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A Background: Conformal Prediction

We provide a brief background on conformal prediction (CP) [5, 46], which will be our primary
tool for performing rigorous uncertainty quantification for perception. Suppose we have N i.i.d. (or
exchangeable) samples U1, ..., Uy of a scalar random variable U. We can compute the threshold,
G1—e, such that the next sample, Uy, has the following guarantee:

PlUest < Gioe] > 1—€, Gie= {U<f(N+1><1e)1> if[(N+1)(1-¢)] <N, ©)

= q1—e .
¢ oo  otherwise,

where Uy < Uy < ... < Ugyy are the order statistics (sorted values) of the N samples
Ui, ...,Un. In the CP literature, U is known as the non-conformity score and it is a measure
of the (in)correctness of a model. The above guarantee (6) is marginal, i.e., (6) holds over the sam-
pling of both the calibration dataset U, ..., Uy and the test variable Uy. Hence, we will need to
generate a fresh set of i.i.d. calibration data U, ..., Uy for the guarantee to hold for a new sample
Usest- However, in practice, one typically only has access to a single dataset of examples; inferences
from this dataset must be used for all future predictions on test examples.

In this work, we consider the dataset-conditional guarantee [37] that does not require us to generate
N new samples for every new test prediction. The following bound holds with probability 1 — ¢
over the sampling of the calibration dataset:

PlUiest < G1-e|Ut, ..., Un] > Betayl,_, ,(6), v:=[(N+1)], (7)

where, Beta]_vlJrl_ ».»(0) is the —quantile of the Beta distribution with parameters N + 1 — v and v,
and we can choose € to achieve the desired 1 — € coverage.

B Proof of Proposition 1

As seen in Appendix A, conformal prediction gives us the following dataset-conditional guarantee
on a new sample of the nonconformity score Uy corresponding to a test environment Ei.. With
probability 1 — § over the sampling of Uy, ..., Uy,

PlUiest < G1-e|Us, ..., Un] > Betayl,_, ,(9).

We can rewrite the event Uy < G1_c as:

{Utesl S 4176}
:{(jlfe > min Qtesl|Atesl - Bs,test + Aqw,mvs es }

Grest

:{Atest - Bstlesty Vs € S}

Z{C_'E[es[(ﬂg) = 0}>

which gives us the desired result (4).

:{Atest C Bsjest + Ag,_., Vs € S}

C Implementation with a limited field-of-view

A natural question that arises after following the calibration procedure described above is: what
happens if the robot is not able to observe all objects in the environment from all states? This may
happen due to a limited sensing capability or because some parts of the environment are occluded
from view. We address this issue in our calibration procedure implementation by only taking into
account perception errors for objects that are within the field-of-view of the robot in a given state,
and masking any ground-truth bounding boxes that are not visible to the robot, i.e., A (which now
depends on state s) is the union of all the ground-truth bounding boxes of the visible objects. Hence,
the perception system correctness assurance stated above holds for all objects within the field-of-
view of the robot at any given state. The presence of possibly occluded obstacles are dealt with by a
safe planner, which we describe next.
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D Planner implementation details

For our simulation and hardware experiments, we use the safe planner proposed in [16] due to its
approximate optimality and ease of implementation. The safety filter in this case is an inevitable
collision set (ICS) constraint [17], where the robot is forbidden to enter any state that will eventually

result in collision no matter what control actions are taken. Within the known free space fﬁme,
the robot plans using the fast marching tree algorithm (FMT*) [47] with dynamics [48]. If the

. .. i . . .
goal is not visible within X tree, the robot plans to an intermediate goal on the boundary of its free
space. The intermediate goals are chosen based on the cost-to-come from current robot state to the
intermediate goal, and the distance-to-go from the intermediate goal to the actual goal. The robot

. . —fi . S
replans whenever it receives a sensor update and an updated X trfl from its non-deterministic filter,
and accounts for ICS constraints [49] in-between sensor updates.

