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A Dataset Construction and Analysis

In this section, we provide a detailed mask generation description, parameter effect analysis, and
more visualization of our dataset.

A.1 Mask Generation

In video inpainting and error concealment tasks, it is common to generate mask video sequences for
simulating different types of video content loss. In view of this, we describe the decoded corruption
regions of our dataset by specialized and sophisticate masks. These masks are generated through
difference and morphological operations during the model training, evaluation, and testing processes.
The flowchart of mask generation in our dataset are shown in Fig. 1.

In Fig. 1, a corrupted frames and a corruption-free frame are presented in the left, which serve as the
input of our mask generation processing. Specifically, we calculate the absolute difference between
the corruption-free and corrupted frames to obtain the difference maps in three color channels of RGB.
In each difference map, the pixel values indicate the magnitude of the difference. By performing
histogram normalization, we can improve the contrast of difference maps and then merge them
into a single image. To simplify calculations, we convert the RGB difference map to grayscale
domain. Then, we perform binarization to grayscale maps. Pixel values range from 20 to 255 are
assigned 255 (white), and other remaining pixel values are set to 0 (black), so that binary maps
can be generated. We then define two kernels to perform morphological operations. Kernel 1 is an
8× 8 block, and Kernel 2 is a 3× 3 matrix with an elliptical structuring element. These kernels are
applied in opening operations for 3 iterations, dilation for 1 iteration, and closing for 3 iterations. The
morphological process can remove noise, separate distinct elements, close small holes, and connect
adjacent elements of the binary map. Finally, we detect all enclosed contours in the binary map.
These slight enclosed contours occupied less than 500 pixels are discarded to suppress excessive
mask regions. The rationality of this operation comes from that slight image demange is hard to be
perceptible by humnan eyes. In this way, we can create the masks for all corrupted frames in each
video of our dataset.
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Figure 1: The flowchart of mask generation.

A.2 Parameter Effects

In the paper, three-parameter corruption model (P,L, S) is introduced construct the dataset from cor-
rupted bitstream. The corrupted fragments are defined by frame corruption probability P , corruption
location L, and fragment size S. The model can demonstrate the effect of parameter adjustments on
the statistical information of the dataset branch in our paper. Here, we provide a visual representation
of this effect. Four parameter settings (1/16, 0.4, 2048), (1/16, 0.4, 4096), (1/16, 0.2, 4096), and
(2/16, 0.4, 4096) are adopted. The selected videos’ first 48 frames (the lengths of 3 GOPs (group of
pictures)) are presented along with their binarized difference maps and the generated masks. Note
that the methods for acquiring difference maps and masks are given in Sec. A.1 and Fig. 1.

We take 4 videos from the test set of our dataset as example for illustration. For the 4 videos, the
visualizations of decoded frames, difference maps and masks are shown in Fig. 5, Fig. 2, Fig. 3,
and Fig. 4. In each Figure, the first top 3 sequences represent the decoded frames, difference maps
and masks in the first GOP. The second and third GOPs are also presented below. Generally, the
earlier a segment location in a frame bitstream is, the more critical the information it contains. Thus,
we can observe from the decoded frame sequence: when reducing corruption location parameter L,
the corruption location inside a frame shifts ahead and errors occur earlier in a frame. As a result,
the areas of damage are larger in a decoded frame, the difference maps and masks are also larger.
When increasing the fragment size S of corruption, the decoded frame sequences suffer a severer
image quality degradation. This is because more amount of bitstream get lost; thus, larger areas of
errors are generated in the frame, which is decoded from the corrupted fragment bitstream. Moreover,
the error propagation can be observed among neighboring frames of the corrupted frame, due to
reference information missing or being unavailable in inter-frame prediction of video coding. We
further increase the corruption probability P inside each GOP, more frames of NALUs (network
abstraction layer units) in a bitstream are possibly corrupted; thus, more numbers of corrupted frames
are decoded from the bitstream. Due to error propagation among neighboring frames, more amount
of corruption can be observed in the decoded frame sequences of each Figure.

From Fig. 5, Fig. 2, Fig. 3, and Fig. 4 we can conclude that: the existence of bitstream corruption may
cause varying degrees of decoded frame errors, including isolated corruption within the current frame,
short-term corruption to adjacent frames, and long-term corruption throughout the remaining frames
of the GOP. Note that the relationship between decoded frame damage and bitstream corruption is
not simply linear. Generally, damage regions in a frame has no point-by-point responses to bitstream
corruption due to the error propagation. Although it is inaccurate to describe the occurrence of
decoded errors as completely random, it can be considered unpredictable.

