute E[Reg®(T)|C].
Conditioning on C means that 1 + A — r;(a) € [0, A], where A = o/log T

We first compute the first and the second moments of estimator 7 (+). For the first moment:

B[00)] = 3 ate)- M= o @
e'e€
For the second moment:
{ } th )-1{e=r¢'} :ff(e) < A2 ®

e'eE qi (e) a:(e) ~ q(e)

where for the first inequality, we have used the fact that ¢;(e) < X (since we conditioned on C) and
the last one is due to the fact that ¢;(e) > v/|&].

We define the weight assigned to grid point e € & at round ¢ as: wy(e) = wy_1(€) - exp(—nly(e))
and wo(e) = 1,Ve € . Let W; = 3 - w;(e) be the potential function. Then,

Wo =Y wo(e) = [€] ©)

eef

Using e* to denote the best-fixed policy in hindsight, we have:

Wr = ZwT >wr(e’)=exp | —n Z l(e (10)

eel te[T)
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We next analyze how much the potential changes per-round:

log ([/]I/;_l) ~log Y ece Wi(e)exp <_77£t(€)) = log (Zpt(e) exp (—nE(e)))

¢ Wi ecf

<log (Zpt(e) . (1 — nzt(e) +77222(6)>> (e*<1l—z+2%2>0)

ec&
= log (1 —nY_pie)lle) + 17 Zpt<e>if<e>> (Cecepi(e) =1
ecé ec&
<-n>_ple)li(e) + 0> pile)li(e)
ec ecé&
_ Y (e) — v/lf\ n? a(€) = 7/IE1 3,
= ; ) Xe; =) (e)
< Z(It 2 ’Y/|5‘ Jrnzz q:(e t (11)
eef 665

where the second inequality is due to the fact that logx < x — 1 for x > 0. In order for this inequality
to hold we need to verify that:

1—0 > pi(e)lle) + 12> pile)fi(e) > 0,
ee& ee&

or equivalently, that:

1=nY pie)li(e) > 0 (12)

ecé
We do so after we explain how to tune n and .

We return to Equation (11); summing up for all rounds ¢ € [T'] in Equation (11) we get:

log< >< nzzqt 7/|5| +n222qt B(e (13)

te[T) ec€ te[T) 665

Using Equation (9) and Equation (10) we have that: log(Wr/Wy) > —n EtE[T] Zt(e*) —log |€].
Combining this with the upper bound on log(Wr /W) from Equation (13) and multiplying both
sides by (1 — «)/n we get:

log(|€
% (w00 ) B0 - 1= T e <0 3 St + (- D
te[T) eck te[T) te[T) eck !
We can slightly relax the right hand side using the fact that v < 1 and get:
lo &
3 (w00 ) - (1= 3 e 0 30 St +
te[T) ec€ |€| te[T] te[T) ec€ n

Taking expectations (wrt the draw of the algorithm) on both sides of the above expression and using
our derivations for the first and second moment (Equation (7) and Equation (8) respectively) we get:

22
y log £
> 3 ()~ ) )~ 0= 3 ) <0 2 ey +

te[T) e te[T) te[T) ee€ N
Using the fact that ¢,(-) € [0, A] the above becomes:

£
E[Reg®(T)[C] = D> > arle)li(e) = Y tile) < nTHN[E] + g;' D+7T

te[T] ec€ te[T)
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log(|€])
TA2[E|

E [Reg®(T)[C] < 3y/TIEIN* log(I€]) = 3/ T|E]o log(T) log(I€]) (14)
Before we proceed to bounding the discretization error that we incur by playing policies only on the

grid, we verify that Equation (12) holds for the chosen 1 and -y parameters. Note that when Zt(e) =0,
then Equation (12) holds. So we focus on the case where ¢;(e) = Et(e)/qt(e).

il szt(e) _TIZP :nM:%

ecf ecé ecé& v

Tuning ) = and v = 2n\|€|, we get that:

where the first inequality is due to the fact that g;(e) > ~/|€],Ve € &, the second is because
£s(e) < A, the first equality is because ) . p:(e) = 1, and the last equality is because of the values
that we chose for parameters 7 and .

The final step in proving the theorem is to bound the strategic discretization error that we incur

because our algorithm only chooses policies on the grid, while 0(1), 6'”) (and hence, the actual
optimal policy) may not correspond to any grid point. Let a; correspond to the action chosen by the
optimal policy.

