
A Background: Conformal Prediction441

We provide a brief background on conformal prediction (CP) [5, 46], which will be our primary442

tool for performing rigorous uncertainty quantification for perception. Suppose we have N i.i.d. (or443

exchangeable) samples U1, . . . , UN of a scalar random variable U . We can compute the threshold,444

q̂1−ϵ, such that the next sample, Utest, has the following guarantee:445

P[Utest ≤ q̂1−ϵ] ≥ 1− ϵ, q̂1−ϵ =

{
U(⌈(N+1)(1−ϵ)⌉) if ⌈(N + 1)(1− ϵ)⌉ ≤ N,

∞ otherwise,
(6)

where U(1) ≤ U(2) ≤ . . . ≤ U(N) are the order statistics (sorted values) of the N samples446

U1, . . . , UN . In the CP literature, U is known as the non-conformity score and it is a measure447

of the (in)correctness of a model. The above guarantee (6) is marginal, i.e., (6) holds over the sam-448

pling of both the calibration dataset U1, . . . , UN and the test variable Utest. Hence, we will need to449

generate a fresh set of i.i.d. calibration data Ū1, . . . , ŪN for the guarantee to hold for a new sample450

Ūtest. However, in practice, one typically only has access to a single dataset of examples; inferences451

from this dataset must be used for all future predictions on test examples.452

In this work, we consider the dataset-conditional guarantee [37] that does not require us to generate453

N new samples for every new test prediction. The following bound holds with probability 1 − δ454

over the sampling of the calibration dataset:455

P[Utest ≤ q̂1−ϵ|U1, . . . , UN] ≥ Beta−1
N+1−v,v(δ), v := ⌊(N + 1)ϵ̂⌋, (7)

where, Beta−1
N+1−v,v(δ) is the δ−quantile of the Beta distribution with parameters N +1− v and v,456

and we can choose ϵ̂ to achieve the desired 1− ϵ coverage.457

B Proof of Proposition 1458

As seen in Appendix A, conformal prediction gives us the following dataset-conditional guarantee459

on a new sample of the nonconformity score Utest corresponding to a test environment Etest. With460

probability 1− δ over the sampling of U1, . . . , UN ,461

P[Utest ≤ q̂1−ϵ|U1, . . . , UN] ≥ Beta−1
N+1−v,v(δ).

We can rewrite the event Utest ≤ q̂1−ϵ as:462

{Utest ≤ q̂1−ϵ}

=
{
q̂1−ϵ ≥ min

qtest
qtest|Atest ⊆ Bs,test +∆qtest ,∀s ∈ S

}
=
{
Atest ⊆ Bs,test +∆q̂1−ϵ ,∀s ∈ S

}
={Atest ⊆ B̄s,test, ∀s ∈ S}

=
{
C̄Etest(ϕ̄) = 0

}
,

which gives us the desired result (4).463

C Implementation with a limited field-of-view464

A natural question that arises after following the calibration procedure described above is: what465

happens if the robot is not able to observe all objects in the environment from all states? This may466

happen due to a limited sensing capability or because some parts of the environment are occluded467

from view. We address this issue in our calibration procedure implementation by only taking into468

account perception errors for objects that are within the field-of-view of the robot in a given state,469

and masking any ground-truth bounding boxes that are not visible to the robot, i.e., A (which now470

depends on state s) is the union of all the ground-truth bounding boxes of the visible objects. Hence,471

the perception system correctness assurance stated above holds for all objects within the field-of-472

view of the robot at any given state. The presence of possibly occluded obstacles are dealt with by a473

safe planner, which we describe next.474

13

D Planner implementation details475

For our simulation and hardware experiments, we use the safe planner proposed in [16] due to its476

approximate optimality and ease of implementation. The safety filter in this case is an inevitable477

collision set (ICS) constraint [17], where the robot is forbidden to enter any state that will eventually478

result in collision no matter what control actions are taken. Within the known free space X free
t ,479

the robot plans using the fast marching tree algorithm (FMT⋆) [47] with dynamics [48]. If the480

goal is not visible within X free
t , the robot plans to an intermediate goal on the boundary of its free481

space. The intermediate goals are chosen based on the cost-to-come from current robot state to the482

intermediate goal, and the distance-to-go from the intermediate goal to the actual goal. The robot483

replans whenever it receives a sensor update and an updated X free
t+1 from its non-deterministic filter,484