E Proof of Proposition 2:

As shown in Proposition 1, the misdetection rate of the calibrated perception system ¢ is e-bounded
on environments drawn from D at each time step ¢, where the robot is at state s;. In other words, the
predicted occupied space 23{’“ at each time step contains the true obstacles A with high probability
across environments. Conversely, the predicted free space )Etfr"'e at each time step does not contain
the true obstacles A with high probability across environments. If we consider a safety-relevant
misdetection cost at time step ¢:

1 if A C Xfre (unsafe),
0 otherwise,

Aafe s T

C (o) = { ®
then the misdetection rate over the set of states should be e-bounded across environments by Propo-
sition 1:

E C2 (. 5,) < e. 9
BADe tgﬁ% 5 (0,51) <€ &)

Because the expectation in Equation (9) is over the set of environments, the following statement
holds in any new environment (with probability 1 — § over the calibration dataset of environments),
Pr{ max  C2%(,s,) = o} >1—e (10)

t€[0,T]

. —f e —unk . .
Given m; = {X R S nown}, a safe planner never drives the robot outside of the free space.

Therefore, the safe planner guarantees C52% (7¢) < C53().

Pr{cgfe(ﬁ) - 0} >1-—e (11

F Extensions

In this section, we outline a few extensions to the basic technical approach described in Sections 3
and 4: (i) fine-tuning a pre-trained perception model, (ii) incorporating sensor and dynamics uncer-
tainty, and (iii) calibrating perception modules beyond bounding box prediction.

F.1 Fine-Tuning a Pre-Trained Perception Model

In Section 3, we assumed access to a pre-trained perception model ¢ that outputs bounding
boxes. The conformal prediction-based uncertainty quantification procedure then uses the calibra-
tion dataset D = {F}, ..., Ex} of environments to produce a calibrated perception system ¢ which
lightly processes the outputs of ¢ by inflating the predicted bounding boxes. In practice, it may
also be useful to fine-tune ¢ for our target deployment environments before performing uncertainty
quantification.

This can be achieved using split conformal prediction [38], where one splits the overall dataset D
into D = Dype U D¢y If the perception model takes the form of a neural network ¢,, parameterized
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by weights w, we can use Dy, to fine-tune w (or the weights of a residual network). We can then
utilize D, in order to perform the CP-based calibration as described in Section 3. As we demon-
strate in Section 5, this additional fine-tuning step before calibration can reduce the conservatism of
outputs and improve end-to-end success rates.

The typical choice of loss function for training a bounding box predictor is the generalized
intersection-over-union (gloU) loss [50]. This is a differentiable version of the IoU loss: given a
ground-truth bounding box A and a predicted box B, one computes L(A, B) := |[AN B|/|AU B).
However, while this loss is popular in computer vision, it is not suitable for robot navigation. In
particular, the IoU loss is symmetric: it does not distinguish between the ground-truth and predicted
bounding box and thus does not encourage the predicted box to contain the ground-truth box. We
propose a modification to the gloU loss in Appendix F.1.1, which encourages that the predicted
bounding box encloses the ground-truth box while also ensuring that the predicted box is not too
large. Similar to the gloU loss, this loss is (almost-everywhere) differentiable and scale invariant.
We utilize this loss for fine-tuning in our experiments (Section 5). However, one could use any other
method for finetuning not limited to training a simple neural network with gloU loss [51].

F.1.1 Loss Function for Fine-Tuning

A ] AB
[ 1B\
[ ] c\(AuB)

Figure 8: Visualization of different terms in the loss function for a single object setting.

We use a (almost-everywhere) differentiable loss function for training. The loss function seeks to
ensure that the predicted shape (e.g., bounding box) encloses the ground truth shape while also
ensuring that the predicted shape is not too large.

