A APPENDIX

A.1 IMPLEMENTATION DETAILS

ViT architecture Our LLB is built upon pre-trained ViT backbones. We use ViT-Base and it’s
scaled version ViT-Large for LLB. Table [T]demonstrates detailed information about model variants.
We follow the settings from (Dosovitskiy et al.,2020) for ViT parameters.

LLB stacks Ly layers of transformer layers to structure non-visual features. We report the impact of
the number of layers on the LLB in Figure|lc| and selected values for Ly based on the results. Our
LLB adds additional MLP layers for latent feature extraction and stacks transformer layers for non-
visual feature structuring.For latent feature extraction, we use 2 layers of MLP with ReLU activation

function.

ViT LLB

Size Ly D FF H | Ly D FF H Iy O
ViT-Base 12 768 3072 12 6 768 3072 12 11 2048
ViT-Large 24 1024 4096 16 6 1024 4096 16 23 2048

Table 1: Details of model variants

Hyper-parameter selection Depending on the input-domain and UWK in a task, the conflict may
be cause by different numbers of objects in different layers. So we set the layer to extract the objects
and their number as hyper-parameters for tuning by tasks. We also set the number of layers to
structure non-visual and the value of « for integration as a hyper-parameter, and measured their
influence on the IN1K classification task. The effective range of the hyper-parameters are shown in

Figure[Ta]
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Figure 1: Impact of each hyper-parameter on IN1K image classification.

Training details We report our default training settings for IN1K image classification task in
Table 2} For other evaluation benchmarks, only normalization values are changed. Table [3|reports
the image classification performance on IN1K.

B ADDITIONAL QUALITATIVE ANALYSIS RESULTS

Object Clusters Figure [2] show successful examples of our latent object extraction. Each grid
represents individual object cluster. We randomly sample clusters and clustered patches, and map
them to the original image. For example, the second image in the first row has patterns like animal
prints, and the second image in the second row has parts of fruit.



Setting Value
Epochs 70
Batch size 1024
Optimizer Adam
Optimizer Momentum B1 =0.9, 82 = 0.999
Learning rate:
Schedule Cosine
Peak le-4
‘Weight decay Se-4
Loss CrossEntropy
Augmentations:
Size 224px or 384px
RandAugment
Magnitude 9
Normalize
mean [0.485, 0.456, 0.406]
std [0.229, 0.224, 0.225]

Table 2: LLB training setting

Model Pre. Params Resolution Topl (acc.)
™M) Pre. Fine. IN1K
ViT B/16 INIK 86.57 224 224 79.00 (77.91)
+ LLB (Ours) - +46.45 224 - 79.434.03
ViT B/16 IN21K 86.57 224 224 84.40 (83.97)
+ LLB (Ours) - +46.45 224 - 84.784+.01
ViT L/16 IN21K 304.33 224 224 85.68 (85.15)
+ LLB (Ours) - +80.80 224 - 85.924.02
MAE B/16 INIK 86.37 224 224 83.63 (83.60)
+ LLB (Ours) - +45.92 224 - 83.784.02
MAEL/16 IN1K 304.33 224 224 86.08 (85.90)
+ LLB (Ours) - +80.80 224 - 86.124.01
SWAG B/16 IB3.6B 86.37 224 384 85.28 (85.30)
+ LLB (Ours) - +45.92 224 - 85.354+.04

Table 3: Detailed top-1 accuracy on IN1K (accuracy in parenthesis: reference performance, red:
positive, blue: negative).

Object Map on All Patches with Other Images Figure [3] show additional examples of object
indices mapped to each patch of an image. In the mapped image in the fop row, we found that
patches of screwdriver are mapped to object 391 and the metal body patches are mapped to object
1736. From the frequency results in the right side, We can see that both feature are distinctive
features for each class.

B.1 EMPIRICAL ANALYSIS RESULTS

We provide larger version of the visualization in Section 3.3.

