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Abstract

Automated generation of scientific protocols
executable by robots can significantly acceler-
ate scientific research processes. Large Lan-
guage Models (LLMs) excel at Scientific Proto-
col Formulation Tasks (SPFT), but the evalua-
tion of their capabilities rely on human eval-
uation. Here, we propose a flexible, auto-
matic framework to evaluate LLLMs’ capabil-
ity on SPFT: ProtocoLLM". This framework
prompts the target model and GPT-4 to ex-
tract pseudocode from biology protocols us-
ing only predefined lab actions and evaluates
the output of target model using LLAM-EVAL,
the pseudocode generated by GPT-4 serving
as a baseline and Llama-3 acting as the evalu-
ator. Our adaptable prompt-based evaluation
method, LLAM-EVAL, offers significant flex-
ibility in terms of evaluation model, material,
criteria, and is free of cost. We evaluate GPT
variations, Llama, Mixtral, Gemma, Cohere,
and Gemini. Overall, we find that GPT and Co-
here is a powerful scientific protocol formula-
tors. We also introduce BIOPROT 2.0, a dataset
with biology protocols and corresponding pseu-
docodes, which can aid LLMs in formulation
and evaluation of SPFT. Our work is extensi-
ble to assess LLMs on SPFT across various
domains and other fields that require protocol
generation for specific goals.

1 Introduction

Laboratory automation is essential for accelerating
scientific research processes. However, most con-
temporary laboratories use manual labor, especially
in the field of biology. This not only constrains the
scope for scalability, but also introduces potential
vulnerabilities in reproducibility (Kwok, 2010).
One of the barriers for automation in biology
is the reliance on manual experiments when vali-
dating scientific protocols. Traditionally, trial-and-
error approach has been employed to formulate

!The dataset and code are available here.
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Figure 1: Overview of the ProtocoLLM Framework.
A protocol containing a title, descriptions, step-by-step
instructions, and predefined biology lab actions is given
to both a target model and GPT-4 for pseudocode genera-
tion. Then, Llama-3 evaluates these outputs considering
the target model’s pseudocode as the prediction () and
GPT-4’s as a baseline (y).

a protocol to achieve a certain goal. As a break-
through, LLMs have demonstrated remarkable ca-
pabilities in formulating precise experimental pro-
tocols across diverse fields (White et al., 2023;
Jablonka et al., 2023). These protocols comprise
pseudocodes with actionable sequences that can
be executed by machines which can be automated.
Yet, efforts in biology to utilize LLMs for pseu-
docode formulation are yet to achieve desired out-
comes (Inagaki et al., 2023). These works rely
on human evaluations, and objective evaluation
methods for protocol formulation are nonexistent.
Therefore, it is necessary to establish an automated
evaluation framework on formulating protocols to
move beyond manual labor.

Previous work suggests a framework to assess
the capabilities of LLMs on SPFT: BioPlanner
(O’Donoghue et al., 2023). This method outlines
three primary steps: (i) extracting pseudofunctions
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and pseudocode? from a protocol using an evalu-
ator, (ii) using the target model to produce pseu-
docode given the pseudofunctions, and (iii) evalu-
ating the pseudocode generated in step (ii) against
the original pseudocode in (i). Using this frame-
work, they performed evaluation exclusively on
GPTs (Brown et al., 2020; OpenAl, 2023).

We highlight the following key observations: (1)
Various representations of pseudofunctions corre-
sponding to identical experimental actions, causes
performance degradation and inconsistency of the
evaluation framework. (2) The repertoire of ac-
tions executed in biology labs is confined to a fi-
nite set of actions. (3) High values in traditional
automatic metrics (i) does not necessarily imply
human-perceived good quality in scientific proto-
cols. (4) The use of automatic metrics (i) requires
manual labor, which limits the transition to fully
automatic evaluation.

Here, we propose an evaluation framework that
evaluates the capabilities of LLMs in SPFT: Proto-
coLLM (Figure 1). First, we define a set of actions
in advance (Table 1), which eliminates individual
action (pseudofunction) extraction step and vari-
ations of actions on each occasion. Second, we
independently zero-shot prompted the target model
and GPT-4 (OpenAl, 2023) to extract pseudocode
from biology protocols, only using predefined ac-
tions as pseudofunctions. Lastly, we use LLAM-
EVAL to evaluate the response, treating the target
model’s pseudocode as a prediction (g) and that
of GPT-4’s as a baseline (y). LLAM-EVAL offers
significant flexibility in terms of evaluation model,
material, and criteria. This approach is inspired
by the automated extraction of chemical synthesis
actions from experimental procedures® (Vaucher
et al., 2020). We compared multiple LLMs to our
framework, including GPT variations (Brown et al.,
2020; OpenAl, 2023), Llama, Mixtral, Gemma,
Cohere, and Gemini (Google, 2024). We find that
GPT-40 and Cohere+ is a powerful scientific proto-
col formulator.

We also introduce BIOPROT 2.0, a larger dataset
with scientific protocols and the corresponding
pseudocodes that can aid LLMs in formulation and
evaluation of SPFT.

Overall, we make the following contributions:

Pseudofunctions represent laboratory actions, while pseu-
docode embodies protocols composed of these pseudofunc-
tions.

3A set of actions in chemistry labs were defined prior to
the pseudocode extraction process.

1. We propose ProtocoLLM: a flexible, auto-
matic framework for evaluating LLMs on
SPFT using domain knowledge and LLAM-
EVAL.