SDE(T Z E [r¢(a})] Z E[r¢(as )] = Z <0(a2) _ e(at,e*)’xt>
te[T] te(T) te(T)

We separate the 7" rounds into 3 groups: in group G, we have rounds ¢ € [T'] such that a} = ay ¢-.
In group G, we have rounds ¢ € [T'] such that a} = 0 but a; .~ = 1. In group G5, we have rounds
t € [T, such that aj = 1 but a; .~ = 0. With these groups in mind, one can rewrite the above
equation as:

SDE(T) = tezG:l <9<a:> _glaer), Xt>+t;2 <9<a:> _ 9<at,e*),xt>+t§3 <9<a:> _glaver), Xt>

For all the rounds in G, the strategic discretization error is equal to 0. Hence the strategic discretiza-
tion error becomes:

SDE(T) = >~ (810 — 81 x, )+ 3~ (81 — gotr) x, ) (15)

teGy teGs

SDE(G2) SDE(G3)
We first analyze SDE(G5):
SDE(G2) = 3 (6 — 6, x,)
teGo
~(0)

~(1 ~(0 ~(1
Let us denote by 9( ) and 0( ) the points such that e* = 9( - 6 . Adding and subtracting (e*, x;)
in the above, we get:

SDE(G) = Y (<9(0) —5(0),xt> . <§<1) B 9(1>’Xt> N <§<o> _5(1)7xt>)

teGs
f e
teGa
~(0) A(l)
< 2T + Z 6 -0 (Cauchy-Schwarz)
teGonll 1

Finally, we show that (); < 0. For the rounds where a; .- = 1 but af = 0, it can be the case that
x; 7 X, (as the agents only strategize in order to get assigned action 1. But since a; .~ = 1, then
from the algorithm:

<§(” _ 5(0),xg> > §lle*|| < <5(0) _ 5(1)7x;> < —5)le”|| (16)

26



Adding and subtracting x} from quantity Q;, we have:

0 (375w} (35

< <§(0) - 5(1), Xp — x£> —dle*|] (Equation (16))
< H/é(o) - 5(1)’ e = x5 = Slle*| (Cauchy-Schwarz)
<lle*ll -6 —dfle” |-
As a result:
SDE(Gs) < 26T 17)

Moving on to the analysis of SDE(G3):

SDE(Gs) = Y (6 0" x,)
teGs
. ~(1)  ~(0) . R OB . o
Again, weuse @ " and 6  the points thate* = 60 ~ — 0 . Adding and subtracting (e*, x;) and
following the same derivations as in SDE(G3), we have that:

SDE(Gy) <2:T+ Y <§(” - 5(0),xt> (18)

teGs

Q1

Since a; .+ = 0, then it must have been the case that x; = x; this is because the agent would not
spend effort to strategize if they would still be assigned action 0. For this reason, it must be that

Q: <0.

Combining the upper bounds for SDE(G3) and SDE(G3) in Equation (15), we have that
SDE(T) < 4eT.

Putting everything together, we have that the regret is comprised by the regret incurred on the
discretized grid and the strategic discretization error, i.e.,

d
E[Reg(T)] < 3v/T|E|o log(T) log(|€]) + 4T = 3\/Td (i) olog(T)log(1/e) + 4T

dolog T

) 1/(d+2)
Tuning € = ( T )

we get that the regret is:

E[Reg(T)] < 67D/ (42 (4o 1og T)H/ (@42 = & (T(d+1)/(d+2)> .

D Extension to trembling hand best-response

Observe that when lazy tiebreaking (Definition 2.1), if agent ¢t modifies their context they modify it
by an amount d;, such that
Srii= i
st m(x)) =1
lIxi = xell2 = n.
We define v-trembling hand tiebreaking as drm,; = 0L+ + oy, where o € [0, min{d — 01 ¢, 7}

may be chosen arbitrarily. Our results in Section 3 may be extended to trembling hand tiebreaking by
considering the following redefinition of a clean point:

Condition D.1 (Sufficient condition for X' = x). Given a shifted linear policy parameterized by
BY € R, we say that a context x' is clean if (31, x') > (6 + )||BY |2 + ro.
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No further changes are required. This will result in a slightly worse constant in Theorem 3.3 (i.e. all
instances of § will be replaced by § + ). Our algorithms and results in Section 4 do not change.
Our definition of trembling hand best-response is similar in spirit to the e-best-response in Haghtalab
et al. [26]. Specifically, Haghtalab et al. [26] study a Stackelberg game setting in which the follower
best-responds e-optimally. In our trembling hand setting, the strategic agent can also be thought of as
e-best responding (using the language of [26]), although it is important to note that an e-best response
for the agent in our setting will cause the agent to only strategize more than necessary.
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