To summarize, we conduct experiments and analyzes to demonstrate the effects of three-parameter
model (P,L, S) parameter settings on dataset construction. We found that the more severer decoded
errors will generally occur when adopting an earlier/smaller corruption location L, an larger fragment
size S, and a higher corruption probability P .



Figure 2: Visualized frame sequence, difference map sequence, and mask sequence of sampled cor-
rupted video in our dataset. From top to bottom, the (P,L, S) parameter settings are (1/16, 0.4, 2048),
(1/16, 0.4, 4096), (1/16, 0.2, 4096), (2/16, 0.4, 4096), respectively.



Figure 3: Visualized frame sequence, difference map sequence, and mask sequence of sampled cor-
rupted video in our dataset. From top to bottom, the (P,L, S) parameter settings are (1/16, 0.4, 2048),
(1/16, 0.4, 4096), (1/16, 0.2, 4096), (2/16, 0.4, 4096), respectively.



Figure 4: Visualized frame sequence, difference map sequence, and mask sequence of sampled cor-
rupted video in our dataset. From top to bottom, the (P,L, S) parameter settings are (1/16, 0.4, 2048),
(1/16, 0.4, 4096), (1/16, 0.2, 4096), (2/16, 0.4, 4096), respectively.



Figure 5: Visualized frame sequence, difference map sequence, and mask sequence of sampled cor-
rupted video in our dataset. From top to bottom, the (P,L, S) parameter settings are (1/16, 0.4, 2048),
(1/16, 0.4, 4096), (1/16, 0.2, 4096), (2/16, 0.4, 4096), respectively.



B BSCVR Framework Detail

This section provides the details of our bitstream-corrupted video recovery (BSCVR) method inspired
by end-to-end video inpainting framework [1]. Our BSCVR is composed of segmented feature
extraction and feature completion for better subsequent recovery process. We also introduce content
recovery based on [1].

B.1 Feature Extraction

The commonly used context encoder [2] is applied for corrupted images where it takes an input
image with missing regions to extract local temporal neighboring features outside the masked
region. In our bitstream corruption scenario, we modified the framework with additional feature
extraction in corrupted contents. The corrupted sequence {Xt|t = 1, 2, ..., Tl} is separated as a
"corruption-free region sequence"

{
P t = (Xt ∗M t)t ∈ R3×h×w|t = 1, 2, ..., Tl

}
, and a "corrupted

region sequence"
{
Qt = (Xt ∗ (M t)c)t ∈ R3×h×w|t = 1, 2, ..., Tl

}
, where Tl denotes the length of

neighboring frames, M t is the mask of the corrupted region at Frame t, and (M t)c is the complement
of M . The context encoder f(·) will be applied to extract the local neighboring features with a
downsampling factor of 1/n,{

[Et
P ;E

t
Q] = [f(P t); f(Qt)]|t = 1, 2, ..., Tl

}
, (1)

where Et
P ∈ R(C× h

n×w
n ) and Et

Q ∈ R(C× h
n×w

n ) are extracted temporal neighboring features with a
channel size of C for corruption-free and corrupted region sequences, respectively.

B.2 Feature Completion
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Figure 6: Detailed structure of the proposed
feature completion module

Traditionally, in the video inpainting task, the ex-
tracted feature Et

P of the corruption-free region is
directly applied for content generation. The effec-
tiveness of this process is usually influenced by mul-
tiple factors. One is that the content information
of the corruption-free regions cannot cooperate well
with the motion information indicated by optical
flow. This problem causes unreliable propagation
using only information provided by local temporal
neighbors. Research on video inpainting has already
pointed out that imprecise flow estimation and lack-
ing local content usually lead to unsatisfactory con-
tent generation, especially in large corrupted regions.

Based on the observation of bitstream-corrupted
videos, we found that most decoding results in the
corrupted regions can somewhat preserve key visual
information such as color, texture, and object con-
tours. Although the regions are distorted visually,
they can provide useful information in the feature
space. Therefore, we design a module based on the
self-attention mechanism [3], which aims to complete
and enhance the representative quality of features
leveraging the information in the corrupted region.

Given two region-based features Et
P and Et

Q of the
t-th frame, we first concatenate them and generate
the feature

{
Et

PQ ∈ R(2C× h
n×w

n )|t = 1, 2, ..., Tl

}
.

