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Abstract

Automated generation of scientific protocols001
executable by robots can significantly acceler-002
ate scientific research processes. Large Lan-003
guage Models (LLMs) excel at Scientific Proto-004
col Formulation Tasks (SPFT), but the evalua-005
tion of their capabilities rely on human eval-006
uation. Here, we propose a flexible, auto-007
matic framework to evaluate LLMs’ capabil-008
ity on SPFT: ProtocoLLM1. This framework009
prompts the target model and GPT-4 to ex-010
tract pseudocode from biology protocols us-011
ing only predefined lab actions and evaluates012
the output of target model using LLAM-EVAL,013
the pseudocode generated by GPT-4 serving014
as a baseline and Llama-3 acting as the evalu-015
ator. Our adaptable prompt-based evaluation016
method, LLAM-EVAL, offers significant flex-017
ibility in terms of evaluation model, material,018
criteria, and is free of cost. We evaluate GPT019
variations, Llama, Mixtral, Gemma, Cohere,020
and Gemini. Overall, we find that GPT and Co-021
here is a powerful scientific protocol formula-022
tors. We also introduce BIOPROT 2.0, a dataset023
with biology protocols and corresponding pseu-024
docodes, which can aid LLMs in formulation025
and evaluation of SPFT. Our work is extensi-026
ble to assess LLMs on SPFT across various027
domains and other fields that require protocol028
generation for specific goals.029

1 Introduction030

Laboratory automation is essential for accelerating031

scientific research processes. However, most con-032

temporary laboratories use manual labor, especially033

in the field of biology. This not only constrains the034

scope for scalability, but also introduces potential035

vulnerabilities in reproducibility (Kwok, 2010).036

One of the barriers for automation in biology037

is the reliance on manual experiments when vali-038

dating scientific protocols. Traditionally, trial-and-039

error approach has been employed to formulate040

1The dataset and code are available here.

Figure 1: Overview of the ProtocoLLM Framework.
A protocol containing a title, descriptions, step-by-step
instructions, and predefined biology lab actions is given
to both a target model and GPT-4 for pseudocode genera-
tion. Then, Llama-3 evaluates these outputs considering
the target model’s pseudocode as the prediction (ŷ) and
GPT-4’s as a baseline (y).

a protocol to achieve a certain goal. As a break- 041

through, LLMs have demonstrated remarkable ca- 042

pabilities in formulating precise experimental pro- 043

tocols across diverse fields (White et al., 2023; 044

Jablonka et al., 2023). These protocols comprise 045

pseudocodes with actionable sequences that can 046

be executed by machines which can be automated. 047

Yet, efforts in biology to utilize LLMs for pseu- 048

docode formulation are yet to achieve desired out- 049

comes (Inagaki et al., 2023). These works rely 050

on human evaluations, and objective evaluation 051

methods for protocol formulation are nonexistent. 052

Therefore, it is necessary to establish an automated 053

evaluation framework on formulating protocols to 054

move beyond manual labor. 055

Previous work suggests a framework to assess 056

the capabilities of LLMs on SPFT: BioPlanner 057

(O’Donoghue et al., 2023). This method outlines 058

three primary steps: (i) extracting pseudofunctions 059
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and pseudocode2 from a protocol using an evalu-060

