
Appendix for Learning to Predict Trustworthiness
with Steep Slope Loss

Yan Luo†, Yongkang Wong‡, Mohan S Kankanhalli‡, Qi Zhao†
† Department of Computer Science & Engineering, University of Minnesota

‡ School of Computing, National University of Singapore
luoxx648@umn.edu, yongkang.wong@nus.edu.sg, mohan@comp.nus.edu.sg, qzhao@cs.umn.edu

A Generalization Bound

Theorem. Denote maximum{exp(α+) − exp(−α+), exp(α−) − exp(−α−)} as `maxSS . `SS ∈
[0, `maxSS]. Assume F is a finite hypothesis set, for any δ > 0, with probability at least 1 − δ, the
following inequality holds for all f ∈ F:

|R(f)− R̂D(f)| ≤ `maxSS

√
log |F|+ log 2

δ

2|D|

Proof. The proof sketch is similar to the generalization bound provided in [1]. By the union bound,
given an error ξ, we have

p[sup
f∈F
|R(f)− R̂(f)| > ξ] ≤

∑
f∈F

p[|R(f)− R̂(f)| > ξ].

By Hoeffding’s bound, we have∑
f∈F

p[|R(f)− R̂(f)| > ξ] ≤ 2|F| exp

(
− 2|D|ξ2

(`maxSS)2

)
.

Due to the probability definition, 2|F| exp(− 2|D|ξ2
(`maxSS)2) = δ. Considering ξ is a function of other

variables, we can rearrange it as ξ = `maxSS

√
log |F|+log 2

δ

2|D| . Since we know p[|R(f)− R̂(f)| > ξ] is

with probability at most δ, it can be inferred that p[|R(f)− R̂(f)| <= ξ] is at least 1− δ.

B Experimental Set-Up

The ViT (i.e., ViT Base/16) used in this work is implemented in the ASYML project1, which is based
on PyTorch. The pre-trained weights are the same as the original pre-trained weights2. On the other
hand, the pre-trained ResNet (i.e., ResNet-50) is provided in PyTorch3. For the analyses, we use
the official implementation4 of the TCP confidence loss [2] and the PyTorch implementation5 of the
class-balanced loss [3].

1https://github.com/asyml/vision-transformer-pytorch
2https://github.com/google-research/vision_transformer
3https://pytorch.org/vision/stable/models.html
4https://github.com/valeoai/ConfidNet
5https://github.com/vandit15/Class-balanced-loss-pytorch

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/asyml/vision-transformer-pytorch
https://github.com/google-research/vision_transformer
https://pytorch.org/vision/stable/models.html
https://github.com/valeoai/ConfidNet
https://github.com/vandit15/Class-balanced-loss-pytorch

We use the training scheme implemented by ASYML and tune the hyperparameters such that the
oracles are trained with the cross entropy loss and focal loss to produce the best performance among
multiple trials. Then, we fix the set of hyperparameters for the TCP confidence loss and the proposed
loss. Each combination of classifiers and oracles undergoes the same training scheme. Specifically,
the stochastic gradient descent (SGD) optimization method is used with initial learning rate 1e-5,
weight decay 0, and momentum 0.05 for optimizing the learning problem. The 1-cycle learning rate
policy applies at each learning step. The batch size is fixed to 40 as ViT would make the full use of
four 12 GB GPUs with 40 images. To stimulate a challenging and practically useful environment, we
train the oracle in only one epoch, rather than multiple epochs. All the three baseline loss functions
and the proposed loss use the same hyperparameters and undergo the same experimental protocol for
training the oracle. The code is implemented in Python 3.8.5 with PyTorch 1.7.1 [4] and is tested
under Ubuntu 18.04 with four NVIDIA GTX 1080 Ti graphics cards in a standalone machine.

We run the experiments three times with random seeds and report the means and the standard
deviations of scores in Table 1. For the other experiments or analyses, we run one time.