C ADDITIONAL PROBLEM CONFIRMATION AND COMPARISON WITH LLB

Figure[5a] from clearly shows the problem of the dominance of the visual-domain focused bias over
the undescribed world knowledge over latent object in human labeling. The dots in the leftside figure
represent the centroids of all features in each class of ImageNet, extracted from the ViT network
trained on the data. When we zoomed in an area with closed centroids, we found five adjacent but
semantically unrelated class labels, shown in the rightside.

We also confirm this problem with the Convolutional Neural Network (CNN). We follow the same
procedure that is described in Section 3.1, but replace ViT with the well-known CNN network
ResNet50 (Krizhevsky et al] 2017). We used two versions of ResNet50 pre-trained with ImageNet
training data. First, we used the pre-trained ResNet50 (Krizhevsky et al] P0T7) in a supervised
manner. For supervised pre-trained ResNet50, we followed the details of (Krizhevsky et al.] 2017)
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Figure 3: Additional example of object map on patches. In left, each tile shows an assigned object
index to an image patch. right shows patch samples for the dominating objects and the frequency of
the objects over all samples in each class.

and used parameters from open sourceﬂ to reproduce a top-1 accuracy of 75.86% for IN1K (the
reported performance from the open source is 76.13%). We also use ResNet50 pre-trained with
self-supervised contrastive learning framework (Hadsell et al} 2006} [Oord et al] 2018). Momentum
Contrast (MoCo) interpreted contrastive learning as dictionary look-up and built dy-
namic dictionaries with momentum-based moving average updates. MoCo v2 (Chen et al] 2020D))
improved MoCo with the successes in (Chen et al} 2020a). We collected pre-trained ResNet50
weights using MoCo v2 from open sourcq] We then fine-tuned it using IN1K with the details
described in (Chen et al ] [2020b), and reproduced 77.01% top-1 accuracy in IN1K

C.1 INPUT-DOMAIN FOCUSED BIAS IN CNN

Figure|Sc|shows the results of CNN in the classification benchmarks. In comparison with the bias in
ViT emantically distinct classes (’840: Mop’, ’462: Broom’, *764: Puck’, and *523: Crutch’)
are still closely located, which is the shared input-focused inductive bias of the dataset. This obser-
vation is an evidence for the conflict of the input-domain focused bias even in CNN.

'ResNet50: https://pytorch.org/vision/main/models/generated/torchvision.models.resnet50.html
2MoCo v2: https://github.com/facebookresearch/moco/tree/main
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Figure 4: Feature distribution results.

C.2 INPUT-DOMAIN FOCUSED BIAS IN CNN WITH CONTRASTIVE LEARNING

Figure[3d|shows the results of the CNN trained with contrastive learning. Using contrastive learning,
the centroids of some classes (e.g. *523:Crutch’ against *840: Mop’, ’462: Broom’, 764: Puck’)
are slightly decoupled compared to supervised learning. However, this approach still fails to widen
the gap between '462: Broom’ and *746: Puck’, where two class labels are visually similar in stick
parts, but semantically distinguished by other objects. This observation shows that the input-domain
focused bias still strongly used in determining the features.

C.3 COMPARISON WITH LABEL-FOCUSED LATENT-OBJECT BIASING

Figure [5b] shows the results of LLB using the same classes in Figure Compared to ViT (Fig-
ure @ where the centroids of all features of five classes are closed located, LLB shows distant gaps
between classes. Also, while other networks fail to widen the gap between *462: Broom’ and ’746:
Puck’, LLB placed them in a distant location.



Additionally, we can see that *840: Mop’ and ’462: Broom’ are closed located in LLB. We hypoth-
esise that, the way of structuring over components of mop and broom are similar, making LLB to
generate their features in a close location. In contrast, the other methods placed *840: Mop’ and
’462: Broom’ in relatively more distant locations. This observation implies that LLB can diminish
the dominance of the visual input-domain focused bias, and introduce a distinct bias, regarded as the
label-focused inductive bias.
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Figure 5: Comparison of the distribution of centroids of all features in each class of ImageNet.
Centroids of all output features from ViT: (a), LLB (Ours): (b), CNN with supervised pre-training:
(c), CNN with contrastive learning: (d). We highlighted the dots of five classes in (e) with sky-blue

color.
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