ator, (ii) using the target model to produce pseu-061

docode given the pseudofunctions, and (iii) evalu-062

ating the pseudocode generated in step (ii) against063

the original pseudocode in (i). Using this frame-064

work, they performed evaluation exclusively on065

GPTs (Brown et al., 2020; OpenAI, 2023).066

We highlight the following key observations: (1)067

Various representations of pseudofunctions corre-068

sponding to identical experimental actions, causes069

performance degradation and inconsistency of the070

evaluation framework. (2) The repertoire of ac-071

tions executed in biology labs is confined to a fi-072

nite set of actions. (3) High values in traditional073

automatic metrics (i) does not necessarily imply074

human-perceived good quality in scientific proto-075

cols. (4) The use of automatic metrics (i) requires076

manual labor, which limits the transition to fully077

automatic evaluation.078

Here, we propose an evaluation framework that079

evaluates the capabilities of LLMs in SPFT: Proto-080

coLLM (Figure 1). First, we define a set of actions081

in advance (Table 1), which eliminates individual082

action (pseudofunction) extraction step and vari-083

ations of actions on each occasion. Second, we084

independently zero-shot prompted the target model085

and GPT-4 (OpenAI, 2023) to extract pseudocode086

from biology protocols, only using predefined ac-087

tions as pseudofunctions. Lastly, we use LLAM-088

EVAL to evaluate the response, treating the target089

model’s pseudocode as a prediction (ŷ) and that090

of GPT-4’s as a baseline (y). LLAM-EVAL offers091

significant flexibility in terms of evaluation model,092

material, and criteria. This approach is inspired093

by the automated extraction of chemical synthesis094

actions from experimental procedures3 (Vaucher095

et al., 2020). We compared multiple LLMs to our096

framework, including GPT variations (Brown et al.,097

2020; OpenAI, 2023), Llama, Mixtral, Gemma,098

Cohere, and Gemini (Google, 2024). We find that099

GPT-4o and Cohere+ is a powerful scientific proto-100

col formulator.101

We also introduce BIOPROT 2.0, a larger dataset102

with scientific protocols and the corresponding103

pseudocodes that can aid LLMs in formulation and104

evaluation of SPFT.105

Overall, we make the following contributions:106

2Pseudofunctions represent laboratory actions, while pseu-
docode embodies protocols composed of these pseudofunc-
tions.

3A set of actions in chemistry labs were defined prior to
the pseudocode extraction process.

1. We propose ProtocoLLM: a flexible, auto- 107

matic framework for evaluating LLMs on 108

SPFT using domain knowledge and LLAM- 109

EVAL. 110

2. We propose LLAM-EVAL, an evaluation 111

method that uses a form-filling paradigm of- 112

fering significant flexibility in terms of evalu- 113

ation model, material, and criteria. 114

3. We introduce the BIOPROT 2.0 dataset, featur- 115

ing protocols and corresponding pseudocode 116

for evaluating and aiding LLMs on SPFT. 117

2 Related Works 118

Task-specific Evaluation LLMs have been evalu- 119

ated based on their performance in specific tasks. 120

Information extraction abilities were measured 121

by the generated quality of summaries (Durmus 122

et al., 2020; Wang et al., 2020), paper reviews 123

(Zhou et al., 2024), question correction (Fan et al., 124

2024), or combination of a few tasks (Labrak et al., 125

2024). However, these studies do not provide 126

comprehensive evaluations and only assess very 127

limited aspects, thus limiting their generalizability 128

to other abilities or tasks. 129

130

LLM Evaluation on SPFT Recent work pro- 131

poses a three-step framework (Section 1) for 132

the evaluation of scientific protocols in biology: 133

BioPlanner (O’Donoghue et al., 2023). This 134

work evaluates GPT’s performance in three tasks: 135

next-step prediction, pseudocode generation, and 136

pseudofunction retrieval. It employs statistical 137

scoring methods including Levenshtein distance 138

(Ld) and BLEU (Papineni et al., 2002) to measure 139

the relevance between a baseline and generated 140

protocols, despite their modest correlation with 141

human judgments. 142

143

Domain-specific LLMs in Science A Large 144

number of LLMs have been trained, fine- 145

tuned, or augmented for domain-specific uses. 146

ChemBERTa/-2 (Chithrananda et al., 2020; Ahmad 147

et al., 2022), MatSciBERT (Gupta et al., 2021), 148

MaterialsBERT (Shetty et al., 2023), Chem- 149

crow (Bran et al., 2023), and LLM augmentation 150

methods for various experiment-related tasks (Guo 151

et al., 2023) has been introduced in chemistry. 152

BioGPT (Luo et al., 2022), BioBERT (Lee et al., 153

2019), CamemBERT-bio (Touchent et al., 2024), 154

BlueBERT (Peng et al., 2019), PubmedBERT (Gu 155

et al., 2020), BioMegatron (Shin et al., 2020), and 156
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Action Name Description
Transfer Move substances between containers using lab equipment, such as pipettes.
Centrifuge Spin at high speed to separate mixture components by density.
Vortex Mix solutions by creating a vortex for even distribution.
SetTemp Set specific temperatures for reactions or processes.
Wait Period of inactivity to allow reactions or condition stabilization.
Wash Rinse materials, often with solvents to remove contaminants.
Measure Quantify substances or properties using instruments.
Microscopy Use a microscope to observe and analyze cell morphology and structures.
CellDetachment Release adherent cells from a culture surface using enzymatic or mechanical methods.
CellCount Determine the number of cells in a sample using a hemocytometer or automated counter.
InvalidAction Undefined action due to documentation error or ambiguity.
OtherLanguage Text in non-English, indicating translation need.
NoAction Text not corresponding to any defined action.