2. We propose LLAM-EVAL, an evaluation
method that uses a form-filling paradigm of-
fering significant flexibility in terms of evalu-
ation model, material, and criteria.

3. We introduce the BIOPROT 2.0 dataset, featur-
ing protocols and corresponding pseudocode
for evaluating and aiding LLMs on SPFT.

2 Related Works

Task-specific Evaluation LLMs have been evalu-
ated based on their performance in specific tasks.
Information extraction abilities were measured
by the generated quality of summaries (Durmus
et al., 2020; Wang et al., 2020), paper reviews
(Zhou et al., 2024), question correction (Fan et al.,
2024), or combination of a few tasks (Labrak et al.,
2024). However, these studies do not provide
comprehensive evaluations and only assess very
limited aspects, thus limiting their generalizability
to other abilities or tasks.

LLM Evaluation on SPFT Recent work pro-
poses a three-step framework (Section 1) for
the evaluation of scientific protocols in biology:
BioPlanner (O’Donoghue et al., 2023). This
work evaluates GPT’s performance in three tasks:
next-step prediction, pseudocode generation, and
pseudofunction retrieval. It employs statistical
scoring methods including Levenshtein distance
(L) and BLEU (Papineni et al., 2002) to measure
the relevance between a baseline and generated
protocols, despite their modest correlation with
human judgments.

Domain-specific LLMs in Science A Large
number of LLMs have been trained, fine-
tuned, or augmented for domain-specific uses.
ChemBERTa/-2 (Chithrananda et al., 2020; Ahmad
et al., 2022), MatSciBERT (Gupta et al., 2021),
MaterialsBERT (Shetty et al., 2023), Chem-
crow (Bran et al., 2023), and LLM augmentation
methods for various experiment-related tasks (Guo
et al., 2023) has been introduced in chemistry.
BioGPT (Luo et al., 2022), BioBERT (Lee et al.,
2019), CamemBERT-bio (Touchent et al., 2024),
BlueBERT (Peng et al., 2019), PubmedBERT (Gu
et al., 2020), BioMegatron (Shin et al., 2020), and



Action Name Description

Transfer Move substances between containers using lab equipment, such as pipettes.
Centrifuge Spin at high speed to separate mixture components by density.

Vortex Mix solutions by creating a vortex for even distribution.

SetTemp Set specific temperatures for reactions or processes.

Wait Period of inactivity to allow reactions or condition stabilization.

Wash Rinse materials, often with solvents to remove contaminants.

Measure Quantify substances or properties using instruments.

Microscopy Use a microscope to observe and analyze cell morphology and structures.
CellDetachment Release adherent cells from a culture surface using enzymatic or mechanical methods.
CellCount Determine the number of cells in a sample using a hemocytometer or automated counter.
InvalidAction Undefined action due to documentation error or ambiguity.

OtherLanguage Text in non-English, indicating translation need.

NoAction Text not corresponding to any defined action.

PCR Amplify DNA segments through Polymerase Chain Reaction.

Gel Separate molecules by size in a gel with electric field.

Culture Grow cells in lab to study behavior or for experimentation.

Dilute Reducing the concentration of a solution by adding solvent.

Table 1: Predefined Set of Actions. List of actions performed in biological experiments and the corresponding
descriptions. Actions above the line represent the basic actions, with the last three specifically designated for
instances where a new protocol introduces an undefined action. Actions below represent the coarse-grained actions.

ProtoCode (Jiang et al., 2024) has been introduced
in biology.

Evaluating LLMs with LLMs Evaluation
of LLMs encompasses a dual-method approach:

(i) Statistical scoring: BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), METEOR
(Banerjee and Lavie, 2005), Levenshtein Dis-
tance

(i) Model-based scoring: G-Eval (Liu et al.,
2023), Prometheus (Kim et al., 2023),
BLEURT (Sellam et al., 2020), Natural Lan-
guage Inference (NLI)

(iii) Combination of (i) and (ii): GPTScore (Fu
et al., 2023), SelfCheckGPT (Manakul et al.,
2023), BERTScore (Zhang et al., 2020),
SciBERTScore (O’Donoghue et al., 2023),
WMD (Kusner et al., 2015), MoverScore
(Zhao et al., 2019), Question Answer Gen-
eration (QAG) Score

In tasks where reasoning is involved, (ii)(iii) out-
performs (i). Previous work adopted (i) with (iii)
being minimal (O’Donoghue et al., 2023). In this
work, we adopt the notion of G-Eval (Liu et al.,
2023), a framework for evaluating LLM-generated
text, which prompts GPT with text and criteria,
then scores based on its output.

3 Methods

The ProtocoLLM framework can evaluate the capa-
bility of LLMs on SPFT in three steps (Figure 2):

(1) prompt the target LLM to generate pseudocode
based on the given protocol, (2) repeat previous
step for GPT-4, and (3) LLAM-EVAL for evalua-
tion. To utilize this framework, we curated proto-
cols in biology (Section 3.1), predefined actions
performed in biology labs (Section 3.2), prompted
LLMs for pseudocode generation (Section 3.3), and
prompted Llama-3 for evaluation (LLAM-EVAL)
(Section 3.6).

3.1 Data Curation of Protocols in Biology

Each protocol is composed of three core elements:
a title, description, and experimental steps. We cu-
rated the dataset through a process of collection and
refinement. We collected a set of keywords relevant
to biology. Then, we used a scoring system based
on the number of keywords included in the descrip-
tion of each protocol from protocols.io* (Teytelman
et al., 2016). We refined the dataset collected in the
previous step using automated and manual methods.
(Appendix A.1.)