By applying 1x1 convolution, we perform dimen-
sion reduction to facilitate better processing. The features after dimensionality reduction



{
Et

PQ↓
∈ R(C

2 × h
n×w

n )|t = 1, 2, ..., Tl

}
is then fed into the Transformer encoder. The encoder

consists of Lenc layers, each containing a multi-head self-attention module followed by a feed-
forward neural network and Layer normalization.The output of is a sequence of encoded patches
P ∈ RF× h

n×w
n , where F is the intermediate feature size. This step can achieve global information

interaction and non-local dependency modeling of image features. Next, the encoded patches P are
used to generate the completed feature by a Transformer decoder consists of Ldec layers, which
restores the self-attention map to the original feature map. These steps can achieve feature refinement
and retain the advantages of global information interaction and non-local dependency modeling
established in the Transformer encoder. After the refinement process, the patches are rearranged
back into a feature map E

′t
PQ↓

using the inverse operation of the initial patch extraction. The refined
feature map then passes through another several convolutional layers C(·), which fuses the two content
information in a concatenated feature vector. Consequently, with channel fusion, skip connection,
and output projection, the representative capability of the resulting feature can be further enhanced by
fusing multi-scale and multi-level information as we discussed in main paper. The obtained feature
can be denoted as {

E
′t = C(E

′t
PQ↓

) ∈ R(C× h
n×w

n |t = 1, 2, ..., Tl

}
. (2)

With the enhanced expression ability and restoration quality of the features, the content generation
process will be beneficial, making the model performer better in the bitstream-corrupted video
recovery problem.

B.3 Content Recovery

In this section, we briefly introduce the modules originally used in video inpainting framework, i.e.,
the E2FGVI [1].

Flow Completion. In severely corrupted videos, directly generating repaired image content is
challenging or impossible. Therefore, a commonly used method is to complete the video’s optical
flow instead of directly generating the content [4]. Following existing flow-guided methods, firstly, a
learnable flow completion module based on SPyNet [5] is used to estimate the forward and backward
optical flow of the down-scaled frame sequence with erased, corrupted regions and the loss for the
forward and backward flow restoration. The ground truth flow is obtained by loading pre-trained
SPyNet and predicting the optical flow of the undamaged frame sequence.

Flow-guided feature propagation. Taking the completed local temporal neighboring features and
predicted forward and backward flows of the corrupted frame, the motion in the corrupted region
can be estimated to guide the content generation. With feature propagation proposed by [1] using
modulated deformable convolution [6], the candidate feature points for inaccurate flow estimation
can be better rearranged and therefore provide better sampling position for the reference content
searching.

Content generation. With the fused propagation features, we can construct the overall feature
of the local frames by concatenating and soft spilting [7] the propagation feature and the context
encoder-extracted reference feature from randomly sampled non-local frames. Finally, temporal focal
transformer [1] capable of efficient computation with window-based attention [8, 9] and adaptive
grain attention is adopted to process sequence data rather than original focal transformer [8]. We can
generate the recovery result by a decoder module.

B.4 Training method.

Inspired by existing video inpainting methods, we apply multiple loss terms from different perspec-
tives [1] to our BSCVR framework. The overall loss function is composed of three terms Lrec, Ladv ,
and Lflow, expressed as:

Loss = Lrec + Ladv + Lflow =
∥∥∥Ŷ − Y

∥∥∥
1
+ (−Ez∼PŶ(z)

[D(z)]) + Lflow. (3)



Meanwhile, since the model is trained in GAN [10] paradigm, the applied T-PatchGAN [11] based
discriminator should minimize the loss, expressed as:

LD = Ex∼PY(x)[ReLU(1−D(x))] + Ex∼PŶ(x)
[ReLU(1 +D(z))]. (4)

C Supplementary Experiments

C.1 Implementation Setting of BSCVR

The implemented feature completion module consist of 2 layers of Transformer encoder and 1 layer
of Transformer decoder to perform feature re-coding and re-generation in our experiment. The
feature map’s height and width is down scaled by factor n = 4 for computational efficiency in our
experiments.

During training, following the existing works [12, 7, 1], the weights of Lrec, Ladv, and Lflow are
1, 10−2, and 1, respectively. Considering GPU memory limits, we trained the model with resized
432× 240 frames. Local frames were obtained by some continuous clips, and non-local frames were
randomly sampled from the videos. The number of local frames (Tl) and non-local frames (Tnl) was
set to 5 and 3, respectively.

Following STTN [12], FuseFormer [1], and E2FGVI [1], during evaluation and test, we used a sliding
window with the size of 10 to get local neighboring frames and uniformly sampled the non-local
neighboring frames with a sampling rate of 10. We adopted the Adam optimizer with β1 = 0 and
β2 = 0.99. The initial learning rate was set as 0.0001 for all modules and reduced by a factor of 10
at 80% of all iterations. We used 4 NVIDIA 3090 GPUs for training, and the batch size was set to 8,
the CPU is AMD Ryzen Threadripper 3990X 64-Core Processor.