and accounts for ICS constraints [49] in-between sensor updates.485

E Proof of Proposition 2:486

As shown in Proposition 1, the misdetection rate of the calibrated perception system ϕ̄ is ϵ-bounded487

on environments drawn from D at each time step t, where the robot is at state st. In other words, the488

predicted occupied space X̂ occ
t at each time step contains the true obstacles A with high probability489

across environments. Conversely, the predicted free space X̂ free
t at each time step does not contain490

the true obstacles A with high probability across environments. If we consider a safety-relevant491

misdetection cost at time step t:492

Ĉsafe
E (ϕ̄, st) =

{
1 if A ⊆ X̂ free

t (unsafe),
0 otherwise,

(8)

then the misdetection rate over the set of states should be ϵ-bounded across environments by Propo-493

sition 1:494

E
E∼DE

max
t∈[0,T]

Ĉsafe
E (ϕ̄, st) ≤ ϵ. (9)

Because the expectation in Equation (9) is over the set of environments, the following statement495

holds in any new environment (with probability 1− δ over the calibration dataset of environments),496

Pr
{

max
t∈[0,T]

Ĉsafe
E (ϕ̄, st) = 0

}
≥ 1− ϵ. (10)

Given mt = {X free
,X occ

,X unknown}, a safe planner never drives the robot outside of the free space.497

Therefore, the safe planner guarantees Csafe
E (πϕ̄) ≤ C̄safe

E (ϕ̄).498

Pr
{
Csafe

E (πϕ̄) = 0
}
≥ 1− ϵ. (11)

F Extensions499

In this section, we outline a few extensions to the basic technical approach described in Sections 3500

and 4: (i) fine-tuning a pre-trained perception model, (ii) incorporating sensor and dynamics uncer-501

tainty, and (iii) calibrating perception modules beyond bounding box prediction.502

F.1 Fine-Tuning a Pre-Trained Perception Model503

In Section 3, we assumed access to a pre-trained perception model ϕ that outputs bounding504

boxes. The conformal prediction-based uncertainty quantification procedure then uses the calibra-505

tion dataset D = {E1, . . . , EN} of environments to produce a calibrated perception system ϕ̄ which506

lightly processes the outputs of ϕ by inflating the predicted bounding boxes. In practice, it may507

also be useful to fine-tune ϕ for our target deployment environments before performing uncertainty508

quantification.509

This can be achieved using split conformal prediction [38], where one splits the overall dataset D510

into D = Dtune ∪Dcal. If the perception model takes the form of a neural network ϕw parameterized511

14

by weights w, we can use Dtune to fine-tune w (or the weights of a residual network). We can then512

utilize Dcal in order to perform the CP-based calibration as described in Section 3. As we demon-513

strate in Section 5, this additional fine-tuning step before calibration can reduce the conservatism of514

outputs and improve end-to-end success rates.515

The typical choice of loss function for training a bounding box predictor is the generalized516

intersection-over-union (gIoU) loss [50]. This is a differentiable version of the IoU loss: given a517

ground-truth bounding box A and a predicted box B, one computes L(A,B) := |A ∩ B|/|A ∪ B|.518

However, while this loss is popular in computer vision, it is not suitable for robot navigation. In519

particular, the IoU loss is symmetric: it does not distinguish between the ground-truth and predicted520

bounding box and thus does not encourage the predicted box to contain the ground-truth box. We521

propose a modification to the gIoU loss in Appendix F.1.1, which encourages that the predicted522

bounding box encloses the ground-truth box while also ensuring that the predicted box is not too523

large. Similar to the gIoU loss, this loss is (almost-everywhere) differentiable and scale invariant.524

We utilize this loss for fine-tuning in our experiments (Section 5). However, one could use any other525

method for finetuning not limited to training a simple neural network with gIoU loss [51].526

F.1.1 Loss Function for Fine-Tuning527

528

A\B
B\A

C\(A∪B)

A

BC

529

Figure 8: Visualization of different terms in the loss function for a single object setting.

We use a (almost-everywhere) differentiable loss function for training. The loss function seeks to530

ensure that the predicted shape (e.g., bounding box) encloses the ground truth shape while also531

ensuring that the predicted shape is not too large.532

Let’s consider the simplest setting wherein we have one object in the scene and we are making533

a single prediction. In this case, A denotes the (convex) ground-truth shape and B denotes the534

(convex) predicted shape. Let C denote the convex hull of A and B. Our loss function is a weighted535

combination of three terms,536

L := w1l1 + w2l2 + w3l3 = w1
|A\B|
|A|

+ w2
|B\A|
|B|

+ w3
|C\(A ∪B)|

|C|
.

