
Appendix351

A.1 Additional Details on Training with DAgger352

Our expert policy is derived from that of [10], where we additionally train on a stairs terrain. The353

expert takes in the past thirty steps of proprioceptive inputs, along with a local heightmap observation354

from the current timestep. We include all parameters for expert training and behavior cloning in355

Table. 3, 4, 5, 6 in Section (Section A.6). We refer the readers to [10] for further details.356

We save intermediate checkpoints during training across multiple seeds, and use them as sampling357

policies to collect data for the student before the initial dagger step.358

Expert Teacher Rollouts

Prop. &
privileged

Image Stacks

Step 1. Collecting Expert Rollouts.

Student Rollouts

Privileged Obs.

Images
& prop.

Step 3. Aggregate Student Unroll, return to 2.

Teacher Supervision

Rollouts

Student

Expert Teacher
& prop.
Privileged

Images
& prop.

Step 2. Teacher-Supervision.

Figure A15: Learning Procedure. Our DAgger learning procedure has three steps. Step 1: collect
expert rollouts from the teacher from Lucidsim. Step 2: Run behavior cloning. Step 3: Using the
improved student to sample on-policy data from LucidSim. Aggregate the datasets together and
return to step 2, supervised learning.

A.2 Student Policy Architecture Details359

Parallel Transformer

lin + ReLU

prop. cls.

image patches

one timestep at

learned
pos. emb

Figure A16: Policy Architecture. We
treat both the proprioceptive observa-
tion and patches of the image frames as
tokens in a sequence. The action is com-
puted via an additional class (cls) token.

We present a schematic of the policy architecture in fig-360

ure A16. The backbone is a parallel transformer used by361

the Pathway Language Model (PaLM [23]).362

Past work on quadruped parkour used a composite archi-363

tecture that processes the input images via a vision net-364

work into a compact latent vector that is then fed into a re-365

current backbone [10]. We wanted to minimize the num-366

ber of components, and chose instead to use a transformer367

architecture borrowed from the Pathway Language Model368

(PaLM [23]) built off a parallel transformer. This greatly369

simplifies working with multi-modal inputs. To process370

the input camera feed, we simply dice each image frame371

into small patches, all processed in parallel by a shallow372

fully convolution network. We then stack these patch-373

tokens with an embedding of the proprioceptive observation of the same timestep, followed by374

adding a learned embedding to each token position. We then concatenate all time frames into a375

linear array, and feed the resulting latent vectors as input tokens into the transformer backbone.376

We found that for RGB input, it is helpful to also include a batch normalization layer before the377

FCNN. To compute the action output, we stack an additional class (cls) token at the end of the input378

sequence. The corresponding output token is processed by a shallow action head.379

We also adopt the multi-query attention (MQA [24]), which uses a single query head with multiple380

keys to reduce the inference cost. Our five-layer transformer policy is able to run at > 50Hz while381

processing seven input frames at once. Further performance optimization can lead to improvements382

in both the speed and context-length, which we intend to explore in subsequent research.383

A.3 Generative Workflow384

We present the schematics of our generative workflow in Figure A17. A copy of the python imple-385

mentation is included in the supplementary material.386

Figure A17: Generative workflow, example showing prompts for stairs. We built our workflow
on ComfyUI [25], a popular graphical interface for image generative models.

A.4 Scaling Up Image Generation387

Figure A18 contains an overview of our system architecture for generating data.388

Experiment Config Sweeps

Obs + masks + depth

Images

Weaver Task Queue

Unroll Buffer
(dataset)GPU Worker

Teacher Unroll Task Queue

Unroll Worker

(a) System Architecture for Collecting Unrolls.

Experiment Config Sweeps

O
bs

 +
 m

as
ks

+
de

pt
h

m
ap

Generated
Image Frames

prop. + image stacks
privileged obs.

Weaver RPC Queue

Unroll Buffer
(dataset)

GPU Worker

Student Unroll Task Queue

Unroll Worker

(b) Collecting On-Policy Unrolls Requires RPC.

Figure A18: System Architecture for Scaling Up Image Generation and On-Policy Unroll. left:
Collecting unroll data from the expert teacher. right: Collecting on-policy unroll and LucidSim
images require building a remote-procedural call (RPC) in addition to a task queue. This is because
the image warping is done within the flow unroll workers. The unroll buffer represents a centralized
server that stores and serves the unroll data.