Let’s consider the simplest setting wherein we have one object in the scene and we are making
a single prediction. In this case, A denotes the (convex) ground-truth shape and B denotes the
(convex) predicted shape. Let C denote the convex hull of A and B. Our loss function is a weighted
combination of three terms,

|A\B] |B\A| |C\(AU B)|
=+ w “+ w,
|A] > 1B C]

L= w1l1 + wglg + w313 = W1

The first term is the most important; it tries to ensure that B encloses A. The second term tries to
make sure that B is not much larger than it needs to be, see Figure 8. The first and second terms
are sufficient if A and B are overlapping. However, if they do not overlap, there is no gradient
information provided by the first two terms. Following [50], we introduce a third loss term in order
to provide gradient information when the shapes do not intersect. The loss terms [y, [, 3 are each
bounded within [0,1]. Hence, if we choose w;,ws,ws such that ) . w; = 1, then the overall
loss is also bounded within [0, 1]. Now let’s consider the setting wherein, A denotes the union of
multiple ground-truth bounding boxes (say we have m objects in the scene) and B is the union of
all the predicted bounding boxes (we predict n boxes). We consider all the individual bounding
box predictions B;, Vi € {1,...n} and associate the closest visible ground-truth bounding box A;
to each prediction. Now we can define C; as the convex hull of A; and B; and the resulting loss
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function, L;,
Ai\Bi] | Bi\ A4 |Ci\(A; U By)|
+ wo + ws .
| A |Bi |Ci]

1 n
L:E;Li.

Please refer to [50, Appendix 4.3] for instructions on how to compute the loss analytically for
axis-aligned bounding boxes.

L; = w1|

Hence, the overall loss is,

F.1.2 Simulation Results - Effect of finetuning dataset size

Upon collecting a calibration dataset of ~ 400 environments, as described in the experiment setup
in Section 5, we may choose to use a smaller subset of the calibration dataset to further finetune
the pre-trained perception model to perform better in the types of environments we are interested in
deploying the robot in. We consider the effect of different dataset split sizes for finetuning and then
calibration. Using a larger set of environments for finetuning |Dy,,.| may result in a better tuned
model, but will leave fewer environments for calibration, | D, |, resulting in a more conservative €
and §¢;_. that satisfies the dataset-conditional guarantee (7), and vice versa. This trade-off is seen
in Table 1, where we observe the best performance when we have an equal split between finetuning
and calibration.

Split size ( | Dine| + [Deal]) Go.ss inm)  Collision Misdetection Goal
Reached

100 + 300 0.68 0% 1% 9%

200 + 200 0.64 0% 1% 94%

300 + 100 0.93 0% 2% 76%

Table 1: A comparison of the effect of various partition sizes for finetuning and calibration for PWC.

F.2 Sensor Errors and Dynamics Uncertainty

In Section 2, we modeled the robot’s sensor as a deterministic mapping o : S x £ — O, which
provides observations from a particular state in a given environment. This formulation allows us to
also incorporate sensor errors. Specifically, any errors or randomness in the sensor can be formally
included as part of the environment £ € £. Thus, in addition to sampling environmental variables
such as obstacle locations, geometries, etc., each environment E' also samples random variables that
prescribe sensor errors from each state s € S in the environment. This way of modeling sensor
errors allows o to be deterministic (since all sources of randomness are included in F), allows the
sensor errors to be dependent on the relative pose of the robot relative to obstacles (e.g., modeling
the fact that depth estimates are often further from ground-truth depth values as distance increases),
and also allows us to model correlations in sensor errors from different locations (e.g., capturing the
fact that sensor errors from nearby robot locations can be highly correlated). Modeling time-varying
sensor errors (i.e., different sensor errors from the robot state at different times) is not as immediate,
but could potentially be incorporated by augmenting the state space S to include the time-step.

In addition to errors in sensing, one can also account for uncertainty in the dynamics of the robot
by using a robust planner (see [15] for an overview). In the experiments described in Section 6,
we incorporate uncertainty by generating plans that prevent the robot from entering the inevitable
collision set (cf. Section 4) even with bounded uncertainty in the dynamics.