B.1 Implementation Details for Small-Scale Datasets

The resulting results are reported in Table 2. The experiment is based on the official implementation6

of [2]. The implementation provides the pre-trained models on MNIST and CIFAR-10. We fine-tune
the pre-trained models with the proposed steep slope loss. For comparison purposes, we also fine-tune
the pre-trained with the TCP confidence loss (i.e., TCP†), where the experimental settings of the
fine-tuning process are the same as the ones of the fine-tuning process with the proposed steep
slope loss. The proposed loss use α+ = 10 and α− = 6 on MNIST, and α+ = 1 and α− = 1 on
CIFAR-10.

C License of Assets

MNIST [5] is made available under the terms of the Creative Commons Attribution-Share Alike 3.0
license, while ImageNet [6] is licensed under the BSD 3-Clause “New” or “Revised” License.

PyTorch [4] is available under a BSD-style license. The official ViT [7] implementation is licensed
under the Apache-2.0 License, while the implementation of ViT is licensed under the Apache-2.0
License. The code of TCP [2] is licensed under the Apache License. The PyTorch version of class
balanced loss [3] is licensed under the MIT License.

We make our code and pre-trained oracles publicly available via https://github.com/
luoyan407/predict_trustworthiness with the MIT License.

D Experimental Result

As shown in Table 1 and discussed in the experiment section, the proposed loss consistently improves
the performance on metrics FPR-95%-TPR, AUPR-Success, AUC, and TNR while the corresponding
variances are comparable to the other loss functions.

We plot all the histograms in Fig. A1 and Fig. A2 that correspond to Table 1 and Table 3, respectively.
Ideally, we hope that all the confidences w.r.t. the positive class are on the right-hand side of the
positive threshold while the ones w.r.t. the negative class are on the left-hand side of the negative
threshold. From Fig. A1 and Fig. A2, we can see that the proposed loss works in this direction, i.e.,
the attempt pushing all the confidences w.r.t. the positive (negative) class to the right-hand (left-hand)
side of the positive (negative) threshold.

To comprehensively evaluate the proposed loss function, we conduct the experiments on various
out-of-distribution (OOD) datasets, including ImageNet-C (corrupted ImageNet) [8]. Specifically,
we evaluate the trustworthiness predictor trained on ImageNet on the sets of defocus blur, glass blur,
motion blur, and zoom blur at the highest level of severity (i.e., the most challenging setting). The
results with setting 〈ViT, ViT〉are reported in Table A1. The results are consistent with the ones on
the stylized ImageNet and the adversarial ImageNet.

6https://github.com/valeoai/ConfidNet

2

https://github.com/luoyan407/predict_trustworthiness
https://github.com/luoyan407/predict_trustworthiness
https://github.com/valeoai/ConfidNet

(a) 〈ViT, ViT〉+ CE (b) 〈ViT, ViT〉+ Focal (c) 〈ViT, ViT〉+ TCP (d) 〈ViT, ViT〉+ SS

(e) 〈ViT, RSN〉+ CE (f) 〈ViT, RSN〉+ Focal (g) 〈ViT, RSN〉+ TCP (h) 〈ViT, RSN〉+ SS

(i) 〈RSN, ViT〉+ CE (j) 〈RSN, ViT〉+ Focal (k) 〈RSN, ViT〉+ TCP (l) 〈RSN, ViT〉+ SS

(m) 〈RSN, RSN〉+ CE (n) 〈RSN, RSN〉+ Focal (o) 〈RSN, RSN〉+ TCP (p) 〈RSN, RSN〉+ SS

Figure A1: Histograms of trustworthiness confidences w.r.t. all the loss functions on the ImageNet
validation set. The oracles that are used to generate the confidences are the ones used in Table 1.

