
Supplementary Materials for M3ViT:
Mixture-of-Experts Vision

Transformer for Efficient Multi-task Learning
with Model-Accelerator Co-design

Hanxue Liang1∗, Zhiwen Fan1∗, Rishov Sarkar2, Ziyu Jiang3, Tianlong Chen1,
Kai Zou4, Yu Cheng5, Cong Hao2,Zhangyang Wang1

1University of Texas at Austin, 2Georgia Institute of Technology
3Texas A&M University, 4Protagolabs Inc, 5Microsoft Research

hanxue@gmail.com,{zhiwenfan,tianlong.chen,atlaswang}@utexas.edu
{rishov.sarkar,callie.hao}@gatech.edu, jiangziyu@tamu.com

kz@protagolabs.com, yu.cheng@microsoft.com

A Implementation Details

A.1 Scale-up the M3ViT

For the MTL encoder, we evaluate our model based on several variants of ViT following DeiT [1],
including ViT-tiny, ViT-small, and ViT-base. The final ViT block’s output feature will be fed into
decoders for multi-task predictions. We embed MoE expert layers once in every two ViT blocks.
The router is a single-layer MLP which maps token embedding to experts’ selection probability. In
task-conditioned MoE ViT, the task embedding network T is a two-layer MLP of dimensions 64 and
64. As for MLP decoder, the previous SoTA works [2, 3, 4] uses Deeplab [5] as the decoder for a
ResNet backbone. However, Deeplab is defined for Conv backbone and not suitable for ViT encoder
output. Therefore, we follow the prior work [6] and use a PUP [6] as decoder, which is a progressive
upsampling strategy that alternates conv layers and upsampling operations. Each decoder contains
five conv layers (the first four of dimension 256 and the final one of dimension corresponding to
task prediction) and four upsampling layers. This decoder is of lighter weight and consumes fewer
FLOPs than Deeplab. The output feature of last and second last conv layers will also be used in a
multi-tasks feature distillation module. The distillation module will only be used during train stage
and deactivated during inference stage, thus adding no extra FLOPs to the whole network.

A.2 Training Setup

Pre-training on ImageNet During the MTL pre-train stage, all the encoder backbones will be
pre-trained on ImageNet and the decoder will be randomly initialized. In the M-ViT models, we use
the pre-trained weights provided by DeiT [1] to initialize all the transformer layers and the input
linear projection layer in the encoder. In the MoE ViT models, we pre-train our encoder on ImageNet
following the same strategy as its counterpart DeiT ViT encoder in [1].

MTL Training For both NYUD-v2 and PASCAL-Context datasets, we adopt a polynomial learning
rate decay schedule and employ SGD as the optimizer with initial learning rate 0.002. Momentum
and weight decay are set to 0.9 and 0.0001, respectively. The batch size is 16.

∗Equal contribution

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Table 1: Performance of M3ViT on ViT-tiny and ViT-base

PASCAL-Context Backbone Seg.
(mIoU↑)

Norm.
(mErr)↓

H. Parts
(mIoU)↑

Sal.
(mIoU)↑

Edge
(odsF) ↑

∆m

(%) ↑
FLOPS

(G) ↓
Energy
(W·s)↓

STL-B ResNet-18 66.2 13.9 59.9 66.3 68.8 0.00 167 1.029

MTL-B ResNet-18 63.8 14.9 58.6 65.1 69.2 −2.86 167 1.029
Cross-Stitch [3] ResNet-18 66.1 13.9 60.6 66.8 69.9 +0.60 647 6.001
M3ViT MoE ViT-tiny 65.3 15.2 57.9 64.2 68.5 −3.53 62 0.265
M3ViT MoE ViT-base 75.2 14.8 64.5 66.1 72.6 +4.00 161 2.325

NYUD-v2 Backbone Seg.
(mIoU)↑

Depth
(rmse)↓

– – – ∆m

(%) ↑
FLOPS

(G) ↓
Energy
(W·s) ↓

STL-B ResNet-50 43.9 0.585 – – – 0.00 192 2.145

MTL-B ResNet-50 44.4 0.587 – – – +0.41 192 2.145
TAPS[7] ResNet-50 44.5 0.581 – – – +1.05 192 2.312
Cross-Stitch [3] ResNet-50 44.2 0.570 – – – +1.61 310 4.221
M3ViT MoE ViT-tiny 40.3 0.643 – – – −9.05 74 0.351
M3ViT MoE ViT-base 49.1 0.557 – – – +8.32 191 2.798

A.3 Hardware Details

Platform Specifications Our targeted FPGA, the Xilinx ZCU104 FPGA, has 1,728 DSPs, 504K
LUTs, 461K registers, 11 Mbit block RAM, and 27 Mbit UltraRAM. Our GPU used for baseline
measurements, the NVIDIA Quadro RTX 8000, has 4,608 CUDA cores and 48 GB of GDDR6
memory. It runs at a clock frequency of 1,395 MHz and consumes 295 W of power.

