
A SUPPLEMENTARY MATERIALS

A.1 CODE AVAILABILITY

The implementation of our methods along with the datasets used will be made publicly available.

A.2 COMPARISON TO SELF-VALIDATION

Self-validation, which uses a subset of measurements for validation, is popular in single-instance
MRI reconstruction for preventing overfitting (Yaman et al., 2021; Darestani et al., 2022). It works
by detecting the timing for stopping as near to the peak PSNR as possible. Our method differs in that
it can generally enhance the peak PSNR of the architecture while also alleviating overfitting. This
can be seen from the results of A2 256, A2 64, and Fig. 7 (main text). We show below that they can
be combined to achieve much better performance.

Table 1: Quantitative evaluation on 4× multi-coil knee datasets. The best and the second-best
are highlighted. 5% of the measurements are held out for validation. ’ws’ denotes the duration (#
iterations) of a sliding window that monitors the self-validation error for automatic early stopping.

Methods A2 256 A2 64 A5 256 A5 64 A2 256 A2 64 A5 256 A5 64

PSNR (↑) SSIM (↑)

Self-Val. (ws=30) 29.59 29.59 31.18 31.05 0.682 0.695 0.746 0.744
Self-Val. (ws=50) 29.04 29.62 31.07 30.94 0.642 0.684 0.738 0.737

Ours (3000 iters) 31.61 31.93 29.40 31.67 0.750 0.776 0.702 0.727
Ours w. Self-Val (ws=30) 31.49 31.09 31.74 31.73 0.762 0.762 0.769 0.772
Ours. w. Self-Val (ws=50) 31.60 31.41 31.78 31.63 0.762 0.767 0.771 0.771

Baseline (3000 iters) 27.18 27.62 29.16 29.23 0.541 0.575 0.625 0.640

Table 2: Quantitative evaluation on 4× multi-coil brain datasets.

Methods A2 256 A2 64 A5 256 A5 64 A2 256 A2 64 A5 256 A5 64

PSNR ↑ SSIM ↑
Self-Val. (ws=30) 30.39 30.06 32.78 32.48 0.822 0.832 0.872 0.868
Self-Val. (ws=50) 30.21 30.15 32.77 32.44 0.813 0.829 0.870 0.867

Ours (3000 iters) 32.90 33.12 32.08 32.83 0.855 0.870 0.815 0.851
Ours w. Self-Val (ws=30) 32.94 32.56 33.06 33.04 0.874 0.873 0.880 0.879
Ours. w. Self-Val (ws=50) 32.99 32.72 33.06 32.52 0.874 0.874 0.880 0.870

Baseline (3000 iters) 29.08 29.41 31.15 31.42 0.729 0.761 0.782 0.801

A.3 COMPARISONS TO SUPERVISED METHODS

Supervised methods shine when test data are within the training distribution. DIP-like methods are
more advantageous on out-of-distribution data as they are agnostic to changes in acquisition protocols
and anatomy shift, etc.(Yaman et al., 2021). Our method accelerates DIP by allowing a more compact
network to be employed, and when combined with self-validation, its runtime is further reduced.

Table 3: Robustness and runtime comparisons with U-Net on the 4× multi-coil brain validation
dataset. In-domain dataset: 50 AXT1PRE slices. Out-domain dataset: 30 AXFLAIR slices.
Runtime is computed as the per-slice average for every slice of size 20× 640× 320. The DIP A2 64

is trained for 3000 iterations when self-validation is not used.

Methods In-domain Out-domain Runtime (mean±std)

PSNR SSIM PSNR SSIM Train Inference

Trained U-Net 34.11 0.910 28.25 0.785 ≥ 3 days 0.1± 0.003 sec

Untrained
A2 64 (baseline) 29.41 0.761 29.77 0.715 – 26.5± 8.1 mins
A2 64 (ours) 33.12 0.870 32.45 0.832 – 26.8± 8.3 mins

A2 64 (ours) w. Self-Val. 32.56 0.873 32.11 0.840 – 4.8± 2.7 mins
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Deep Decoder (1×1) ConvDecoder (3×3)(a) MLP-Decoder (b) Conv-Decoder

Noisy (baseline) 5 Layers w. Transposed Conv. 5 Layers w. Bilinear Up.

5 Layers w/o. Upsampling 4 Layers w/o. Upsampling 3 Layers w/o. Upsampling

Figure 8: Denoising experiments. (Left) In non-convolutional networks, removing the upsampling
hampers the denoising capability, which cannot be compensated by merely adjusting the network to
be more under-parameterized. Transposed convolutions result in a more rapid decline in performance
than bilinear upsampling. (Right) Convolutional layers alone exhibit certain denoising effects but
necessitate early stopping. The showcased image is from the classic dataset Set9 (Dabov et al., 2007).