PCR Amplify DNA segments through Polymerase Chain Reaction.
Gel Separate molecules by size in a gel with electric field.
Culture Grow cells in lab to study behavior or for experimentation.
Dilute Reducing the concentration of a solution by adding solvent.

Table 1: Predefined Set of Actions. List of actions performed in biological experiments and the corresponding
descriptions. Actions above the line represent the basic actions, with the last three specifically designated for
instances where a new protocol introduces an undefined action. Actions below represent the coarse-grained actions.

ProtoCode (Jiang et al., 2024) has been introduced157

in biology.158

159

Evaluating LLMs with LLMs Evaluation160

of LLMs encompasses a dual-method approach:161

(i) Statistical scoring: BLEU (Papineni et al.,162

2002), ROUGE (Lin, 2004), METEOR163

(Banerjee and Lavie, 2005), Levenshtein Dis-164

tance165

(ii) Model-based scoring: G-Eval (Liu et al.,166

2023), Prometheus (Kim et al., 2023),167

BLEURT (Sellam et al., 2020), Natural Lan-168

guage Inference (NLI)169

(iii) Combination of (i) and (ii): GPTScore (Fu170

et al., 2023), SelfCheckGPT (Manakul et al.,171

2023), BERTScore (Zhang et al., 2020),172

SciBERTScore (O’Donoghue et al., 2023),173

WMD (Kusner et al., 2015), MoverScore174

(Zhao et al., 2019), Question Answer Gen-175

eration (QAG) Score176

In tasks where reasoning is involved, (ii)(iii) out-177

performs (i). Previous work adopted (i) with (iii)178

being minimal (O’Donoghue et al., 2023). In this179

work, we adopt the notion of G-Eval (Liu et al.,180

2023), a framework for evaluating LLM-generated181

text, which prompts GPT with text and criteria,182

then scores based on its output.183

3 Methods184

The ProtocoLLM framework can evaluate the capa-185

bility of LLMs on SPFT in three steps (Figure 2):186

(1) prompt the target LLM to generate pseudocode 187

based on the given protocol, (2) repeat previous 188

step for GPT-4, and (3) LLAM-EVAL for evalua- 189

tion. To utilize this framework, we curated proto- 190

cols in biology (Section 3.1), predefined actions 191

performed in biology labs (Section 3.2), prompted 192

LLMs for pseudocode generation (Section 3.3), and 193

prompted Llama-3 for evaluation (LLAM-EVAL) 194

(Section 3.6). 195

3.1 Data Curation of Protocols in Biology 196

Each protocol is composed of three core elements: 197

a title, description, and experimental steps. We cu- 198

rated the dataset through a process of collection and 199

refinement. We collected a set of keywords relevant 200

to biology. Then, we used a scoring system based 201

on the number of keywords included in the descrip- 202

tion of each protocol from protocols.io4 (Teytelman 203

et al., 2016). We refined the dataset collected in the 204

previous step using automated and manual methods. 205

(Appendix A.1.) 206

3.2 Defining Actions 207

The defined actions are composed of two parts: 208

(i) basic actions corresponding to a single action 209

which can be performed directly in biology 210

labs, and (ii) coarse-grained actions which 211

corresponds to a large set of basic actions repeated 212

throughout various protocols. Defined actions were 213

reviewed by experts with intensive experiences 214

4A platform for reproducible protocol sharing provides
access to more than 15k publicly available protocols, and has
no limitations regarding the use of LLMs.
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Figure 2: The ProtocoLLM Framework.