(a) CE on stylized val (b) Focal on stylized val (c) TCP on stylized val (d) SS on stylized val

(e) CE on adversarial val (f) Focal on adversarial val (g) TCP on adversarial val (h) SS on adversarial val

Figure A2: Histograms of trustworthiness confidences w.r.t. all the loss functions on the stylized
ImageNet validation set (stylized val) and the adversarial ImageNet validation set (adversarial val).
〈ViT, ViT〉is used in the experiment and the domains of the two validation sets are different from the
one of the training set that is used for training the oracle. The histograms correspond to the oracles
used in Table 3.

Note that trust score [10] may not be feasible to apply to real-world large-scale datasets like ImageNet.
The trust score method needs to hold a tensor of size num_sample × dim_feature to initialize KD
trees. The tensor would be small as the trust score method is evaluated on small-scale datasets, e.g.,

3

Table A1: Performance on ImageNet-C validation set at the highest level of severity [8]. 〈ViT,
ViT〉 is used in the experiment and the domains of the two validation sets are different from the one
of the training set that is used for training the oracle.

Set Loss Acc↑ FPR-95%-
TPR↓

AUPR-
Error↑

AUPR-
Success↑

AUC↑ TPR↑ TNR↑

Defocus blur

CE 31.83 94.46 68.56 31.47 50.13 99.15 1.07
Focal [9] 31.83 94.98 66.87 33.24 51.28 96.70 3.26
TCP [2] 31.83 93.50 64.67 36.05 54.27 96.71 4.35
SS 31.83 90.18 57.95 48.80 64.34 77.79 37.29

Glass blur

CE 28.76 94.68 71.63 28.42 50.31 99.45 0.52
Focal [9] 28.76 92.00 67.25 33.34 56.57 96.42 6.00
TCP [2] 28.76 91.24 65.64 35.72 58.78 96.95 5.50
SS 28.76 85.03 58.58 52.55 70.18 62.68 66.25

Motion blur

CE 43.24 94.53 56.32 43.69 50.76 99.75 0.31
Focal [9] 43.24 93.67 53.83 46.47 54.02 98.88 1.55
TCP [2] 43.24 92.29 50.40 51.20 58.36 99.82 0.31
SS 43.24 86.47 43.91 65.17 69.52 63.86 64.49

Zoom blur

CE 39.68 93.28 56.91 43.45 54.90 99.71 0.42
Focal [9] 39.68 92.54 54.93 46.18 57.19 98.85 1.63
TCP [2] 39.68 89.47 51.79 51.06 62.47 99.64 0.93
SS 39.68 86.53 46.74 63.84 70.94 71.58 57.38

(a) 〈ViT, ViT〉 (b) 〈ViT, RSN〉 (c) 〈RSN, ViT〉 (d) 〈RSN, RSN〉

Figure A3: Curves of risk vs. coverage. Selective risk represents the percentage of errors in the
remaining validation set for a given coverage. The curves correspond to the oracles used in Table 1.

50000 × 512 on CIFAR. When evaluating on ImageNet, the size of the tensor would be 1.2 million
× 768 (2048) using ViT (ResNet).

E Selective Risk Analysis

Following [11, 2], we present the risk-coverage curves that are generated with different combinations
in Fig. A3. As can be seen in the figure, the proposed loss can work with different oracles or classifiers
to significantly reduce the error.

F Linear Function vs. Signed Distance

Although the signed distance z, i.e., z = w>xout+b
‖w‖ , leads to a geometric interpretation as shown

in Fig. 2a, the main-stream models [12, 13, 7] use z = w>xout + b. Therefore, we provide the
corresponding comparative results in Table A2, which are generated by the proposed loss taking
the output of the linear function as input. In this analysis, the combination 〈ViT, ViT 〉is used and
α+ = 1, α− = 3.

As shown in Table A2, both z = w>xout+b
‖w‖ and z = w>xout + b yield similar performance on

metrics FPR-95%-TPR, AUPR-Error, AUPR-Success, and AUC. On the other hand, TPR and TNR
are moderately different between z = w>xout+b

‖w‖ and z = w>xout + b, when α+ and α− are fixed.
This implies that TPR and TNR are sensitive to ‖w‖.

