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Figure 1: Learning Visual Parkour from Generated Images. Top to bottom: (1,2) robot climbing stairs. (3)
robot climbing hurdles on a stone ground (4) on a grassy courtyard. Notice the different box color.

Abstract: Fast and accurate physics simulation is an essential component of a2

modern, learning-based approach to robotics, where robots can explore unsafe3

scenarios that would otherwise be infeasible in the real world. Yet, it remains4

difficult to incorporate perception into the sim-to-real pipeline to match the real5

world in its diversity and richness. This work uses visual parkour on a quadruped6

robot as a challenging testbed. We demonstrate that robots can learn to scale7

tall obstacles with precise eye-body coordination purely from generated images.8

We provide comprehensive empirical validation of the robustness of the resulting9

visual policy both in the real world and via a collection of high-fidelity digital10

replicas of scenes captured in the wild. Our result shows that a visual policy11

trained purely from generated images in LucidSim is robust enough to transfer12

directly to the real world using an off-the-shelf webcam. Website: https://13

lucidsim.github.io/14

1 Introduction15

What does it take to build an autonomous robot that can operate alongside us in a dynamic and open16

environment, such as a busy city street? Consider a small quadruped robot carrying goods across an17

intersection – it must understand traffic signals, recognize and avoid colliding with pedestrians, and18

possess the ability to jump onto a tall curb when it reaches the other side of the street. Central to this19

picture is the robot’s ability to perceive and understand the world around it for a variety of purposes.20
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Figure 2: LucidSim. Left: Imitation learning from generated images. We collect a large number of
diverse, structured image prompts from an LLM, that is combined with the depth map and semantic
masks to produce diverse visual data. The student is iteratively improved via DAgger using its own
on-policy samples. Right: The resulting policy is sufficiently robust to be deployed in a variety of
challenging terrains, including obstacles that are comparable in size to the robot’s body height.

It also needs to be robust enough to handle the open world, which, unlike controlled laboratory21

settings, is full of unfamiliar encounters that demand an appropriate response.22

Existing efforts in robot learning have approached building such systems from two primary direc-23

tions. The first, prevalent in robot manipulation domains, focuses on imitating human demonstra-24

tions collected in the real world, operating under the assumption that scaling up data collection25

will eventually encompass sufficiently diverse scenarios to produce a versatile policy [1, 2, 3, 4].26

However, relying on real-world data collection has limitations, as it is impractical to cover unsafe27

scenarios or tasks that are not feasible for human teleoperation. The second approach involves learn-28

ing in simulation and then transferring the knowledge to the real world. This method has achieved29

impressive results, demonstrating high levels of dexterity [5, 6], agility [7, 8, 9, 10], and robustness30

in real-world environments [11, 12], while allowing environment designers full control over even31

the smallest details.32

With great power, comes the great burden of having to specify everything. At the heart of the33

problem is how to produce diverse visual data without the unwanted burden, while simultaneously34

retaining control. The goal of this project is to reconsider visuomotor learning via sim-to-real in35

this context, and explore ways to learn from generated data. We choose the task of visual parkour36

as our testbed, where a small quadruped robot must scale obstacles comparable in height to its own37

body with precise eye-body coordination [10, 9, 13]. Figure 2 illustrates our approach. We begin38

with a low-poly terrain geometry in a physics simulation engine. We then unroll an expert policy39

that has been trained in simulation but cannot be deployed in the real world due to its reliance on40

privileged access to the height map. Using the rendered depth map from the robot’s egocentric view41

and accompanying semantic masks for parts of the scene that we intend to control, we can shape the42

material properties, weather, and cultural details while maintaining tight alignment with the terrain43

geometry. Knowledge of the terrain geometry is key to visual parkour and can be difficult to extract44

from a single RGB camera view. We generate stylistically consistent stacks of image observations45

by warping the initial frame using dense optical flow, so that the robot can infer important knowledge46

of the terrain through the natural movement of its head-mounted camera.47

Complementary to our image generation pipeline is a scalable way to source diverse prompts from a48

language model. We offer details on our meta prompt strategy and our way to scale it up to thousands49

of prompts (see Sec. 3.1). Finally, the ability to simulate and collect on-policy data, backed by a50

scalable systems implementation that distributes rendering and trajectory unroll over many GPUs,51

enabled us to run Dataset Aggregation (DAgger). We show that this greatly improves the robustness52

of the resulting visual parkour policy over baselines trained on teacher trajectories alone.53