C.2 More Qualitative Results

Here we provide additional qualitative results to show the superiority of the proposed BSCVR. The
reconstruction results of baselines are also presented for comparison. Figs. 7 to 8 show that our
BSCVR can generate more faithful textural and structural information and more coherent contents in
masked regions than other methods.

C.2.1 Performance Stability

For applying existing video inpainting methods to bitstream-corrupted video recovery, one common
failure case is the continuous and large masks, such that the recovery result is not faithful, and they
usually tend to remove the corrupted objects in the frame. This tendency is stronger when the frame
is far away from its closest corruption-free frames. As Figs. 10 to 12 show, we further provide some
video clips with continuous and relatively big masks for demonstrating the performance stability of
our methods.

C.2.2 Comparison with SOTA non-end-to-end method

We further compared our method with latest non-end-to-end flow-based video inpainting methods.
Although non-end-to-end methods theoretically have their drawbacks, their independent optical flow
completion module usually results in better inpainting performance in practice. Researchers are
constantly exploring and comparing the performance of these two designs, but there is actually no
complete conclusion yet. However, it is currently clear that independent optical flow completion mod-
ules require independent computing resources for training and inference, as well as the large amount
of CPU operations they contain, which yields disadvantage in efficiency in practical application.

We selected the SOTA non-end-to-end method ECFVI [13] and FGT [14] for comparison. It should
be noted that the pretained model of FGT in comparison requires significantly more training iterations
with 280K iterations for flow completion model training and 500K for inpainting model. The
quantitative evaluation result is shown in Tab. 1. The qualitative evaluation is shown in Fig. 13



Figure 7: Visual comparison in 240P resolution, the order from left to right is the same as in the main
paper: in sequence, they are input, STTN [12], FuseFormer [7], E2FGVI [1], BSCVR-S, BSCVR-P,
GroundTruth.



Figure 8: Visual comparison in original resolution, the order from left to right is the same as in the
main paper, in sequence, they are input, pretrained E2FGVI [1], bsc-trained E2FGVI [1], BSCVR-S,
BSCVR-P, GroundTruth.



Figure 9: Performance stability visualization in 240P resolution. For each visualized clip, from top
to bottom is the input clip, STTN, FuseFormer, E2FGVI, BSCVR-S, BSCVR-P, GroundTruth, in
sequence



Figure 10: Performance stability visualization in 240P resolution. For each visualized clip, from top
to bottom is the input clip, STTN, FuseFormer, E2FGVI, BSCVR-S, BSCVR-P, GroundTruth, in
sequence



Figure 11: Performance stability visualization in original resolution. For each visualized clip, from
top to bottom is the input clip, pretrained E2FGVI, BSC-trained E2FGVI, BSCVR-S, BSCVR-P,
GroundTruth, in sequence



Figure 12: Performance stability visualization in original resolution. For each visualized clip, from
top to bottom is the input clip, pretrained E2FGVI, BSC-trained E2FGVI, BSCVR-S, BSCVR-P,
GroundTruth, in sequence



FGT ECFVI Ground TruthOursInputCorrupted Frame

Figure 13: Qualitative evaluation with pretrained SOTA non-end-to-end methods under 240P resotion.

Test
res. Method

Accuracy Efficiency

YouTube-VOS (720P) Subset DAVIS (480P) Subset Runtime

PSNR↑ SSIM↑ LPIPS↓ VFID↓ PSNR↑ SSIM↑ LPIPS↓ VFID↓ s/frame

240P

Input 18.8749 0.8160 0.1527 0.2015 18.4562 0.7921 0.1541 0.4189 -
ECFVI [13] 22.6254 0.8524 0.0556 0.0981 20.6013 0.7758 0.0678 0.2219 ∼ 2.24
FGT [14] 33.5220 0.9288 0.0421 0.1289 32.3549 0.9121 0.0421 0.2380 ∼ 1.97

BSCVR-S (Ours)* 31.8345 0.9584 0.0262 0.0427 28.4211 0.9180 0.0381 0.1196 0.172
BSCVR-P (Ours)* 31.9534 0.9598 0.0258 0.0426 28.5430 0.9199 0.0375 0.1165 0.178

Table 1: Quantitative comparison with pretrained SOTA non-end-to-end method under 240P input
resolution.
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