4

Table A2: Performance comparison between z = w>xout+b
‖w‖ and z = w>xout + b.

〈O, C〉+ Loss z Acc↑ FPR-95%-
TPR↓

AUPR-
Error↑

AUPR-
Success↑

AUC↑ TPR↑ TNR↑

〈ViT, ViT 〉+ SS
w>xout+b
‖w‖ 83.90 80.89 10.31 92.90 73.31 88.44 35.64

w>xout+b 83.90 80.42 10.36 92.78 72.93 92.40 27.01

〈ViT, RSN〉+ SS
w>xout+b
‖w‖ 68.72 78.09 20.94 85.30 74.20 67.96 67.80

w>xout+b 68.72 76.65 20.75 85.82 75.00 73.54 62.66

〈RSN, ViT〉+ SS
w>xout+b
‖w‖ 83.90 88.63 11.75 89.87 64.11 95.41 10.48

w>xout+b 83.90 88.39 11.65 90.06 64.56 97.95 5.45

〈RSN, RSN〉+ SS
w>xout+b
‖w‖ 68.72 85.60 22.50 81.92 68.08 80.44 40.85

w>xout+b 68.72 85.59 22.42 82.02 68.33 80.03 41.82

Table A3: Separability of distributions w.r.t. correct predictions and incorrect predictions.
〈O, C〉 Loss d̄KL ↑ dB ↑

〈ViT, ViT 〉

CE 0.5139 0.0017
Focal [9] 0.5212 0.0026
TCP [2] 0.7473 0.0297
SS 1.2684 0.0947

〈ViT, RSN〉

CE 0.5131 0.0016
Focal [9] 0.5017 0.0002
TCP [2] 0.9602 0.0559
SS 1.3525 0.1065

〈RSN, ViT〉

CE 0.5267 0.0033
Focal [9] 0.5121 0.0015
TCP [2] 0.5528 0.0066
SS 0.7706 0.0337

〈RSN, RSN〉

CE 0.5077 0.0010
Focal [9] 0.5046 0.0006
TCP [2] 0.7132 0.0265
SS 0.9539 0.0565

G Separability between Distributions of Correct Predictions and Incorrect
Predictions

We assess the separability between the distributions of correct predictions and incorrect pre-
dictions from a probabilistic perspective. There are two common tools to achieve the goal,
i.e., Kullback–Leibler (KL) divergence [14] and Bhattacharyya distance [15]. KL divergence
is used to measure the difference between two distributions [16, 17], while Bhattacharyya dis-
tance is used to measure the similarity of two probability distributions. Given the distribution
of correct predictions N1(µ1, σ

2
1) and the distribution of correct predictions N2(µ2, σ

2
2), we use

the averaged KL divergence, i.e., d̄KL(N1,N2) = (dKL(N1,N2) + dKL(N2,N1))/2, where
dKL(N1,N2) = log σ2

σ1
+

σ2
1+(µ1−µ2)

2

2σ2
2

− 1
2 is not symmetrical. On the other hand, Bhattacharyya

distance is defined as dB(N1,N2) = 1
4 ln

(
1
4

(
σ2
1

σ2
2

+
σ2
2

σ2
1

+ 2
))

+ 1
4

(
(µ1−µ2)

2

σ2
1+σ

2
2

)
. A larger d̄KL or

dB indicates that the two distributions are further away from each other.

The separabilities are reported in Table A3. We can see that the proposed loss leads to larger
separability than the other three loss functions. This implies that the proposed loss is more effective
to differentiate incorrect predictions from correct predictions, or vice versa.

5

Table A4: Effects of the re-weighting strategy with various loss functions. CB stands for class-
balanced.