The first term is the most important; it tries to ensure that B encloses A. The second term tries to537

make sure that B is not much larger than it needs to be, see Figure 8. The first and second terms538

are sufficient if A and B are overlapping. However, if they do not overlap, there is no gradient539

information provided by the first two terms. Following [50], we introduce a third loss term in order540

to provide gradient information when the shapes do not intersect. The loss terms l1, l2, l3 are each541

bounded within [0, 1]. Hence, if we choose w1, w2, w3 such that
∑

i wi = 1, then the overall542

loss is also bounded within [0, 1]. Now let’s consider the setting wherein, A denotes the union of543

multiple ground-truth bounding boxes (say we have m objects in the scene) and B is the union of544

all the predicted bounding boxes (we predict n boxes). We consider all the individual bounding545

box predictions Bi,∀i ∈ {1, . . . n} and associate the closest visible ground-truth bounding box Ai546

to each prediction. Now we can define Ci as the convex hull of Ai and Bi and the resulting loss547

15

function, Li,548

Li := w1
|Ai\Bi|
|Ai|

+ w2
|Bi\Ai|
|Bi|

+ w3
|Ci\(Ai ∪Bi)|

|Ci|
.

Hence, the overall loss is,549

L =
1

n

n∑
i=1

Li.

Please refer to [50, Appendix 4.3] for instructions on how to compute the loss analytically for550

axis-aligned bounding boxes.551

F.1.2 Simulation Results - Effect of finetuning dataset size552

Upon collecting a calibration dataset of ∼ 400 environments, as described in the experiment setup553

in Section 5, we may choose to use a smaller subset of the calibration dataset to further finetune554

the pre-trained perception model to perform better in the types of environments we are interested in555

deploying the robot in. We consider the effect of different dataset split sizes for finetuning and then556

calibration. Using a larger set of environments for finetuning |Dtune| may result in a better tuned557

model, but will leave fewer environments for calibration, |Dcal|, resulting in a more conservative ϵ̂558

and q̂1−ϵ that satisfies the dataset-conditional guarantee (7), and vice versa. This trade-off is seen559

in Table 1, where we observe the best performance when we have an equal split between finetuning560

and calibration.561

Split size (|Dtune|+ |Dcal|) q̂0.85 (in m) Collision Misdetection Goal
Reached

100 + 300 0.68 0% 1% 89%
200 + 200 0.64 0% 1% 94%
300 + 100 0.93 0% 2% 76%

562

Table 1: A comparison of the effect of various partition sizes for finetuning and calibration for PWC.

F.2 Sensor Errors and Dynamics Uncertainty563

In Section 2, we modeled the robot’s sensor as a deterministic mapping σ : S × E → O, which564

provides observations from a particular state in a given environment. This formulation allows us to565

also incorporate sensor errors. Specifically, any errors or randomness in the sensor can be formally566

included as part of the environment E ∈ E . Thus, in addition to sampling environmental variables567

such as obstacle locations, geometries, etc., each environment E also samples random variables that568

prescribe sensor errors from each state s ∈ S in the environment. This way of modeling sensor569

errors allows σ to be deterministic (since all sources of randomness are included in E), allows the570

sensor errors to be dependent on the relative pose of the robot relative to obstacles (e.g., modeling571

the fact that depth estimates are often further from ground-truth depth values as distance increases),572

and also allows us to model correlations in sensor errors from different locations (e.g., capturing the573

fact that sensor errors from nearby robot locations can be highly correlated). Modeling time-varying574

sensor errors (i.e., different sensor errors from the robot state at different times) is not as immediate,575

but could potentially be incorporated by augmenting the state space S to include the time-step.576

In addition to errors in sensing, one can also account for uncertainty in the dynamics of the robot577

by using a robust planner (see [15] for an overview). In the experiments described in Section 6,578

we incorporate uncertainty by generating plans that prevent the robot from entering the inevitable579

collision set (cf. Section 4) even with bounded uncertainty in the dynamics.580

F.3 Calibration with General Occupancy Prediction Models581

Section 3 introduced the CP-based calibration procedure in the context of bounding box prediction.582