3.2 Defining Actions

The defined actions are composed of two parts:
(i) basic actions corresponding to a single action
which can be performed directly in biology
labs, and (ii) coarse-grained actions which
corresponds to a large set of basic actions repeated
throughout various protocols. Defined actions were
reviewed by experts with intensive experiences

*A platform for reproducible protocol sharing provides
access to more than 15k publicly available protocols, and has
no limitations regarding the use of LLMs.



/ Title and Description \\
Title: Pierce Silver Stain Kit

Description: The Thermo Scientific Pierce Silver Stain Kit is
a rapid and ultrasensitive silver stain system for protein
detection in polyacrylamide gels. The stain performs consist;
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Figure 2: The ProtocoLLM Framework.

in biology experiments. The target model speci-
fies the arguments for each action on each occasion.

Basic Actions Since the repertoire of actions
executed in biology labs is confined to a finite set
of actions, we defined a set of actions performed in
biology labs prior to the extraction of pseudocode
from protocols (Table 1). We performed a
comprehensive literature review to define the set of
basic actions performed in biology labs.

Coarse-grained Actions We observed that a series
of complex, repetitive actions can be effectively
encapsulated and described by a single, compre-
hensive action. For instance, the process of diluting
a solution is conceptually straightforward and can
possibly defined by basic actions. However, this
involves intricate calculations and logical reason-
ing, which can result in performance degradation
by calculation mistakes and posing variations in
representations of an identical process. To this end,
we coarse-grained these complex set of actions into
a singular action.

3.3 Prompting Pseudocode Generation

To evaluate the target LLMs on SPFT, we
prompted the models to generate pseudocode
based on a protocol collected at Section 3.1.
Models are instructed to use only the actions
defined in Section 3.2 as the function name.
However, they were allowed to define the argu-
ments for each pseudofunction as needed for
each occasion. If applicable, the fixed prompt,

including the instructions and predefined actions,
was provided in the system message, while the
protocol was included in the user message. In
this work, we prompted GPT-3 (Brown et al,,
2020), GPT-4 (OpenAl, 2023), Gemini (Google,
2024), Claude3 (Anthropic, 2023), and Cohere.
Below is the prompt for generating pseudocode
based on the given protocol. Note that actions and
corresponding descriptions presented in Table 1
are placed at {actions).

You are an Al that generates Python pseudocode
for biology protocols. This pseudocode must
accurately describe a complete scientific protocol
to obtain a result. You will be provided with the
title, description, and steps of the biology protocol,
and your task is to convert it to Python pseudocode.

You may define the arguments on your own.
You must ONLY use these functions.

{actions}

Do NOT provide any captions. ONLY present the
pseudocode and pseudofunctions used inside the
code. Present the pseudofunctions at the beginning
and then the pseudocode. Do NOT provide any
descriptions inside the code.

title: {title}
description: {description}

steps: {steps}



3.4 Metrics and Evaluation

We observe that using automatic metrics (i) neces-
sitates manual annotation of functions and pseu-
docodes each time, which significantly hampers
the automation of the evaluation process. More-
over, evaluating the function and input’ separately
falls short of flexible and comprehensive evaluation
in a protocol manner.

To this end, we propose LLAM-EVAL, an auto-
matic, flexible prompt-based framework to eval-
uate the quality of LLM responses. This frame-
work requires three elements: two input texts
(one serving as the baseline and the other as the
target) and an evaluator LLM: Llama-3°. This
method encompasses predefining a set of scores’
S = {s1, 2, ..., Sn}, prompting Llama-3 to rate
the outcomes of a target LLM with that of GPT-
4 in the scale of .S, calculating the probability of
each score p(s;), and calculating the final score as
following. This method is inspired by G-Eval (Liu
et al., 2023).

n
score = Z sip(si)
i=1

Llama-3 is prompted to evaluate according
to one criterion at a time. The original prompts
targeting summarizing tasks are modified to
perform evaluation on SPFT. In this work, we
evaluate the pseudocode generated by the target
LLM based on six criteria: the four original criteria
used in G-Eval (Liu et al., 2023) (Coherence,
Consistency, Fluency, and Relevance) and two
criteria we propose (Precision, and Coverage),
considering the context of SPFT. For example, the
definition of Coherence is:

Coherence (1-5) - the overall quality of all
lines in the pseudocode. The target pseudocode
should not be a rough overview but should provide
a precise description of a baseline pseudocode.

The definitions of other criteria in prompts
can be found at Appendix A.2. To automatically
implement chain-of-thoughts (CoT) in the eval-
uation process, we instructed GPT-4 to create
specific evaluation steps for each criterion. GPT
is capable of producing these evaluation steps
by itself (Liu et al., 2023). GPT-4 was given a

SInput refers to the function parameters and arguments.
%Llama3-70b
7s1=1 and s,,=5 is set in this work.

task and evaluation criteria, then prompted to
generate the evaluation steps using a form-filling
paradigm. An example prompt containing GPT-4
generated instructions for evaluation can be
found at Appendix A.2. We also implemented
an automatic feedback loop to regenerate the
response up to five or ten times if the output did not
contain scores. We evaluated using two baselines:
the GPT-generated pseudocode and the original
protocol.

This approach is not constrained by the out-
put structure of the target models, eliminates the
need for manual annotation efforts during the pars-
ing process as required in reference-based metrics,
enables a comprehensive evaluation, and thereby
makes ProtocoLLM significantly more flexible and
automatic.