〈O, C〉 Loss Acc↑ FPR-95%-
TPR↓

AUPR-
Error↑

AUPR-
Success↑

AUC↑ TPR↑ TNR↑

〈ViT, ViT 〉

CB CE [3] 83.90 85.03 11.77 89.48 65.56 99.81 0.91
CB Focal [3] 83.90 82.34 10.91 91.25 69.52 99.36 2.80
SS 83.90 80.89 10.31 92.90 73.31 88.44 35.64
CB SS 83.90 80.98 10.36 92.68 73.07 97.30 11.83

〈ViT, RSN〉

CB CE [3] 68.72 79.30 21.99 82.25 70.74 96.32 17.10
CB Focal [3] 68.72 76.89 21.10 84.59 73.75 95.71 21.15
SS 68.72 78.09 20.94 85.30 74.20 67.96 67.80
CB SS 68.72 75.49 20.58 86.28 75.78 89.30 39.74

〈RSN, ViT〉

CB CE [3] 83.90 90.71 12.94 87.76 59.31 100.00 0.00
CB Focal [3] 83.90 89.25 12.38 88.71 61.35 100.00 0.00
SS 83.90 88.63 11.75 89.87 64.11 95.41 10.48
CB SS 68.72 87.28 11.51 90.34 65.34 98.28 5.23

〈RSN, RSN〉

CB CE [3] 68.72 86.48 23.35 79.97 65.63 99.87 0.58
CB Focal [3] 68.72 85.63 22.75 81.16 67.48 99.47 2.01
SS 68.72 85.60 22.50 81.92 68.08 80.44 40.85
CB SS 68.72 85.55 22.28 82.39 68.84 81.93 40.16

Table A5: Effects of up-weighting the losses. w+ and w− are denoted as the weights for the cross
entropy losses w.r.t. true samples and negative samples, respectively.

Loss (w+, w−) FPR-95%-
TPR↓

AUPR-
Error↑

AUPR-
Success↑

AUC↑ TPR↑ TNR↑

CE (1, 1) 93.01 15.80 84.25 51.62 99.99 0.02
CE (1, 5) 93.54 15.57 84.47 52.09 97.86 2.98
CE (1, 10) 93.49 15.66 84.36 51.48 46.04 55.52
CE (1, 15) 94.80 16.09 83.93 50.77 5.06 94.52
CE (1, 20) 93.90 15.98 84.08 51.53 0.26 99.52
SS (1, 1) 80.48 10.26 93.01 73.68 87.52 38.27

H Connection to Class-Balanced Loss

The class-balanced loss [3] is actually to apply the re-weighting strategy to a conventional loss
function, e.g., the cross entropy loss and the focal loss. To re-weight the losses, it presumes to know
the number of sample w.r.t. each class before training, i.e., n+ (the number of correct predictions)
and n− (the number of incorrect predictions). Following [3], we use the hyperparameters β = 0.999
and γ = 0.5 for the class-balanced loss. The class-balanced loss can be also applied to the proposed
loss.

We report the performances of the class-balanced cross entropy loss, the class-balanced focal loss,
the proposed loss and its class-balanced variant in Table A4. The class-balanced cross entropy loss
and focal loss achieve better performance on most of metrics than the cross entropy loss and focal
loss. Consistently, the proposed loss and its class-balanced variant outperform the class-balanced
cross entropy loss and focal loss on metrics AUPR-Success, AUC, and TNR. On the other hand, the
class-balanced steep slope loss does not comprehensively outperform the proposed steep slope loss.
The improvement gain from the re-weighting strategy used in the imbalanced classification task is
limited. This may result from the difference between the imbalanced classification and trustworthiness
prediction. In other words, the imbalanced classification is aware of the visual concepts, whereas the
trustworthiness is invariant to visual concepts.