Data generation contribute to the bulk of the wall-clock time of each experiment. We accelerate389

data generation by distributing the rendering requests across a large number of image generation390

GPU workers using a task queue. Figure A18(a) presents the system architecture we use for the391

initial round of sampling with the teacher policy. The unrolls are done on unroll workers that runs392

asynchronously from the image generation workers. Image warping are separately as a batch offline.393

However, sampling the environment with the student policy is more challenging because future steps394

depend on the the action from the student policy, which requires the previous render as input. We395

implement remote procedural call (RPC) in our system stack to support this requirement. We present396

the on-policy sampling setup in Figure A18(b). At the start of each flow stack (of seven frames), we397

send out a generation request for the first frame. Once this frame received, it is warped using the398

optical flow while the environment is stepped to provide the subsequent T � 1 frames, where T = 7399

in practice. We then send out another rendering request, and the process repeats according to the400

warping interval T.401

A.5 Details on The Domain Randomization Baseline402

We randomize the appearance of the terrain by sampling textures (solid, checker, noisy, gradient),403

material properties (reflectance, shininess, specular), colors by geometry group, similar to [14]. We404

also randomize the lighting parameters of each light in the scene. We adapt the implementation from405

Robosuite [26] to accomplish this. Just as with LucidSim, a new appearance is sampled for every406

frame stack (every 7 frames in practice).407

We present image samples from the domain randomization baseline on all four domains in Fig-408

ure A19.409

Hurdle Stairs Chase Soccer Chase Cones

Figure A19: Domain Randomization Baseline. Textures, colors, material properties, and lights are
randomized every 7 steps. We do not randomize the cone so that the policy can learn to use it as a
landmark. This makes it a fair comparison as LucidSim.

A.6 Training and Model Parameter Tables410

This section includes Table. 3, 4, 5, 6.411

Table 3: Behavior Cloning Parameters
Hyperparameter Value

max. timesteps per rollout 600
rollouts per DAgger Iteration 1000

learning rate 5e-4
timesteps 70
optimizer Adam

weight decay 5e-4
momentum 0.9

dropout 0.1

Table 4: Expert Training Parameters
Hyperparameter Value

value loss coefficient 1.0
clip range 0.2

entropy coef 0.01
learning rate 2e-4

minibatches per epoch 4
epochs per rollout 5

timesteps per rollout 24
discount factor 0.99
GAE parameter 0.95
max grad norm 1.0

optimizer Adam

joint stiffness 20
joint damping 0.5

Table 5: Expert Randomization Parameters
Term Min Max Unit

friction range 0.6 2.0 -
added mass 0.0 3.0 kg
Body Center of Mass -0.20 0.20 m
push velocity (vx, vy) 0.0 0.5 m/s
Motor Strength 80 120 %
Forward Velocity Command (vx) 0.3 0.8 m/s

Table 6: Expert Reward Terms
Term Symbol Scale

parkour velocity tracking [10] min(hv, d̂wi, vcmd) 1.5
yaw tracking exp{�|!z � !cmd

z |} 0.5

z velocity v2z -1.0
roll-pitch velocity |!xy|2 -0.05
base orientation flat|gproj

xy |2 -1.0
hip position |qhip � q0

hip|2 -0.5
collision collision -10.0

action rate |at � at�1|2 -0.1
joint accelerations |q̈|2 -2.5e-7
delta joint torques |⌧t � ⌧t�1|2 -1.0e-7
joint torques |⌧ |2 -1e-05
joint error |q � q0|2 -0.04

foot vertical contact [10]
P

i
(i)
vertical contact -1.0

foot clearance [10]
P

i
(i)
edge contact -1.0

A.7 Real-to-Sim Evaluation Environments412

Figure A20 provides an overview of our process for constructing the evaluation environments. For413

each task, we select a few scenes that differ in appearance (e.g. red bricks, pavement, grass, indoors).414

We report the results from three different scenes on each task in Tables 1 and 2. We capture ⇡ 500415

images for each scene, and extract the resulting collision mesh from Polycam. For appearance, we416

run COLMAP [27, 28] to obtain camera pose estimates, and reconstruct the scene using 3D Gaussian417

Splatting (3DGS) [29, 30, 31].418

(b) 3D Gaussian Splatting (c) Align and Label

(a) 3D Mesh

Figure A20: Constructing Benchmark Environments The 3D mesh (a) and 3D Gaussian Splat (b)
are initially unaligned. (c) we manually scale and align them, and add markers for orange cones that
appear in the evaluation environment.

We use our custom viewer to align the collision mesh with the gaussian splat. For the hurdle and419

stairs scenes, we manually label 3-5 waypoints along the course that appear as orange traffic cones.420

We use the collision mesh as the terrain, and the 3DGS render as visual observation to the robot.421

For objects that are not present in the initial scan (i.e., soccer ball, traffic cones), we apply the mask422

rendered by the physics engine to insert them into the robot’s ego view.423