A.4 THE ”DEVIL” IS IN THE UPSAMPLING

Here we provide additional evidence demonstrated on brain datasets as well as natural images to
support our findings about the unlearnt upsampling and its relationships with other architectural
properties in DIP. These findings critically motivate our methods and lead us to conclude that the
underperformance in DIP is not primarily attributed to the number of parameters.

A.4.1 ADDITIONAL MRI EXPERIMENTS

As stated in Sec.4, an unlearnt upsampler can be seen as a zero insertion step which increases the
output sampling rate, followed by a non-ideal low-pass filter (LPF, shortened as L) that attenuates both
the introduced high-frequency replica and signals. Bilinear and nearest neighbor (NN) upsamplers
differ only in the LPFs used. We additionally constructed a customized upsampler that has a greater
attenuation ability than bilinear upsampling. This was done by first interleaving the feature maps of
every layer with zeros and then convolving them with a handcrafted LPF: L−100, with the subscript
denoting the decayed dB. The Details of construction are specified in A.7.

Table 4: Importance of upsampling. Evaluated on the 4× multi-coil brain dataset. From the left to
the right, the attenuation extent of the LPF increases. PSNR values at 3000th iteration are reported.

Methods w/o. Upsampling. NN Bilinear L−100 # of Params. (Millions)

ConvDecoder 28.69 ± 1.6 31.78 ± 1.2 32.31 ± 1.3 32.48 ± 1.2 4.1 M
Deep Decoder 24.55 ± 1.1 27.10 ± 0.9 31.36 ± 1.4 32.68 ± 1.1 0.47 M

Tab. 4 shows that simply varying the upsampling type substantially influences the network perfor-
mance such that the performance gap between the two networks can even be closed without requiring
architecture scaling. Overall, the presence of unlearnt upsampling is vital to the non-convolutional
Deep Decoder and enhances both the accuracy and stability of ConvDecoder: the peak PSNR is
reached more slowly when the attenuation is stronger, alleviating overfitting (Fig. 9).

ConvDecoder

No Upsamp.
NN
Bilinear
ℒ!"##

Deep Decoder

ℒ!"##
Bilinear
NN
No Upsamp.

Figure 9: Results evaluated on the masked regions averaged across 30 slices. The unlearnt upsampler
critically influences both the peak PSNR and the susceptibility to overfitting.
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Noisy Ground TruthDeep w/o. Skip Connections Shallow w/o. Skip Connections

Figure 10: Denoising experiments. Deeper architectures with few or no skip connections tend to
generate smoother outputs compared to the shallower ones.

Corrupted

Ground Truth

Shallow w. Skip Connections Shallow w/o. Skip Connections

Deep w. Skip Connections Deep w/o. Skip Connections

Figure 11: Inpainting experiments. Deeper architectures with few or no skip connections tend
to generate smoother predictions for the masked regions than the shallower architectures. Skip
connections make deep architectures perform similarly as the shallower ones.

A.4.2 NATURAL IMAGE EXPERIMENTS

We reaffirmed our observations above on image denoising, which is a natural application of DIP.
The results in Fig. 8 show a very similar trend as in MRI reconstruction. We further validated on a
challenging image inpainting task that inherently resembles the case in MRI reconstruction. The
results are shown in Fig. 11 and Fig. 12

A2-full-256
A2-zero-256
A8-full-256
A8-zero-256

InpaintingInpainting

Figure 12: Deep architectures with zero
skip connection converge more slowly, i.e.,
A8 zero 256

We argue that the understanding about the upsam-
pling and its interactions with other architecture el-
ements can help explain why deeper networks with
fewer skip connections converge more slowly, gen-
erate smoother outputs and are less prone to over-
fitting (Sec.4 in main text). Concretely, the upsam-
pling operation inserted in-between the decoder layer
slows down the generation of high frequencies re-
quired for transforming the lower-resolution feature
maps into the higher-resolution target image, primar-
ily due to its role as a fixed low-pass filter. As the
network depth increases, the degree of smoothness
increases (Fig. 10). Skip connections notably accel-
erate the convergence (Fig. 12) and ameliorate the
over-smoothing issue, likely due to the reduced ”ef-
fective” upsampling rate. All these observations are consistent with our MRI experiments in Sec.4
(main text).
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A.5 EXAMPLE RESULTS ON 8× UNDERSAMPLING

DIP with an inappropriately chosen architecture exhibits even more severe reconstruction artifacts
in 8× undersampling, which may not be remedied by early stopping as even the peak PSNR could
be low (see metric curves). Nevertheless, our method substantially alleviates the artifacts while
employing the same architecture. Particularly, we found that scaling up not only the sigma but also
the kernel size of the Gaussian blur improves the visual quality in such a high undersampling rate.