Our contributions are three fold: First, a technique for producing geometrically and dynamically54

correct, multi-frame image stacks for robot parkour. Second, a technique to produce diverse and55



complex imagery, by sourcing a large number of detailed, structured image prompts from an LLM,56

that is quite steerable in practice. Finally, we provide the first empirical demonstration of an agile vi-57

sual parkour policy that is trained purely on generated data, that out-performs domain randomization58

baselines in the real-world.59

2 Problem Formulation60

This work concerns the scenario where we have partial knowledge of the target environment D in61

which our legged robot will be deployed, and we want to construct a generative learning environment62

G such that it offers a similar experience as what the robot will encounter in D. We assume a sim-63

to-real setup, where deployment occurs in the real world without additional training.64

Prior-Assisted Domain Generation. Consider the target environment D as a Partially Observable65

Markov decision process given by the tuple D = hS,A,Oi, where S is the physical state of the66

environment, A is the action space, and O is the space of observations consisting of proprioceptive67

observations of the robot, op and the vision input ov . We assume before training that we are given a68

rough description in text, `, or in some cases, a reference image x of the target environment D. Our69

goal is to use our limited knowledge to steer our generative learning environment G towards what70

our legged robots will experience when it is deployed. This problem is ill-defined because ` and x do71

not contain sufficient statistics of D. Therefore, some type of prior knowledge has to appear in our72

construction of G. We refer to this class of problems as Prior-Assisted Domain Generation (PADG)73

to explicitly acknowledge the role of such priors, and to distinguish our approach from prior work74

that does so implicitly.75

Structured Video Generation with Geometric and Physical Guidance. By construction, we want76

to sample paired vision and proprioceptive observations ov and op from the learning environment77

G. Since a single image only offers partial observability to the geometry, we need to collect a78

sequence of images ov = [xt, xt�1, xt�2, . . .] that are consistent with the corresponding sequence79

of states [st, st�1, st�2, . . .] in the physics simulation. We make the simplified assumption that the80

only information we need to know about the scene is the rough collision geometry of the scene, g,81

and the semantic and physical properties associated with each part of it {ci}, and we do not need82

detailed textures and lighting. We need the state of the robot at each timestep, st = hp, ṗ, r, p, ẏi,83

which consists of the joint poses p and its velocity ṗ; roll r, pitch p, and the yaw rate ẏ. Our goal is84

to construct the sampling function xt ⇠ f(st, g, {ci}).85

3 Learning Visual Parkour from Generated Images86

We present our approach for learning visual parkour from generated images. Doing so involves87

solving four separate problems: First, how to align generated imagery with the simulated physics;88

second, how to extend a single generated image to multiple coherent frames; third, how to drive di-89

versity using automatic prompting from an LLM; and finally, how to make the policy robust enough90

to deploy as-is in the real world with on-policy samples and teacher supervision.91

3.1 Aligning Image Generation with Physics92

We augment a vanilla text-to-image model with additional semantic and geometric control. First, we93

replace the text prompt for the whole image with a set of prompt and semantic mask pairs that each94

specifies a part of the image (Fig.3). For instance, in the stairs scene, we specify the material and95

texture of the steps, plus a coarse silhouette for the mask. We avoid fine-grained semantic masking96

and let the model come up with those details. To make the images geometrically consistent, we take97

an off-the-shelf ControlNet that is trained on monocular depth estimates from MiDAS, and render98

inverse depth from the robot’s perspective as input. The two conditioning images are fed into the99

diffusion and ControlNet model.100

Generating diverse images via auto-prompting. Our early experiments showed that images101

prompted by GPT are often richer and more complex in composition than those prompted by hu-102
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Figure 3: Image Generation Pipeline. a) Using the CLIP embedding of the text prompt and the
semantic mask rendered from the scene, we can semantically control the appearance of each object.
b) Condition the image generation by the scene geometry using ControlNet. c) The generated images
are consistent with the collision geometry, and contains a high level of detail.

