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In this supplementary material, we provided more visualization examples and visual comparisons of1

different approaches for geodesic representation. Moreover, we presented detailed explorations on the2

data efficiency of learning NeuroGFs, and analyzed the memory footprints of different approaches.3

In the end, we further performed qualitative and quantitative evaluations on the surface geometry4

information encoded in NeuroGFs. Note that our source code and the checkpoints of the trained5

neural models have also been uploaded.6

Figure S1: Visualization of MSAD geodesic distance fields computed by our approach. ü Zoom in
to see details.
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Figure S2: Visualization of mesh triangulations.

1) Visualization of MSAD Geodesic Distance Fields. We randomly selected 5 source points on the7

shape surface to produce the resulting MSAD geodesic distance field, as illustrated in Figure S1.8

Besides, we also visualized the triangulation of the testing meshes in Figure S2.9
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Figure S3: Visual comparison of SSAD geodesic distances. Below each example, we also marked the
corresponding mean relative error (%). ü Zoom in to see details.
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2) Visualization of SSAD Geodesic Distance Fields. We provided more visual comparisons of the10

SSAD geodesic distance fields exported from different approaches, as presented in Figure S3. To11

facilitate comparisons, we also marked the quantitative metrics of geodesic representation accuracy12

below each example computed from different approaches. In particular, Figure S4 presents close-up13

views for regions on the anisotropic nail model.14
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Figure S4: Close-up views for geodesic distance fields deduced from different approaches on the
anisotropic nail model.

Table S1: Effects of offline training with different amounts of paired ground-truth geodesics on the
dragon model. In the right two columns, we respectively record the preprocessing (Prep.) time cost
for generating ground-truth geodesic distance (G.D.) and shortest path (S.P.) data.

#Sources MRE (%) Chamfer-L1 (×10−2) Prep. G.D. (minutes) Prep. S.P. (hours)
10000 0.66 1.297 119.1 21.6
1024 0.68 1.319 12.2 2.2
512 0.75 1.397 6.1 1.1
256 0.83 1.580 3.0 0.6
128 1.09 2.044 1.5 0.3
64 1.63 2.926 0.8 0.14
32 2.21 3.725 0.4 0.07

3) Offline Training with Limited Ground-Truth Geodesics. For the preprocessing stage of preparing15

the required ground-truth geodesics for offline training of NeuroGFs, during which 4 data generation16

scripts run in parallel, we explored the effects of using different numbers of source points, i.e., 10000,17

1024, 512, 256, 128, and 64. For each source point, we only preserved its geodesic distances between18

4096 target points and its shortest paths between 2048 target points. As compared in Table S1, our19

approach can still achieve relatively satisfactory geodesic representation performances when only20

a limited amount of source points are exploited to produce ground-truth training data. Besides, we21

can also observe that using a much larger amount of training samples (i.e., with 10000 source points)22

only leads to insignificant performance gains. Furthermore, note that here our preprocessing stage is23

not well-optimized, since we need to do lots of disk writing operations. We can directly integrate the24

approaches used for data preparations (fDGG [2] and DGG-VTP [1]) to Python to avoid costly disk25

writing time in the future. Comparatively, the recent work SEP [4] requires around 30 minutes for26

preprocessing a mesh with 20K vertices. Its time complexity of preprocessing is O(f(n)+m3n)
√
n),27

where n is the number of mesh vertices and f(n) is the time complexity of the used SSAD algorithm,28

which is at least O(n) time for fDGG [2]. We can see that this time complexity increases more than29

linearly in the number of mesh vertices. Thus, we can estimate that for the dragon mesh model30

with more than 400K vertices, SEP would require more than 10 hours to finish preprocessing. This31

is much longer than our preprocessing stage using 1024 source points, which achieves geodesic32

representation accuracy comparable to SEP.33

4) Memory Footprint of Online Point-to-Point Geodesic Query. We compared the memory footprints34

of different approaches for online answering the geodesic distance between an input pair of source35

and target points. The quantitative results are reported in Table S2, where we can observe that our36

approach consistently maintains satisfactory memory efficiency. Thanks to our implicit querying37

paradigm, the resulting memory footprint is independent of the complexity of the given shape. Instead,38

for both the two competing approaches of HM [3] and fDGG [2], their memory footprints increase39

when dealing with larger meshes.40
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Table S2: Comparison of memory efficiency for online point-to-point geodesic query.

Mesh #V (K) Memory Footprint (MB) of Point-to-Point Geodesic Query
HM [3] (on CPUs) fDGG [2] (on CPUs) NeuroGF (on GPUs)

armadillo 173 272 60 10
bimba 75 138 26 10
bucket 35 45 15 10
bunny 35 56 13 10
cow 46 70 17 10

dragon 436 597 152 10
fandisk 20 29 7 10

heptoroid 287 690 108 10
maxplanck 49 85 17 10

nail 2.4 2.9 1.3 10

5) Geometry Representation Recovery. As pointed out in the paper, NeuroGFs jointly encode both41

3D geometry and geodesics in a unified neural representation structure, although geodesic information42

is our major focus and geometric information just serves as a byproduct in this work.43

Here, we provided necessary qualitative and quantitative evaluations for signed distance field infor-44

mation encoded in NeuroGFs. We deduced the predictions of signed distance values on a uniformly-45

distributed 3D grid with the resolution of 5123, and then measured the L1 differences between the46

predicted and ground-truth signed distances, as reported in Table S3. For visualization, we applied47

the Marching Cubes [5] algorithm for isosurface extraction. The resulting mesh reconstructions are48

displayed in Figure S5.49

Table S3: Mean L1 errors between our predicted and ground-truth signed distances.

Mesh armadillo bimba bucket bunny cow dragon fandisk heptoroid maxplanck nail
L1 (×10−3) 1.22 0.97 0.68 0.97 0.86 1.28 0.67 1.01 1.03 0.45

Figure S5: Visualization of mesh reconstruction deduced from NeuroGFs.
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