F.3 Calibration with General Occupancy Prediction Models

Section 3 introduced the CP-based calibration procedure in the context of bounding box prediction.
However, the theoretical formulation in Section 3 is applicable to more general occupancy prediction
models; the key requirement is the presence of a scalar quantity that monotonically grows the size of
the predicted occupied space (e.g., the inflation parameter ¢ for bounding boxes in Section 3). This
allows one to define the non-conformity score U; for an environment E; as in (2) to be the smallest
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scalar such that the inflated predicted occupied space contains the ground-truth obstacles (for all
robot locations). Hence, we can calibrate the outputs of any perception system that predicts an
occupied set or performs occupancy prediction more generally, i.e., assigns a (heuristic) occupancy
confidence to each point in the space. Possibilities for the latter include scene completion networks
[45] or deep signed-distance function representations [52]. A threshold on this confidence acts
as the scalar parameter that monotonically controls the size of the predicted occupied space. The
conformal prediction procedure from Section 3 can then be used to find a confidence threshold such
that predicted occupied space contains the true occupied space (with probability 1 — € in a new
environment).

G Calibration and planning

We collect a calibration dataset of 400 environments wherein we randomly place 1 — 5 chairs from
the diverse 3D-Front dataset [10] in a 8 m X8 m room. In this 8 m X8 m space, we use a fixed
set of 2000 sampled configurations for the sampling-based motion planner and use the same set of
samples for the calibration procedure. We construct the calibration dataset in simulation using CAD
models of real furniture pieces from the 3D-Front dataset [10], which contains a highly diverse array
of industrial CAD models developed by professional designers to ensure that the performance of the
perception system remains the same in its simulation and hardware implementation. Similarly, we
collect an additional fine-tuning dataset Dy, consisting of 100 environments. These environments
include ones with occlusions of the goal and objects in the scene.

G.1 Metrics for experiments

We simulate the dynamics of the Unitree Gol quadruped robot and task the robot with navigating to
a goal location that is ~ 7m away from the initial location of the robot. The robot camera has a field
of view of 70° and a visibility range of [1, 5] m. With an allowable misdetection rate of e = 0.15,
we obtain §g.g5 = 0.75 m for PWC, ¢y g5 = 0.65 m for PWC-fine-tuned, and §p.g5 = 0.05 m for
CP-avg. through calibration. The planner replans and obtains a new sensor observation to update
the filter every 0.5 s or less (if the previous plan is already completed).

We utilize the following metrics for our simulation experiments: a trial is counted as a collision if
the robot collides with an obstacle and we count a misdetection for a trial if the free space predicted
by the planner has any intersection with the ground-truth bounding boxes of the obstacles. We say
that the goal has been reached in a given trial if the robot is able to navigate to within 1 m around
the goal in less than 140 s. We also record the average path length for trials in which the goal is
reached.

G.2 Results: Effects of closed-loop distribution shift on misdetections

To illustrate the effect of closed-loop distribution Method __ Collision Mis-detection KI.-divergence
CPavg w=1 14% 54% 2.0

shifts on misdetections, we used exactly the same Chave (w = 10) 2% 1% 575
setup described above to obtain the simulation re- PWC (w = 1) 0% 0% 1.48

sults in Figure 4. We changed the planner cost to PWCw =10) 0% 2% 2.04

have a different weighting on the cost-to-go. For Table 2: A comparison of the effect of changing the
one setting, we chose a weight w = 1 on the cost- planner parameters on CP-avg. and PWC.

to-go, which is the same as the weighting on the

cost-to-come. In another setting, we chose a weight w = 10 on the cost-to-go, and hence a 10x
more emphasis on the cost-to-go compared to the cost-to-come. Table 2 shows the KL-divergence
between the states visited by the planner and the sampling distribution of states for calibration as
a measure of the closed-loop distribution shift. Increasing closed-loop shifts lead to higher misde-
tections. One can see that a simple change in the planner parameters can lead to potentially large
changes in the safety rates for CP-avg. The closed-loop shift we may see in practice is unknown
apriori. Hence, it is difficult to make any statements on the planner safety in closed-loop despite us-
ing CP for calibration of the perception system. PWC, on the other hand, is robust to the closed-loop
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shifts and can still satisfy the misdetection and safety assurance regardless of the planner parameters
used.