To ensure compatibility, we also use con-
ventional reference-based metrics: Normalized
Levenshtein distance (Lg4,) for function names,
BLEU (Papineni et al., 2002), precision, recall,
and SciBERTScore (O’Donoghue et al., 2023) for
function inputs. SciBERTScore is calculated using
the encoded predicted & (a?™*) and baseline values
&£(aBl) using the SciBERT (Beltagy et al., 2019)
sentence encoder .

N pred BL
SCiBERTScore — 3 (&(a; d ):€(a;))
N i=0 Hg(a?re )”HS(G?L)H

3.5 Evaluator LLM Selection

To select a specific LLM as an evaluator, we pro-
pose self-self comparison task as a baseline, where
an LLM generates a pseudocode® for a protocol
and then evaluates the score using the same LL.M
against the generated pseudocode. For example,
this means evaluating GPT-4 generated pseudocode
against the same pseudocode using GPT-4. Our
assumption was that the score should be close to
the maximum’ when the baseline and target pseu-
docode are the same. Our goal was to select the
model with the best results as the evaluator. We
evaluated each model based on six criteria in Sec-
tion 3.4. More details in Appendix A.3.

3.6 Evaluating LLMs using LLAM-EVAL

Using LLAM-EVAL, we evaluate across three tasks
for each model: (1) GPT-4 generated pseudocode
as a baseline with predefined actions given in

8Pseudocode with pseudofunctions defined at the begin-
ning to be precise.
’maximum score s, = 5 in this work



prompt, (2) the same task with no predefined
actions, (3) the original protocol as a baseline
with predefined actions. We evaluate GPT vari-
ations (Brown et al., 2020; OpenAl, 2023), Llama,
Mixtral, Gemma, Cohere, and Gemini (Google,
2024). Details are in Appendix A.4.

3.7 Implementation Details

To ensure a fair evaluation of LLMs, we consid-
ered additional factors that may affect performance
and present several settings. We consider that
LLMs tend to perform better when the actions
are presented in the same order as in the protocol.
While previous work extracted different actions
from each protocol'?, we predefined the actions
which is equivalent to shuffling. Also, while using
LLAM-EVAL, we encountered instances where the
output was a sentence instead of a score (number).
To address this issue, we modified the parameters,
dataset, and prompts. Further details are in Ap-
pendix A.5.

4 Analysis
4.1 Evaluator LLM Selection

Llama-3 achieved the highest scores across all six
tasks, while there were small differences across
models (Table 2). We chose Llama-3 as an evalua-
tor, which is free of cost to date. Note that evalu-
ations for other models not presented in the table
were not feasible, as numerical responses were not
generated. More details are in Appendix A.3.

4.2 Evaluating LLMs on SPFT

Our results show that GPT-40 and Cohere+
is a powerful protocol formulator (Table 3).
We found our work compatible to previous
work (O’Donoghue et al., 2023).

Is applying domain knowledge an effec-
tive strategy for evaluation? We applied domain
knowledge by predefining the finite set of actions
performed in biology labs. To evaluate the
efficacy of this method, we compare the responses
generated with predefined actions included in the
prompts to those generated without them (Table 4).
The performance is enhanced for most models,
with the exception of the Recall. Further research
should be conducted to explore these findings.

%In previous work, this required shuffling, as LLMs pre-
sented the pseudofunctions in the same order as in the proto-
col.

Can the original protocol itself serve as a
baseline? Evaluation of LLMs in SPFT in
previous work requires manual processes and
pseudocode extraction step in SPFT. However,
evaluation using the original protocol itself
completely eliminates the manual processes of
pseudofunction evaluation and the GPT-generated
pseudocode extraction step, thereby enhancing
flexibility and automation. To this end, we evaluate
using the original protocol as a baseline. While
scores obtained using this approach is not close to
the maximum score (Table 3), we observe that the
relative ranking of the models remains relevant to
the results of using the pseudocode as a baseline.

Will LLM as an evaluator prefer responses
from itself? It is reported that LLM as an evaluator
prefer responses from itself over human responses
in text summarization tasks (Liu et al., 2023).
Therefore, a potential concern is that the evaluator
may prefer outputs from itself regardless of its
quality. While results in Table 2 and 4 address
this concern, Table 3 shows that Llama-3 as an
evaluator does not prefer its outputs over that of
GPT-4. Our results suggest that GPT’s preference
for its own responses in previous work (Liu et al.,
2023) may be a phenomenon unique to GPT.

4.3 The BIOPROT 2.0 Dataset

We introduce BIOPROT 2.0, a dataset with sci-
entific protocols and the corresponding pseu-
docodes with a larger number of datapoints. Pre-
vious work highlights that a dataset with these
two components can aid protocol formulation of
LLMs (O’Donoghue et al., 2023). The pseudocode
extracted from protocols are only composed of
pseudofunctions (actions) predefined above the pre-
vious step, as each model was prompted to use
only the provided functions but to define the argu-
ments on their own. The summary of generated
pseudocode are in Table 5. This dataset can be
used to formulate scientific protocols to achieve
a prompted goal using a toolformer like (Schick
et al., 2023) chain-of-thought LLM agent (Wei
et al., 2023).

5 Conclusion

We introduce ProtocoL LM, a flexible and automatic
framework designed to evaluate LLMs’ capabilities
on Scientific Protocol Formulation Tasks (SPFT).