However, the theoretical formulation in Section 3 is applicable to more general occupancy prediction583

models; the key requirement is the presence of a scalar quantity that monotonically grows the size of584

the predicted occupied space (e.g., the inflation parameter q for bounding boxes in Section 3). This585

allows one to define the non-conformity score Ui for an environment Ei as in (2) to be the smallest586

16

scalar such that the inflated predicted occupied space contains the ground-truth obstacles (for all587

robot locations). Hence, we can calibrate the outputs of any perception system that predicts an588

occupied set or performs occupancy prediction more generally, i.e., assigns a (heuristic) occupancy589

confidence to each point in the space. Possibilities for the latter include scene completion networks590

[45] or deep signed-distance function representations [52]. A threshold on this confidence acts591

as the scalar parameter that monotonically controls the size of the predicted occupied space. The592

conformal prediction procedure from Section 3 can then be used to find a confidence threshold such593

that predicted occupied space contains the true occupied space (with probability 1 − ϵ in a new594

environment).595

G Calibration and planning596

We collect a calibration dataset of 400 environments wherein we randomly place 1− 5 chairs from597

the diverse 3D-Front dataset [10] in a 8 m ×8 m room. In this 8 m ×8 m space, we use a fixed598

set of 2000 sampled configurations for the sampling-based motion planner and use the same set of599

samples for the calibration procedure. We construct the calibration dataset in simulation using CAD600

models of real furniture pieces from the 3D-Front dataset [10], which contains a highly diverse array601

of industrial CAD models developed by professional designers to ensure that the performance of the602

perception system remains the same in its simulation and hardware implementation. Similarly, we603

collect an additional fine-tuning dataset Dtune consisting of 100 environments. These environments604

include ones with occlusions of the goal and objects in the scene.605

G.1 Metrics for experiments606

We simulate the dynamics of the Unitree Go1 quadruped robot and task the robot with navigating to607

a goal location that is ∼ 7m away from the initial location of the robot. The robot camera has a field608

of view of 70◦ and a visibility range of [1, 5] m. With an allowable misdetection rate of ϵ = 0.15,609

we obtain q̂0.85 = 0.75 m for PWC, q̂0.85 = 0.65 m for PWC-fine-tuned, and q̂0.85 = 0.05 m for610

CP-avg. through calibration. The planner replans and obtains a new sensor observation to update611

the filter every 0.5 s or less (if the previous plan is already completed).612

We utilize the following metrics for our simulation experiments: a trial is counted as a collision if613

the robot collides with an obstacle and we count a misdetection for a trial if the free space predicted614

by the planner has any intersection with the ground-truth bounding boxes of the obstacles. We say615

that the goal has been reached in a given trial if the robot is able to navigate to within 1 m around616

the goal in less than 140 s. We also record the average path length for trials in which the goal is617

reached.618

G.2 Results: Effects of closed-loop distribution shift on misdetections619

Method Collision Mis-detection KL-divergence
CP-avg. (w = 1) 14% 54% 2.09

CP-avg. (w = 10) 2% 64% 2.72
PWC (w = 1) 0% 0% 1.48

PWC (w = 10) 0% 2% 2.04

Table 2: A comparison of the effect of changing the
planner parameters on CP-avg. and PWC.

To illustrate the effect of closed-loop distribution620

shifts on misdetections, we used exactly the same621

setup described above to obtain the simulation re-622

sults in Figure 4. We changed the planner cost to623

have a different weighting on the cost-to-go. For624

one setting, we chose a weight w = 1 on the cost-625

to-go, which is the same as the weighting on the626

cost-to-come. In another setting, we chose a weight w = 10 on the cost-to-go, and hence a 10×627

more emphasis on the cost-to-go compared to the cost-to-come. Table 2 shows the KL-divergence628

between the states visited by the planner and the sampling distribution of states for calibration as629

a measure of the closed-loop distribution shift. Increasing closed-loop shifts lead to higher misde-630

tections. One can see that a simple change in the planner parameters can lead to potentially large631

changes in the safety rates for CP-avg. The closed-loop shift we may see in practice is unknown632

apriori. Hence, it is difficult to make any statements on the planner safety in closed-loop despite us-633

ing CP for calibration of the perception system. PWC, on the other hand, is robust to the closed-loop634