B More Experiment Results

B.1 Additional Experiments on ViT-tiny and ViT-base

We further evaluate M3ViT on different variants of ViT including ViT-tiny and ViT-base; results are
shown in Table 1. We compare against STL-B, MTL-B, and SoTA encoder-focused MTL model
TAPS[7], Cross-Stitch [3]. For TAPS, we adopt joint MTL strategy for comparable training longitude.
It can be observed that MoE ViT-base increases the SoTA performance by a large margin, achieving
+4.00% on PASCAL-Context and +8.32% on NYUD-v2. Meanwhile, it also consumes lower FLOPs
compared to previous ResNet-based methods. MoE ViT-tiny consumes much fewer FLOPs than all
previous methods (in particular, less than 1/10 FLOPs of the previous SoTA method Cross-Stitch).
Additionally, our hardware co-design of MoE ViT-tiny achieves energy consumption an order of
magnitude lower than Cross-Stitch.

B.2 Additional Experiments on Different Numbers of Tasks

To evaluate the performance of our model, we further conduct experiments on different levels of
MTL difficulties with different numbers of tasks. We compare between STL-B, MTL-B, SoTA
work Cross-Stitch [3], MTL-B with ViT-small (M-ViT), and MTL-B with MoE ViT-small (M3ViT);
results are shown in Table 2. It can be observed that M3ViT consistently outperforms MTL-B with
less computational FLOPs on different numbers of tasks on both NYUD-v2 and PASCAL-Context.
Compared to SoTA encoder-focused work Cross-Stitch, although M3ViT performs slightly lower
on NYUD-v2 with two tasks, it achieves better performance on all the other settings. In particular,
it surpasses Cross-Stitch on NYUD-v2 when the number of tasks increases to four (−0.91% vs.
−3.26%), which demonstrates the strong capacity of our model on handling more tasks. On PASCAL-
Context dataset, introducing MoE (M3ViT) can achieve much better performance than Cross-Stitch.
Noticing that M3ViT performs slightly worse on normal estimation and saliency detection tasks, we
speculate that it is because these two tasks require a relatively small receptive field to retain a detailed
estimation, and Cross-Stitch allows to use limited local information (i.e., small receptive field) when
fusing the activations from the different single-task networks. But for other tasks that require larger
receptive fields, our model performs significantly better than Cross-Stitch, since our task-dependent

2



Table 2: Performance on different numbers of tasks

PASCAL-Context Backbone Seg.
(mIoU↑)

Norm.
(mErr)↓

H. Parts
(mIoU)↑

Sal.
(mIoU)↑

Edge
(odsF) ↑

∆m

(%) ↑
FLOPS

(G) ↓
STL-B ResNet-18 66.2 13.9 59.9 66.3 68.8 0.00 167

MTL-B ResNet-18 60.8 14.5 – – – −6.23 167
Cross-Stitch [3] ResNet-18 65.4 14.2 – – – −1.68 647
M-ViT MoE ViT-small 65.3 15.6 – – – −6.79 83
M3ViT MoE ViT-small 72.7 14.4 – – – +3.11 84

MTL-B ResNet-18 63.8 14.9 58.6 65.1 69.2 −2.86 167
Cross-Stitch [3] ResNet-18 66.1 13.9 60.6 66.8 69.9 +0.60 647
M-ViT MoE ViT-small 70.7 15.5 58.7 64.9 68.8 −1.76 83
M3ViT MoE ViT-small 72.8 14.5 62.1 66.3 71.7 +2.71 84

NYUD-v2 Backbone Seg.
(mIoU)↑

Depth
(rmse)↓

Norm.
(mErr)↓

Edge
(odsF) ↑

– ∆m

(%) ↑
FLOPS

(G) ↓
STL-B ResNet-50 43.9 0.585 19.8 68.4 – 0.00 192

MTL-B ResNet-50 44.4 0.587 – – – +0.41 192
Cross-Stitch [3] ResNet-50 44.2 0.570 – – – +1.61 310
M-ViT MoE ViT-small 40.9 0.631 – – – −6.27 100
M3ViT MoE ViT-small 45.6 0.589 – – – +1.59 100
MTL-B ResNet-50 41.9 0.618 21.3 69.0 – −4.22 192
Cross-Stitch [3] ResNet-50 42.2 0.629 20.1 68.3 – −3.26 310
M-ViT MoE ViT-small 40.9 0.636 21.5 65.0 – −7.28 100
M3ViT MoE ViT-small 44.8 0.612 20.1 68.6 – −0.91 100

Table 3: Performance on different numbers of tasks on Taskonomy dataset
Tasks Depth Norm. Seg. Edge Occ. Reshad. Key2d. Curvature Autoenc. Average

3 tasks 3.33% 0.44% 7.74% – – – – – – 3.84%
6 tasks 4.68% 2.58% 10.36% 0.80% 3.28% 8.20% – – – 4.98%
9 tasks 5.41% 1.58% 7.67% 0.34% 4.34% 5.06% 7.83% 0.26% 15.01% 5.28%

MoE design helps effectively avoid different tasks’ training conflict. Meanwhile, M3ViT consumes
much less computational power than previous methods.