Up-weighting (down-weighting) the losses w.r.t. negative (positive) samples is a naive strategy in
the imbalanced classification. It is interesting to see if this simple strategy is able to address the
problem of predicting trustworthiness. Let w+ and w− be the weights for the cross entropy losses
w.r.t. positive samples and negative samples, respectively. The experimental results are in Table A5.
As we can see, up-weighting w− with various values does not achieve desired performance. In
contrast, applying the class-balanced strategy for re-weighting yields much better results than the

6

Table A6: Numerical stability of gradients. 〈ViT, ViT〉is used for the analysis.
Magnitude CE Focal TCP SS

‖ ∂`
∂xout ‖ 0.0068 0.0041 0.0039 0.0149

naive up-weighting strategy. Moreover, the proposed loss achieves better performance than the naive
up-weighting strategy.

I Analysis of Gradients

It is interesting to know whether there are vanishing gradient issues or numerical stability issues due
to the exponent in the proposed loss function. We compute the averaged ‖ ∂`

∂xout ‖, where xout ∈ Rk

is the dimension of the output feature of the oracle backbone. For the case of using ViT as backbone,
k = 768. The results with setting 〈ViT, ViT〉are reported in Table A6. Although the proposed loss
function uses the exponential function, it only involves a small range (e.g., [exp(−α+), exp(α+)]
or [exp(−α−), exp(α−)]) in the exponential function. In this range, the gradients are less likely to
change dramatically.

J Inference

Once the training process for the trustworthiness predictor is done, the inference by the trustworthiness
predictor is efficient. Specifically, the inference time used for classification is 1.64 milliseconds per
image, while the inference time used for predicting trustworthiness is 1.53 milliseconds per image.
Predicting trustworthiness is slightly faster than predicting labels. This is because the classification
is a 1000-way prediction while predicting trustworthiness is a 1-way prediction (I.e., the output
is a scalar). As the trustworthiness predictor and classifier are separate, it is possible to predict
trustworthiness and labels in parallel to further improve efficiency in practice.

References
[1] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.

MIT press, 2018.

[2] Charles Corbière, Nicolas Thome, Avner Bar-Hen, Matthieu Cord, and Patrick Pérez. Ad-
dressing failure prediction by learning model confidence. In Advances in Neural Information
Processing Systems, pages 2902–2913, 2019.

[3] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based
on effective number of samples. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9260–9269, 2019.

[4] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
32, pages 8024–8035. 2019.

[5] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 248–255, 2009.

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

7

[8] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations, 2019.

[9] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In IEEE International Conference on Computer Vision, pages 2999–3007,
2017.

[10] Heinrich Jiang, Been Kim, Melody Guan, and Maya Gupta. To trust or not to trust a classifier.
In Advances in Neural Information Processing Systems, pages 5546–5557, 2018.

[11] Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks. In
Advances in Neural Information Processing Systems, pages 4885–4894, 2017.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016.

[13] Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking model scaling for convolutional neural
networks. In International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 6105–6114, 2019.

[14] S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of Mathematical
Statistics, 22(1):79 – 86, 1951.

[15] Anil Bhattacharyya. On a measure of divergence between two multinomial populations.
Sankhyā: The Indian Journal of Statistics, pages 401–406, 1946.

[16] Erick Cantu-Paz. Feature subset selection, class separability, and genetic algorithms. In Genetic
and evolutionary computation conference, pages 959–970. Springer, 2004.

[17] Yan Luo, Yongkang Wong, Mohan Kankanhalli, and Qi Zhao. G -softmax: Improving intraclass
compactness and interclass separability of features. IEEE Transactions on Neural Networks
and Learning Systems, 31(2):685–699, 2020.

8

	Generalization Bound
	Experimental Set-Up
	Implementation Details for Small-Scale Datasets

	License of Assets
	Experimental Result
	Selective Risk Analysis
	Linear Function vs. Signed Distance
	Separability between Distributions of Correct Predictions and Incorrect Predictions
	Connection to Class-Balanced Loss
	Analysis of Gradients
	Inference