Original Criteria New Criteria
Models Coherence  Consistency Fluency Relevance Precision Coverage
GPT-4o0 4954026 498+£0.25 4.954+027 493+£044| 497+£0.23 4.95+£0.08
GPT-4 4984023 499+£0.19 4994+0.19 4994+0.14| 4.99+£0.18 4.99£0.17
GPT-35 | 496+0.23 497+0.21 4.77£052 496£0.25| 4.95+0.30 4.99+0.12
Llama-3| 5.00+0.02 5.00+0.00 5.00£0.00 5.00+0.00 5.00=£0.00 5.00+0.06

Table 2: Self-Self Comparison Task Results: We report the mean and standard deviation of scores over ten
runs. Values in bold indicate the highest scores for each criterion. Higher values for all metrics represent better
performance. Note that a larger dataset was used for this task. Details in Appendix A.3.

Prompt Original Criteria New Ceriteria
Models Ac  Pr| Coherence Consistency Fluency Relevance Precision Coverage | Average
GPT-40 v X| 410+0.79 3.80+0.85 3.86+0.67 432+0.71| 402+0.65 4.26+0.73 4.06
X X | 428+050 3.94+0.64 4.04+0.37 445+0.54| 418+0.41 4.39+0.50 4.21
v V| 429+057 4.73+050 4.424+0.53 475+0.48 | 3.90+0.48 4.67 +0.56 4.46
GPT-4 v X | 5.00£0.00 5.00+0.00 5.00£0.08 5.00£0.00| 4.99+£0.11 5.00=+0.00 5.00
(Baseline) X X | 5.00£0.00 5.00£0.00 5.00£0.04 5.00%£0.03| 5.00+0.03 5.00=£0.00 5.00
v V| 432+£053 4.70+£0.58 4.53+0.51 4.75+£0.44| 3.99£0.29 4.67+0.48 4.49
GPT-3.5 v X | 361£097 3.51+1.02 358+0.85 4.11+£0.78| 3.82£0.73 3.90+0.83 3.75
X X |383+082 3.71+£081 3.76+068 4.19+0.64| 3.96+0.57 3.97£0.71 3.90
v V| 413+£065 476+0.49 448+0.52 4.69+049| 3.79+0.58 4.49+0.67 4.39
Llama3-8b vV o X|225+1.00 193+0.99 227+0.83 2.39+1.08| 2.61+0.96 2.56=+1.09 2.33
X X |290£0.89 269£092 3.02£0.88 341+£0.81| 3.47+0.70 3.19+0.82 3.12
v v |280+102 300+126 310+£1.00 3.39+£1.09| 2.934+0.92 3.27+1.06 3.08
Llama3-70b | v X | 3.61£0.94 3.14+1.10 3.534+0.82 3.73+£0.97| 3.72£0.70 3.77+0.79 3.58
X X | 398+064 3.72+£0.75 3.92+£049 4.20+0.57| 4.03+0.36 4.09+0.53 3.99
v V| 402+£0.75 4.17+098 4.15+0.66 4.37+£0.74| 3.78 £0.59 4.25+0.69 4.12
Mixtral vV X|341+£1.03 290+1.13 357+0.83 3.36+1.14| 3.68£0.77 3.54+0.93 3.41
X X |3954+068 3.68£0.79 3.94+0.53 4.18+0.66| 4.056+0.43 4.00+£0.61 3.97
v V| 406+069 432+0.84 4.28+0.59 4.37+£0.71| 3.88+0.44 4.31+0.70 4.21
Gemma-7b | v X | 3.06£0.97 2.81+103 3474+0.86 3.52+£0.93| 3.55£0.78 3.19+0.89 3.27
X X |293+£085 266=£0.88 3.63+£0.76 3.61+0.71| 3.66+0.61 3.06=+0.80 3.26
v V| 381£075 4.13+083 4.25+0.61 4.26£0.75| 3.76£0.60 3.94+0.79 4.02
Cohere+ v X|3954+074 3.63+087 387+£060 4.11+0.74| 3.98+£0.50 4.07+0.63 3.94
X X |397£0.60 3.71£0.73 3.95+046 4.15+0.56| 4.03+0.38 4.04+£0.50 3.98
v V| 444+£052 4.63+061 453+052 4.73+047| 4.04£0.30 4.66+0.49 4.50
Cohere v X | 351£091 3.06+1.02 3.56+0.74 3.66+£0.87| 3.71£0.63 3.70+0.76 3.53
X X |371+£068 344£0.83 3.83+£056 4.05+0.53| 3.944+0.41 3.84=£0.56 3.80
v V| 398+063 4114+087 4.14+£0.51 429+0.63| 3.83£0.48 4.244+0.64 4.10
Gemini-1.0 | v X | 277£1.09 230+1.08 2904095 280+1.10| 3.13£0.92 3.15+1.01 2.84
X X |346+093 3.22£1.01 3.59+083 389+0.77| 3.80+0.69 3.66=£0.79 3.60
v V| 337£093 3.68+1.11 3.73+£0.80 3.87+£0.87| 3.42+0.78 3.86+0.84 3.66
Gemini-20 | v X | 3.09£1.05 253+1.10 3.75+0.70 298+£1.08| 3.63£0.73 3.43+0.89 3.24
X X | 388£082 3.61£091 411£060 4.13£0.73| 4.14+0.54 3.93+£0.73 3.97
v V| 380£0.80 395+097 4.30+0.58 4.18+£0.72| 3.80£0.49 4.11+0.68 4.02
Gemini-1.5 | v X | 3.02£1.05 248+1.02 3.104+0.93 297+£1.07| 3.32+£0.84 3.42+0.93 3.05
X X | 412+£0.66 3.86£0.72 4.03£0.55 4.33+£0.62| 4.13+0.50 4.21+0.59 4.11
v V| 334+£095 3.62+1.04 3.76+0.76 3.81+0.86| 3.36£0.77 3.80+0.84 3.61