8× Undersampled A2-64 w. Self-Validation
(3000th iter) (Early-stopped)

Ours, ks = 3, 𝜎 = 1.5 Ours, ks = 7, 𝜎 = 2.5 Ground Truth(3000th iter) (3000th iter)

A2-64
Early-stopped
Ours (ks=3, 𝜎=1.5)
Ours (ks=7, 𝜎=2.5)

Figure 13: Qualitative results of 8× undersampling. All methods were evaluated on A2 64.

8× Undersampled A2-64 w. Self-Validation
(3000th iter) (Early-stopped)

Ours, ks = 3, 𝜎 = 1.5 Ours, ks = 7, 𝜎 = 2.5 Ground Truth(3000th iter) (3000th iter)

Ours (ks=7, 𝜎=2.5)
Ours (ks=3, 𝜎=1.5)
Early-stopped
A2-64

Figure 14: Qualitative results of 8× undersampling. All methods were evaluated on A2 64.

A.6 ANALYSIS ON SENSITIVITY TO HYPERPARAMETERS

As stated in the ”implementation details” section, we set the filter size of the Gaussian blur to a fixed
value, i.e., 3, and chose the sigma uniformly from a fixed range, i.e., [0.5, 2.0]. The substantially
improved performance demonstrates that the method exhibits robustness to a certain range of hy-
perparameters. For the undersampling rate higher than 4×, a larger kernel size and sigma value are
generally beneficial for better visual quality (see qualitative examples in Sec. A.5). We then test the
sensitivity of the proposed Lipschitz regularization to its only hyperparameter - the regularization
coefficient λ. The experiments were performed on the multi-coil knee validation dataset (Tab. 5).

A.7 DETAILS OF THE CUSTOMIZED UPSAMPLER

The upsamplers experimented in Tab. 4 is constructed by first inserting zeros into the input (or feature
maps) in an interleaved fashion, and then convolving with the filter with the following coefficients:
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Algorithm 1: PyTorch-style pseudocode for customized upsampling
# upx: the upsampling scaling factor in the x direction
# upy: the upsampling scaling factor in the y direction
# x: the input to be upsampled
def InsertZeros(x, upx, upy, gain=1.0):

b,c,h,w = x.size()
x = x.reshape([b, c, h, 1, w, 1])
x = F.pad(x, [0, upx - 1, 0, 0, 0, upy - 1])
x = x.reshape([b, c, h * upx, w * upy])
x = x * gain
return x

# LPF construction
# w: the coefficients
def lowpass conv(num chns, w, pad size=’same’, pad mode=’zeros’):

# filter size
k size = len(w)
# Convert 1D LPF coefficients to 2D
f 2d coeff = torch.outer(w,w)
f weights = torch.broadcast to(f 2d coeff, [num chns, 1, k size,
k size])
conv = nn.Conv2d(num chns, num chns, kernel size=k size,
stride=1, padding=pad size, padding mode=pad mode, bias=False,
groups=num chns)
conv.weight.data = f weights
conv.weight.requires grad = False
return conv

Table 5: Evaluation on hyperparameter sensitivity of the Lipschitz regularization. PSNR values
(↑) are reported. The chosen is underlined.

Matrix norm Hyper-param. A2 256 A2 64 A5 256 A5 64 A8 256 A8 64

ℓ∞
λ = 1 28.41 29.21 29.17 29.79 29.43 30.14
λ = 1.5 27.89 28.98 28.68 30.11 29.13 29.42
λ = 2 28.36 29.25 28.51 29.60 28.98 29.52

Figure 15: Example results of a transformer (i.e., Swin U-Net Cao et al. (2022)). The original Swin
U-Net consists of only Swin Transformer blocks and skip connections, without upsampling layers.
Our method substantially alleviates the overfitting and enhances the peak PSNR.

Nearest neighbor (NN): [0.5, 0.5]

Bilinear: [0.25, 0.5, 0.25]

L−100: [0.000015, 0.000541, 0.003707, 0.014130, 0.037396, 0.075367, 0.121291,
0.159962, 0.175182, 0.159962, 0.121291, 0.075367, 0.037396, 0.014130, 0.003707, 0.000541, 0.000015]

L−100 is designed using the Kaiser window, with the cutoff frequency as 0.1 and the Beta of the
Kaiser window as 10.
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Specifically, the customized filter can be constructed using the following code and can then be used
as a plug-in module for any network architecture.
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