Figure 4: Driving the diversity in image generation via automatic prompting from an LLM.

left: the author provide meta prompts that are used to solicit a large number of diverse, structured
image prompts from the LLM. Note the use of a JSON format for the output that is then parsed.
right: each meta prompt is used once to produce 20 ⇠ 30 prompts. We limit the number to stay
within the 4096 token limit. In total, each experiment involve anywhere from 600 to more than a
thousand prompts.

mans. We also observe that diverse prompts produce diverse images, since images sampled from the103

same prompt can be degenerate in the overall theme. Figure 4 illustrates our strategy: we prompt104

chatGPT to generate batches of image prompts with a “meta” prompt that contains a title block,105

details of the request, and a final question asking for structured output in JSON. We can generate106

at max 30 prompts reliably in each query without exceeding the 4096 token limit of the OpenAI107

API, and can request images of a particular time of day, weather, and lighting conditions. Manu-108

ally applying edits to those generated prompts is impractical. Instead, we tweak the meta prompt109

by rendering a small subset of GPT-generated prompts into images, and iterate until the generated110

prompts produce acceptable images. We then sample multiple batches of images prompts, each111

using a slightly modified meta prompt. We do not edit the generated image prompts manually.112

3.2 Dreams In Motion: Video Generation via Image Warping113

Inferring scene geometry from a single view is an ill-posed problem, but our robot is al-114

ways on the move, so we can take advantage of this natural movement and infer geometry115

from a stack of camera views. Since state-of-the-art video generation models are not open-116

source, we developed Dreams In Motion (DIM), an alternative that takes advantage of our ac-117

cess to the scene geometry, to warp a single generated image into a coherent short video.118



Figure 5: LucidSim image samples from the stairs environment. Each image is prompted with a
different prompt sampled from chatGPT using a templated meta-prompt.

Figure 6: Samples from a single prompt. Some object descriptions can produce diverse visual
results despite of its simple composition. We present multiple samples from the same text prompt:
“Close-up view of a toy FIFA soccer ball, 135mm IMAX, very large.” We include the generative
workflow in the appendix.

Figure 7: Image Warping. A single generated
image is warped using ground-truth optical flow
to provide the next k image observations.

DIM works as follows: first, we compute the119

ground-truth optical flow between the current120

ego view of the robot and that of the next time121

step using the terrain geometry (Figure 7b). Us-122

ing this flow map, we can synthesize a proximal123

version of the next observation by warping the124

previous view. This way we can start with a125

single, generated 2D image, and create a co-126

herent short video sequence. In practice, this127

also reduces the time spent on the image gener-128

ation, making sampling faster. Quantitatively,129

this amounts to a speedup of almost 7 times (see130

Figure 8).131

3.3 Dataset Aggregation for Behavior Cloning132

To collect trajectory data for behavior cloning, we begin by sampling intermediate checkpoints133

collected during the training of the privileged teacher. These are used to step the environment,134

with the teacher providing action labels. However, this initial dataset is insufficient for training a135

robust student that is capable of sampling on its own (see Figure 10). To improve the initial student,136

we perform three DAgger iterations, leveraging DIM to accelerate data collection.137



Figure 9: Real-to-Sim Benchmark Environments. Snapshots of a few environments we use for
evaluation. Each scene is modeled using 3D Gaussian Splatting. The first-person view from the
robots’s perspective is highly photo-realistic.

4 Results138

4.1 Simulated Evaluation139

Figure 8: DIM Acceler-

ates Image Generation

Image warping requires
minimal time for each
frame. Lower is better.