17

shifts and can still satisfy the misdetection and safety assurance regardless of the planner parameters635

used.636

H Hardware637

H.1 Hardware and Environmental Setup638

We represent the robot’s state as st = [x, y, vx, vy]
T where x and y are its position in the envi-639

ronment and vx and vy are the respective velocities. For each trial, the robot is initialized around640

position [4, 0]m (with the origin set to bottom left corner of the room) and has a time horizon of641

60 seconds to reach the goal within a 1m radius. The robot replans every 1s in a receding horizon642

manner using the safe planner described in Section 4. The goals are varied every 10 environments643

and include positions [2, 7]m, [7, 0]m, and [6, 7]m.644

Hardware. We use the Unitree Go1 quadruped robot with fully onboard sensing and computation.645

The robot is equipped with a ZED 2i RGB-D camera and a ZED Box computer attached to the646

base of the robot as shown in the top row of Figure 7. The Zed 2i provides the Go1 with point647

cloud observations with a 70◦ field of view and a visibility range of [1, 5]m. The Zed 2i also uses648

vision-inertial odometry to provide accurate positional state estimates in the environment. The Zed649

Box includes an 8-core ARM processor and a 16GB Orin NX GPU. This allows us to process the650

point cloud observations in order to produce bounding boxes using the pre-trained 3DETR model651

[19]. The bounding boxes are aggregated over time to update the estimated free, occupied, and652

unknown spaces as described in Section 4. The safe planner described in Section 4 is used to output653

Cartesian velocity commands bounded at a speed of 0.8m/s; these commands are sent from the Zed654

Box over UDP to the Go1’s processor. The average planning time on the ZED Box across trials is655

approximately 0.5s. The dynamics of the Go1 are estimated using MATLAB’s System Identification656

Toolbox [53] and are provided in Appendix H.2.657

Environments. We test the robot in 30 different environments, consisting of various chair config-658

urations and geometries in an 8 m ×8 m room. Configurations range from random, occluded goal,659

occluded chairs, clustered chairs, and narrow paths (approximately 1.8m in width leaving 0.4m of660

available freespace for PWC to find). Each environment has between 4 and 8 chairs present. See661

Appendix H.3 and H.4 for the unseen chairs used in testing and the environment configurations re-662

spectively. We use a Vicon motion capture system to log the ground-truth placement and bounding663

boxes of the chairs for each environment.664

H.2 System Identification665

To perform system identification of the Unitree Go1 quadruped robot, we collected trajectories us-666

ing a Vicon motion capture system. We then used MATLAB’s system identification toolbox [53].667

Specifically, we provided an initial linear ODE grey box model guess and then used prediction error668

minimization (PEM) for refinement. The resulting system is shown in (12) where x and y describe669

the positional state of the robot in the environment, vx and vy describe the respective velocities, and670

ux and uy describe the respective commanded velocities.671  ẋ
ẏ
v̇x
v̇y

 =

0 0 1 0
0 0 0 1
0 0 −2.5170 0.1353
0 0 −0.5197 −3.9680


 x
y
vx
vy

+

 0 0
0 0

2.3350 0
0 4.6510

[
ux

uy

]
(12)

H.3 Chair Test Dataset672

Our test dataset of chairs for the experiments conducted in Section 6 included 8 chairs with diverse673

sizes and geometries unseen in training and calibration for the perception system. Test chairs are674

shown below in Figure 9.675

18

Figure 9: New, unseen test chairs used in hardware experiments.

H.4 Environments676

As described in Section 6, the robot was tested in 30 unique environments with varying furniture677

configurations and goals. The following 30 figures show an image of each configuration, accompa-678

nied by a bird’s-eye map of the obstacle and goal locations.679

(1) Environment 1 (2) Environment 2 (3) Environment 3

19

(4) Environment 4 (5) Environment 5 (6) Environment 6

(7) Environment 7 (8) Environment 8 (9) Environment 9

20

(10) Environment 10 (11) Environment 11 (12) Environment 12

(13) Environment 13 (14) Environment 14 (15) Environment 15

21

(16) Environment 16 (17) Environment 17 (18) Environment 18

(19) Environment 19 (20) Environment 20 (21) Environment 21

22

(22) Environment 22 (23) Environment 23 (24) Environment 24

(25) Environment 25 (26) Environment 26 (27) Environment 27

23

(28) Environment 28 (29) Environment 29 (30) Environment 30

24