Table 3: ProtocoLLM Evaluation Results of three tasks for each model: (1) GPT-4 generated pseudocode as a
baseline with predefined actions given in prompt, (2) the same task with no predefined actions, (3) the original
protocol as a baseline with predefined actions. *Ac¢’ and "Pr’ represent whether the predefined actions and the
original protocol were given for evaluation, respectively. We report the mean, standard deviation, and average of
scores over five runs. The best and second best performance besides a baseline (GPT-4) for each criterion and task
is bolded and underlined, respectively. The scores range from a minimum of 1 to a maximum of 5. Higher values
for all metrics represent better performance.



Models | Actions | Precision Recall SciBERT BLEU Lan
GPT-40 v 0.581 +0.390 0.548 +0.414 0.783 £ 0.111 0.102 +0.189 0.216 +0.110
X 0.600 + 0.375 0.620 +0.373 0.778 + 0.103 0.118 +0.188 0.214 +0.106
GPT-4 v 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 0.905 + 0.198 0.055 £ 0.129
(baseline) X 1.00 £+ 0.00 1.00 £ 0.00 1.00 £ 0.00 0.911 +0.173 0.021 £+ 0.043
GPT-3.5 v 0.817 £ 0.308 0.425 + 0.404 0.766 £ 0.115 0.102 + 0.205 0.205 +£0.117
X 0.732 + 0.357 0.572 +0.378 0.742 + 0.099 0.099 + 0.178 0.200 + 0.106
Llama3-8b v 0.763 + 0.323 0.708 & 0.411 0.801 £ 0.128 0.135 4+ 0.329 0.413 +0.351
X 0.759 + 0.322 0.570 4+ 0.352 0.744 + 0.100 0.075+£0.174 0.242 +0.133
Llama3-70b v 0.825 +0.319 0.917 + 0.220 0.883 + 0.136 0.563 + 0.464 0.287 £+ 0.203
X 0.812 + 0.268 0.769 + 0.260 0.772 + 0.097 0.161 + 0.210 0.206 4 0.095
Mixtral Ve 0.855 + 0.280 0.605 + 0.393 0.784 +£0.120 0.135 + 0.288 0.603 4= 0.366
X 0.754 + 0.291 0.735 + 0.290 0.771 £ 0.093 0.130 & 0.215 0.499 4+ 0.261
Gemma-7b v 0.911 +0.249 0.641 + 0.406 0.838 +0.139 0.205 + 0.342 0.243 +0.130
X 0.849 + 0.261 0.651 4+ 0.337 0.775 £+ 0.116 0.092 + 0.180 0.221 4+ 0.096
Cohere+ v 0.646 + 0.373 0.548 +0.352 0.767 +£0.110 0.075+0.172 0.363 4+ 0.300
X 0.600 + 0.366 0.604 £+ 0.368 0.744 £+ 0.100 0.095 + 0.153 0.325 4+ 0.265
Cohere v 0.645 + 0.361 0.551 +0.380 0.717 &+ 0.097 0.077 +£0.193 0.360 4+ 0.247
X 0.767 + 0.295 0.630 & 0.314 0.750 £ 0.099 0.091 £ 0.165 0.204 4+ 0.105
Gemini-1.0 v 0.852 +0.319 0.867 & 0.313 0.875 +0.133 0.444 4+ 0.497 0.410 4 0.699
X 0.758 £ 0.319 0.584 + 0.360 0.765 £ 0.111 0.112 +0.211 0.247 £+ 0.182
Gemini-2.0 v 0.942 + 0.147 0.878 + 0.288 0.843 +0.165 0.342 +0.415 0.381 4+ 0.254
X 0.736 £+ 0.350 0.651 +0.339 0.758 &+ 0.104 0.128 +0.197 0.308 4 0.268
Gemini-1.5 v 0.889 + 0.258 0.896 + 0.202 0.814 +0.163 0.355 +0.461 0.371 & 0.217
X 0.628 + 0.377 0.682 4+ 0.367 0.773 £0.101 0.135 + 0.205 0.214 +0.116

Table 4: Evaluation Results Using Reference-Based Metrics. Comparison with and without predefined actions
given in prompts. We report mean and standard deviation of scores over five runs. The best and second best
performance for each criterion is bolded and underlined, respectively. Except for Lg4,,, higher values for all metrics

represent better performance.

Statistic Value (m + o)
# of protocols 300

Tokens / protocol 812.3 £ 469.9
# of steps 14.81 £ 10.74
Tokens / step 54.28 £ 42.41
Tokens / description 139.0 £ 135.7
Tokens / generated pseudocode 623.8 £ 223.2
# of lines / generated pseudocode 83.06 £ 28.89
# of pseudofunctions / edited pseudocode  10.28 + 6.582

Table 5: Statistics of BIOPROT 2.0. ’Edited Pseu-
docode’ refers to the pseudocode that was reformatted,
while preserving its content, to obtain the scores pre-
sented in Table 4.