We construct a small set of benchmark environments using 3D Gaus-140

sian Splatting, a recent graphics technique that produces fast, complex,141

and photo-realistic digital replicas of static natural scenes. We provide142

performance statistics in these simulated benchmarks in four domains:143

tracking a soccer ball (chase-soccer); tracking an orange traffic cone144

(chase-cone), climbing over hurdles that are 75% of the robot’s body145

height (hurdle); and traversing stairs featuring various material types146

(stairs). In chasing tasks, we randomly sample locations for the target147

objects within the view of the robot’s camera frustum. For hurdle and148

stairs, waypoint locations are manually labeled and appear as orange149

traffic cones. Each task is evaluated in three replica scenes with 50 trials150

each, randomizing both the starting pose and waypoint location offsets.151

We report the fraction of goals reached (FGR) and forward displacement152

(xdisplacement) toward each goal in Table 1 and 2.153

We consider the following baselines: an expert policy that requires privi-154

leged terrain data as the oracle; a student policy trained to navigate using155

depth; a student policy trained using classical domain randomization over textures, and our method,156

LucidSim, trained with generated frame stacks using DIM.157

Learning from Generated Images Out-Performs Domain Randomization We observe that Lu-158

cidSim over performed classical domain randomization[14] in almost all evaluations. Surprisingly,159

we find that DR is able to climb stairs quite effectively in simulation, likely due to the repetitive gait160

that is induced after recognizing the first step. However, it struggles to perform on hurdles, where161

the timing of the jump is critical. We also observe a few factors affecting the performance of our or-162

acle and depth baselines. The oracle struggles on one of the stairs environments (Marble) due to the163

presence of a railing, which it has never seen before in its privileged terrain information. However,164

because LucidSim is trained with behavior cloning on a simple terrain, it is not as adversely affected165

by such attributes in the testing environment. These challenges also affect the depth student, which166

is distracted by miscellaneous features in the benchmark environment (e.g. chairs, railings, walls).167

4.2 Real World Results: Visual Parkour In The Wild168

We deploy on a Unitree Go1 equipped with a budget RGB webcam, and run inference on the Jetson169

AGX Orin. Before deploying the policy, we analyze the camera latency and fine tune by applying170



Figure 10: Dagger Iterations Improve Policy Performance. Each data point represents a new
DAgger step. Increasing the number of DAgger iterations improves performance on the simulated
benchmark environments. Evaluation include 50 unrolls on three environment instances for each
task. Gray dotted line indicates the performance of the expert teacher.

Task # of Trials LucidSim Domain Rand.

chase-cone 30 100.% 70.0%
chase-soccer 20 85.0% 35.0%
dark hurdle 15 86.7% 26.7%
light hurdles 15 73.3% 40.0%
stairs 10 100.% 50.0%

Figure 11: Real-world Robot Results. We measure
the success rate of LucidSim and Domain Rand. stu-
dent in a variety of real-world scenarios. Each task
is evaluated over multiple environments, diverse in ap-
pearance.

Figure 12: Robot climbing over a
box that is on the same scale as its
body height.

the measured delay to the existing dataset. Each task is evaluated on multiple scenes, and we record171

whether the robot reaches the target object (chase) or successfully traverses the obstacle.172

We compare LucidSim to Domain Rand. and present the results in Figure 11. In the chasing tasks,173

we observe that Domain Rand. is able to identify color well (orange cones), but struggles with174

recognizing the patterns of the soccer ball. On the other hand, LucidSim is not only able to recognize175

the classic black and white soccer ball, but also generalizes to different colored soccer balls due to176

the rich diversity of the generated data it has seen before. For hurdles and stairs, Domain Rand.177

does not consistently recognize the obstacle in front of it, often resulting in a head-on collision,178

while LucidSim is able to consistently anticipate the obstacle and successfully traverse it.179

4.3 Ablation: Image Generation without Conditioning180

We present qualitative results on the effects of conditioning the image generation on depth. Without181

the depth map, the model failed to generate stairs. Instead, the image contains just flat ground. (see182

Fig. 13).183

Figure 13: Image Generation with and without condi-

tioning on depth. (left) With depth and open-text segmen-
tation. (b-c) without depth, and segmentation alone.

Figure 14: Scale Reference. 12 inch
Hurdle in comparison to the robot ’s
body height.

5 Related Work184

Robot parkour. Recent work in agile locomotion uses deep reinforcement learning and in-185

simulation behavior clone to achieve impressive levels of agility in quadrupeds [10, 9, 13] and186

humanoid robots [15]. These methods share the commonality that they all rely on depth images187



Table 1: Fraction of Goals Reached (FGR) In Simulated Benchmark Environments.