Furthermore, we conduct experiments by choosing tasks from the large-scale Taskonomy dataset [8].
Like our main manuscript, we use MTL-ViT-small as the baseline model and MTL-MoE-ViT-small
for our model. We increase the number of tasks from three to nine and perform detailed evaluations.
Following the same data pre-processing and evaluation method [9], we report the relative performance
improvement from M³ViT over the baseline MTL-ViT. As shown in the Table 3, M³ViT demonstrates
even stronger superiority as the number of tasks increases.

B.3 Comparisons with Decoder-focused Methods

Decoder-focused architectures typically require initial predictions or intermediate features of all the
tasks, both in training and inference, to improve the predictions. However, activating all tasks in
inference violates our motivation: sparsely activating the network to achieve efficient MTL inference.
Moreover, those models consume a large number of FLOPs [10], which makes them difficult to
deploy onto real-world edge devices with resource and latency constraints. This is because they need
higher parallelism factors, more resources, or clever tricks to hit the desired latency requirement,
which is out of scope of the discussion of this paper.
Ignoring the previously mentioned efficiency and memory bottleneck, we conduct comparisons
between our M3ViT-base model and decoder-focused work PAD-Net [11], which have similar FLOPs
(PAD-Net: 212 GFLOPs vs. Ours: 191 GFLOPs). Our MoE ViT-base model achieves higher
performance than PAD-Net on both the PASCAL Context dataset (Ours: +4.0% vs. PAD-Net:
-4.41%) and the NYUD-V2 dataset (Ours: +8.32% vs. PAD-Net: +7.43%).

3



C Latency Breakdown of M3ViT

Our FPGA implementation of M3ViT using ViT-small takes 84.538 ms for inference on the NYUD-
v2 dataset, which is split between patch embedding, ViT layers, and MoE layers as shown in the
breakdown in Figure 1. As shown in this figure, the time required to compute all experts in the MoE
layers (18.567 ms) is nearly equal to the time required to compute the fully-connected layers within
the ViT layers (18.447 ms). This affirms that our hardware computation reordering mechanism is
able to maintain memory efficiency with near-zero impact on latency.

Total: 84.538 ms

Patch embedding:
0.768 ms

Standard ViT layers:
41.825 ms

Self-attention:
23.378 ms

Fully-connected layers:
18.447 ms

MoE layers:
41.945 ms

Self-attention:
23.378 ms

Experts computation:
18.567 ms

Figure 1: A breakdown of the FPGA inference latency on the NYUD-v2 dataset. The total latency
can be split into the patch embedding step, the six standard ViT layers, and the six MoE layers in the
backbone. The ViT and MoE layers can further be divided into self-attention, which is identical for
both types of layers, and either the ViT fully-connected MLPs or the MoE experts computation.

References
[1] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and

Herve Jegou. Training data-efficient image transformers amp; distillation through attention. In
International Conference on Machine Learning, volume 139, pages 10347–10357, July 2021.

[2] Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
1871–1880, 2019.

[3] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks
for multi-task learning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3994–4003, 2016.

[4] Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, and Alan L Yuille. Nddr-cnn: Layerwise feature
fusing in multi-task cnns by neural discriminative dimensionality reduction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3205–3214,
2019.

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence,
40(4):834–848, 2017.

[6] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei
Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr, et al. Rethinking semantic segmentation
from a sequence-to-sequence perspective with transformers. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 6881–6890, 2021.

[7] Matthew Wallingford, Hao Li, Alessandro Achille, Avinash Ravichandran, Charless Fowlkes,
Rahul Bhotika, and Stefano Soatto. Task adaptive parameter sharing for multi-task learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
7561–7570, 2022.

4



[8] Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3712–3722, 2018.

[9] Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese.
Which tasks should be learned together in multi-task learning? In International Conference on
Machine Learning, pages 9120–9132. PMLR, 2020.

[10] Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin
Dai, and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. IEEE
transactions on pattern analysis and machine intelligence, 2021.

[11] Dan Xu, Wanli Ouyang, Xiaogang Wang, and Nicu Sebe. Pad-net: Multi-tasks guided prediction-
and-distillation network for simultaneous depth estimation and scene parsing. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 675–684, 2018.

5


	Implementation Details
	Scale-up the M3ViT
	Training Setup
	Hardware Details

	More Experiment Results
	Additional Experiments on ViT-tiny and ViT-base
	Additional Experiments on Different Numbers of Tasks
	Comparisons with Decoder-focused Methods

	Latency Breakdown of M3ViT