This framework prompts the target model and GPT-
4 to extract pseudocode from biology protocols
using only predefined lab actions, then evaluates
the target model’s output using LLAM-EVAL, with
the GPT-4 generated pseudocode as a baseline and
Llama-3 as the evaluator. Our prompt-based eval-
uation method, LLAM-EVAL, provides significant
flexibility in terms of evaluation models, materi-
als, criteria, and is free of cost. We assess various
models, including GPT variants, Llama, Mixtral,
Gemma, Cohere, and Gemini, and find GPT and

Cohere to be particularly effective in formulating
scientific protocols. Additionally, we present BI0O-
PROT 2.0, a dataset containing biology protocols
and corresponding pseudocodes, which supports
LLMs in the formulation and evaluation of SPFT.
Our work is extensible to the assessment of LLMs
on SPFT across various domains and other fields
that require protocol generation for specific goals.



6 Limitations

We recognize several limitations. The predefined
actions may not encompass all actions performed
in a biology labs. The definitions of predefined
actions may be incomplete. To precisely define an
action, it is necessary to define not only the func-
tion but also the function arguments. The number
of protocols in BIOPROT 2.0 may be insufficient
for evaluation purposes. The performance of Pro-
tocoLLM may decline outside of biology. Address-
ing this requires redefining domain-specific actions
and exploring other LLMs for diverse fields. Future
work should investigate these cross-disciplinary im-
plications. LLMs are continuously evolving due
to regular updates. The LL.Ms used for evaluation
in this work might become unavailable in the fu-
ture. Upgraded versions of LLMs may result in
performance degradation and metrics may differ
from those obtained using previous models. Due
to selecting Llama-3 as the evaluator, our results
may be susceptible to its biases and hallucinations.
The outcomes when evaluated with models other
than Llama-3 are unknown. Future work should
investigate the outcomes using different LLMs as
an evaluator. Using an API of LL.Ms as an evalua-
tor, such GPT, is often not free of charge and can
be costly. We used GPT-4 generated responses as
a baseline; however, it may not accurately repre-
sent the ground truth. Future work should explore
the implications of employing alternative resources
(e.g., manually annotated pseudocodes, responses
generated by other models) as the baseline. We
observed basic actions classified as NoAction in
minor cases. It has been reported that GPT prefers
outputs from LLMs, which also produced our eval-
uation materials including all ground truth and tar-
get pseudocodes. This can potentially influence
the scores. The four criteria mentioned in G-Eval
may not sufficiently fulfill the role of evaluating
protocols where real-world validation is crucial.
Also, applying these criteria originally designed
for summarization tasks may be inappropriate for
evaluating SPFT. Even if the protocol pseudocode
is successfully synthesized, real-world experiments
may fail depending on the person performing the
protocol or the condition of the physical equipment,
especially in cases that are more complex than stem
cell culture or require delicate manual work and
experience.

Ethical Considerations

The use of manually verified protocols in LLMs
is strictly prohibited for generating false protocols
on platforms like STAR Protocols (Cell Press) and
Nature Protocols. Numerous sites also prohibit
the use of these protocols in conjunction with any
form of Al tool. Our framework can be applied
to the protocols of these sites. Although we have
endeavored to exclude protocols that can create
dangerous substances, there remains the potential
for generating protocols that inadvertently produce
hazardous products or byproducts.
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Appendix
A BIOPROT 2.0

A.1 Data Curation

We used protocols.io (Teytelman et al., 2016) API
for data collection. Protocols of 1 < score < 5
and 3 < steps are collected. The collected data
was in a .json format, every data point with slight
differences in keys. Some protocols were present
in the git repository but could not be found when
retrieved using the API, and vice versa'l. Also,
even if the file ID in the git repository and the pro-
tocol ID retrieved using the API are the same, the
dictionary key number_of steps may differ'?. Key-
words'? extracted from the keywords.txt file and the
descriptions were converted to lowercase temporar-
ily for comparison and scoring. As of May 2024,
we collected a total of approximately 15k mirrored
public protocols from protocols.io’s GitHub before
refinement. Protocols were excluded if dictionary
key steps is empty. Protocols were manually ver-
ified by experts in biology. The protocols were
removed if they were multiple duplicated files for
an identical protocol'*. For the same title, we score
the latest version of the protocol.

A.2 Metrics and Evaluation

Definitions of Evaluation Criteria

* Consistency: Consistency (1-5) - the fac-
tual alignment between the source and the tar-
get pseudocode. A factually consistent pseu-
docode contains only statements that are en-
tailed by the source pseudocode. Annotators

"The protocol with ID 3737 exists in protocol.io but
doesn’t exist in git repository.

12The number_of _steps for the protocol with ID 10489 is 3
in the git repository but O when retrieved using the API.

3The keywords are: Biology, Cell, DNA, Protein, Stem
Cell, Molecular Biology, Molecular, Gene, Virus, E. coli,
cDNA, Agarose, Agarose Gel, in vitro, PCR, NGS, Ethanol,
[llumina, Cell Theory, Evolution, Genetics, Homeostasis, Cell
Membrane, Mitochondria, Nucleus, Ribosomes, DNA Repli-
cation, Mutation, Chromosomes, Gene Expression, Natural
Selection, Speciation, Adaptation, Phylogenetics, Ecosys-
tems, Biodiversity, Conservation, Bacteria, Viruses, Fungi,
Pathogens, Proteins, Enzymes, Metabolism, Photosynthesis,
Gel Electrophoresis, Cloning, CRISPR-Cas9, Neurons, Brain,
Synapses, Neurotransmitters, Antibodies, Vaccines, Immune
Response, Autoimmunity, Embryogenesis, Stem Cells, Mor-
phogenesis, Regeneration, Pollination, Growth Hormones,
Tropisms, Coral Reefs, Oceanic Zones, Marine Conservation,
Aquatic Ecosystems, Endangered Species, Habitat Destruc-
tion, Conservation Strategies, Rewilding, Genetic Engineering,
Bioreactors, Bioinformatics, and Synthetic Biology.

such as protocol ID: 9216
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were also asked to penalize summaries that
contained hallucinated facts.