Chase-Cone Chase-Soccer Hurdle Stairs
Method Obs. Space Lawn Lab Urban Lawn Lab Urban Lawn Lab Urban Bricks Concrete Marble

Oracle state+terrain 98.6 96.2 97.9 98.6 96.2 97.9 95.8 100.0 99.0 97.0 100.0 73.4

Depth depth 80.7 80.7 80.7 80.7 84.7 80.0 78.3 56.0 54.0 93.0 86.0 72.9
Domain Rand. color 81.9 50.4 66.7 97.3 76.7 78.0 56.5 52.5 44.0 95.5 81.5 71.7
LucidSim color 96.7 84.0 98.0 88.7 90.7 94.7 84.8 79.5 76.5 87.0 81.0 83.7

Table 2: X-Displacement In Simulated Benchmark Environments.

Chase-Cone Chase-Soccer Hurdle Stairs
Method Obs. Space Lawn Lab Urban Lawn Lab Urban Lawn Lab Urban Bricks Concrete Marble

Oracle state+terrain 99.6 99.1 98.7 99.6 99.1 98.7 96.3 100.0 99.0 97.2 100.0 76.0

Depth depth 95.8 93.6 93.8 95.0 92.9 92.9 80.7 70.4 59.1 93.5 88.8 76.5
Domain Rand. color 91.6 81.2 84.9 99.3 89.2 89.5 66.6 61.6 57.1 95.4 85.1 76.5
LucidSim color 99.5 92.7 99.7 92.3 96.8 98.0 85.8 82.1 81.3 88.8 85.6 83.6

as input. In contrast, our work does not depend on depth, and uses a low-cost, off-the-shelf webcam188

instead. To our best knowledge, this is the first reported result of visual robot parkour using RGB189

camera sensors, and the first that is trained completely in simulation with generated images.190

Robot learning from demonstrations. Recent work in robot learning leverage low-cost hardware191

and expressive new policy classes borrowed from language modeling and image generation, to pro-192

duce increasingly capable task planning and visuomotor controllers [1, 2, 3]. More recent work193

lowers this barrier-to-scale by removing the need for a robot arm retaining just the end effector it-194

self [16, 17]. Data collection still involve setting up diverse scenes in the real-world [18, 19]. On the195

method side, LucidSim offers a reference implementation of a scalable generative learning environ-196

ment for sampling diverse, on-policy visual data, thus bringing sim-to-real back to robot learning197

in the visual domain. On the capability side, we give legged robots the ability to see the world in198

full color. We eliminate our reliance on specialized depth cameras that fails deterministically under199

direct sunlight, against large reflective surfaces, and according to our experience, at night, when200

there are moving headlights of incoming traffic.201

Real-to-sim and learning from digital twins. A simulated interactive environment is indispens-202

able for generating counter-factual experiences that are either infeasible (like ego videos taken from a203

different camera pose) or too dangerous to attempt in the real world (such as driving against the traf-204

fic or into obstacles). Recent efforts in drone-racing [20], autonomous-driving [21], and humanoid205

soccer [22] took this approach to produce robust, but highly specialized controllers. In comparison,206

LucidSim takes a generative approach with the added benefit of being able to bias data according to207

demand. This work employs real-to-sim for evaluation and benchmarks, where targeted assessment208

via a small number of high-quality digital scans can be highly effective.209

6 Conclusion210

In this work, we discuss a scalable technique for producing geometrically and dynamically correct,211

multi-frame image stacks for robot learning. We also provide the first empirical demonstration of a212

visual parkour policy on a quadruped robot that is trained entirely using generated data. Although213

preliminary, we consider these results a promising proof-of-concept that points towards a more214

common-place usage of generative learning environments for difficult robotic tasks.215

Limitations. The best strategy we found for curating the data distribution still involves human in the216

loop for feedback, although the incorporation of the assistance of an AI assisted, iterative curation217

procedure greatly reduces the amount of cognitive load on the experimenter. A second limitation is218

that we still rely on manually designed scene geometry, as we assume some prior knowledge of the219

test scene. Automating this aspect of the pipeline would be desirable for paving the way toward a220

complete generative learning environment for robots.221
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