H Hardware

H.1 Hardware and Environmental Setup

We represent the robot’s state as s; = [x,y, Uy, vy]T where x and y are its position in the envi-
ronment and v, and v, are the respective velocities. For each trial, the robot is initialized around
position [4, 0jm (with the origin set to bottom left corner of the room) and has a time horizon of
60 seconds to reach the goal within a 1m radius. The robot replans every 1s in a receding horizon
manner using the safe planner described in Section 4. The goals are varied every 10 environments
and include positions [2, 7Jm, 7, 0]m, and [6, 7]m.

Hardware. We use the Unitree Gol quadruped robot with fully onboard sensing and computation.
The robot is equipped with a ZED 2i RGB-D camera and a ZED Box computer attached to the
base of the robot as shown in the top row of Figure 7. The Zed 2i provides the Gol with point
cloud observations with a 70° field of view and a visibility range of [1, 5]m. The Zed 2i also uses
vision-inertial odometry to provide accurate positional state estimates in the environment. The Zed
Box includes an 8-core ARM processor and a 16GB Orin NX GPU. This allows us to process the
point cloud observations in order to produce bounding boxes using the pre-trained 3DETR model
[19]. The bounding boxes are aggregated over time to update the estimated free, occupied, and
unknown spaces as described in Section 4. The safe planner described in Section 4 is used to output
Cartesian velocity commands bounded at a speed of 0.8m/s; these commands are sent from the Zed
Box over UDP to the Gol’s processor. The average planning time on the ZED Box across trials is
approximately 0.5s. The dynamics of the Gol are estimated using MATLAB’s System Identification
Toolbox [53] and are provided in Appendix H.2.

Environments. We test the robot in 30 different environments, consisting of various chair config-
urations and geometries in an 8 m X8 m room. Configurations range from random, occluded goal,
occluded chairs, clustered chairs, and narrow paths (approximately 1.8m in width leaving 0.4m of
available freespace for PWC to find). Each environment has between 4 and 8 chairs present. See
Appendix H.3 and H.4 for the unseen chairs used in testing and the environment configurations re-
spectively. We use a Vicon motion capture system to log the ground-truth placement and bounding
boxes of the chairs for each environment.

H.2 System Identification

To perform system identification of the Unitree Gol quadruped robot, we collected trajectories us-
ing a Vicon motion capture system. We then used MATLAB’s system identification toolbox [53].
Specifically, we provided an initial linear ODE grey box model guess and then used prediction error
minimization (PEM) for refinement. The resulting system is shown in (12) where = and y describe
the positional state of the robot in the environment, v,, and v,, describe the respective velocities, and
u, and u,, describe the respective commanded velocities.

i1 [0 0 1 0 z 0 0
g oo o 1 y 0 0 | [u

0| T 10 0 —2.5170 01353 | |v.| T (23350 0 | |u, (12)
o] 1o 0 —0.5197 —3.9680] |v, 0 4.6510

H.3 Chair Test Dataset
Our test dataset of chairs for the experiments conducted in Section 6 included 8 chairs with diverse

sizes and geometries unseen in training and calibration for the perception system. Test chairs are
shown below in Figure 9.
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Figure 9: New, unseen test chairs used in hardware experiments.

H.4 Environments

As described in Section 6, the robot was tested in 30 unique environments with varying furniture
configurations and goals. The following 30 figures show an image of each configuration, accompa-
nied by a bird’s-eye map of the obstacle and goal locations.
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