Fluency: Fluency (1-5): the quality of the
pseudocode in terms of grammar, spelling,
punctuation, word choice, and structure.
Relevance: Relevance (1-5) - selection of
important information from the source pseu-
docode. The target pseudocode should include
only important information from the source
document. Annotators were instructed to pe-
nalize summaries which contained redundan-
cies and excess information.

Precision: Precision (1-5) - the exactness
and accuracy of the expressions and termi-
nology used in the pseudocode. The target
pseudocode should avoid vague or ambiguous
terms and should use specific and appropri-
ate terminology that accurately reflects the
intended operations and logic.

Coverage: Coverage (1-5) - the extent to
which the target pseudocode addresses all as-
pects of the source pseudocode. The target
pseudocode should comprehensively repre-
sent all the necessary steps, operations, and
details present in the source pseudocode with-
out omitting any critical information.

Note that above are criteria used for evaluation
when GPT-generated pseudocode was a baseline.
This was slightly modified when evaluating based
on original protocol.

Example LLAM-EVAL Prompt Below is a prompt
evaluating the generated pseudocode from a target
LLM based on the criteria Coherence using the
GPT-generated pseudocode as the ground truth.
The GPT-generated pseudocode for each protocol
is placed inside {{Ground_truth_pseudocode}},
and the target model-generated pseudocode is
placed inside {{Target_pseudocode}}.

You will be given a source pseudocode as a
ground truth. You will then be given a target
pseudocode which is generated from an identical
source of protocol.

Your task is to rate the target pseudocode on
one metric. Please make sure you read and under-
stand these instructions carefully. Please keep this
document open while reviewing, and refer to it as
needed.

Evaluation Criteria: Coherence (1-5) - the over-
all quality of all lines in the pseudocode. The target



pseudocode should not be a rough overview but
should provide a precise description of the ground
truth pseudocode.

Evaluation Steps:

1. Read the Ground Truth Pseudocode: Care-
fully read and understand the source pseudocode
provided as the ground truth. Ensure you compre-
hend the logic, flow, and details of the algorithm or
protocol described.

2. Read the Target Pseudocode: Thoroughly
read the target pseudocode that needs to be eval-
uated. Pay attention to the details, structure, and
clarity of the pseudocode.

3. Compare Against Ground Truth: Compare
each line and section of the target pseudocode with
the corresponding parts of the ground truth pseu-
docode. Ensure that all critical steps, variables,
and logic present in the ground truth are accurately
reflected in the target pseudocode.

4. Assess Coherence: Evaluate the overall qual-
ity of the target pseudocode based on how well
it translates the ground truth. Consider the fol-
lowing aspects: Clarity: Is the pseudocode easy
to understand? Completeness: Does it cover all
the steps and details present in the ground truth?
Precision: Are the descriptions and instructions in
the pseudocode precise and unambiguous? Con-
sistency: Are there any contradictions or logical
inconsistencies?

5. Assign a Coherence Rating (1-5):

1 (Poor): The target pseudocode is incomplete,
confusing, and lacks most details from the ground
truth. 2 (Fair): The target pseudocode is partially
complete but has significant gaps and is often
unclear. 3 (Good): The target pseudocode covers
most details from the ground truth but has some
minor inconsistencies or lacks clarity in parts.
4 (Very Good): The target pseudocode is mostly
complete and clear, with very few minor issues. 5
(Excellent): The target pseudocode is complete,
clear, precise, and fully coherent with the ground
truth.

Source Pseudocode:
{{ Ground_truth_pseudocode}}

Target Pseudocode:
{{Target_pseudocode}}

Evaluation Form (scores ONLY):
- Coherence:
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A.3 Evaluator LLM Selection

Models without numerical responses include:
Llama3-8b, Llama3-70b, Mixtral, and Gemma.

A.4 Evaluating LLMs on SPFT

Versions of LL.Ms
Model Name Call Strings
GPT-40 gpt-4o0
GPT-4 gpt-4
GPT-3.5 gpt-3.5-turbo-1106
Llama3-8b 11ama3-8b-8192
Llama3-70b 1lama3-70b-8192
Mixtral mixtral-8x7b-32768
Gemma-7b gemma-7b-it
Cohere+ command-r-plus
Cohere command-r

Gemini-1.0 gemini-1.0-pro-001
Gemini-1.5 gemini-1.5-pro-001
Gemini-2.0 gemini-1.0-pro-002

Table 6: Versions of LLMs. Exact API call strings for
corresponding models.

A.5 Implementation Details

Except for n and seed, parameters were set to their
default values. We used approximately $1000 for
GPT API calls, $20 for Gemini, and other models
were free of cost.

Counting Tokens We counted the tokens of
the concatenated string of the title, original
description, and steps, separated by "\n\n". The
reason for this approach is to match the token
count with that of the previous work.

Inconsistencies LLAM-EVAL Outputs To
address this issue, we attempted the following
methods: (1) Modified max_token = 5 to
max_token = 1 : The scores became integers,
but the model still generated sentences in ad-
dition to scores. (2) Use different versions
of the model: Other model variations, such
as gpt-3.5-turbo-1106, did not enhance the
results.