in biology experiments. The target model speci-215

fies the arguments for each action on each occasion.216

217

Basic Actions Since the repertoire of actions218

executed in biology labs is confined to a finite set219

of actions, we defined a set of actions performed in220

biology labs prior to the extraction of pseudocode221

from protocols (Table 1). We performed a222

comprehensive literature review to define the set of223

basic actions performed in biology labs.224

225

Coarse-grained Actions We observed that a series226

of complex, repetitive actions can be effectively227

encapsulated and described by a single, compre-228

hensive action. For instance, the process of diluting229

a solution is conceptually straightforward and can230

possibly defined by basic actions. However, this231

involves intricate calculations and logical reason-232

ing, which can result in performance degradation233

by calculation mistakes and posing variations in234

representations of an identical process. To this end,235

we coarse-grained these complex set of actions into236

a singular action.237

3.3 Prompting Pseudocode Generation238

To evaluate the target LLMs on SPFT, we239

prompted the models to generate pseudocode240

based on a protocol collected at Section 3.1.241

Models are instructed to use only the actions242

defined in Section 3.2 as the function name.243

However, they were allowed to define the argu-244

ments for each pseudofunction as needed for245

each occasion. If applicable, the fixed prompt,246

including the instructions and predefined actions, 247

was provided in the system message, while the 248

protocol was included in the user message. In 249

this work, we prompted GPT-3 (Brown et al., 250

2020), GPT-4 (OpenAI, 2023), Gemini (Google, 251

2024), Claude3 (Anthropic, 2023), and Cohere. 252

Below is the prompt for generating pseudocode 253

based on the given protocol. Note that actions and 254

corresponding descriptions presented in Table 1 255

are placed at {actions}. 256

257

You are an AI that generates Python pseudocode 258

for biology protocols. This pseudocode must 259

accurately describe a complete scientific protocol 260

to obtain a result. You will be provided with the 261

title, description, and steps of the biology protocol, 262

and your task is to convert it to Python pseudocode. 263

264

You may define the arguments on your own. 265

You must ONLY use these functions. 266

{actions} 267

268

Do NOT provide any captions. ONLY present the 269

pseudocode and pseudofunctions used inside the 270

code. Present the pseudofunctions at the beginning 271

and then the pseudocode. Do NOT provide any 272

descriptions inside the code. 273

274

title: {title} 275

description: {description} 276

steps: {steps} 277
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3.4 Metrics and Evaluation278

We observe that using automatic metrics (i) neces-279

sitates manual annotation of functions and pseu-280

docodes each time, which significantly hampers281

the automation of the evaluation process. More-282

over, evaluating the function and input5 separately283

falls short of flexible and comprehensive evaluation284

in a protocol manner.285

To this end, we propose LLAM-EVAL, an auto-286

matic, flexible prompt-based framework to eval-287

uate the quality of LLM responses. This frame-288

work requires three elements: two input texts289

(one serving as the baseline and the other as the290

target) and an evaluator LLM: Llama-36. This291

method encompasses predefining a set of scores7292

S = {s1, s2, ..., sn}, prompting Llama-3 to rate293

the outcomes of a target LLM with that of GPT-294

4 in the scale of S, calculating the probability of295

each score p(si), and calculating the final score as296

following. This method is inspired by G-Eval (Liu297

et al., 2023).298

score =
n∑

i=1

sip(si)299

Llama-3 is prompted to evaluate according300

to one criterion at a time. The original prompts301

targeting summarizing tasks are modified to302

perform evaluation on SPFT. In this work, we303

evaluate the pseudocode generated by the target304

LLM based on six criteria: the four original criteria305

used in G-Eval (Liu et al., 2023) (Coherence,306

Consistency, Fluency, and Relevance) and two307

criteria we propose (Precision, and Coverage),308

considering the context of SPFT. For example, the309

definition of Coherence is:310

311

Coherence (1-5) - the overall quality of all312

lines in the pseudocode. The target pseudocode313

should not be a rough overview but should provide314

a precise description of a baseline pseudocode.315

316

The definitions of other criteria in prompts317

can be found at Appendix A.2. To automatically318

implement chain-of-thoughts (CoT) in the eval-319

uation process, we instructed GPT-4 to create320

specific evaluation steps for each criterion. GPT321

is capable of producing these evaluation steps322

by itself (Liu et al., 2023). GPT-4 was given a323

5Input refers to the function parameters and arguments.
6Llama3-70b
7s1=1 and sn=5 is set in this work.

task and evaluation criteria, then prompted to 324

generate the evaluation steps using a form-filling 325

paradigm. An example prompt containing GPT-4 326

generated instructions for evaluation can be 327

found at Appendix A.2. We also implemented 328

an automatic feedback loop to regenerate the 329

response up to five or ten times if the output did not 330

contain scores. We evaluated using two baselines: 331

the GPT-generated pseudocode and the original 332

protocol. 333

This approach is not constrained by the out- 334

put structure of the target models, eliminates the 335

need for manual annotation efforts during the pars- 336

ing process as required in reference-based metrics, 337

enables a comprehensive evaluation, and thereby 338

makes ProtocoLLM significantly more flexible and 339

automatic. 340

To ensure compatibility, we also use con- 341

ventional reference-based metrics: Normalized 342

Levenshtein distance (Ldn) for function names, 343

BLEU (Papineni et al., 2002), precision, recall, 344

and SciBERTScore (O’Donoghue et al., 2023) for 345

function inputs. SciBERTScore is calculated using 346

the encoded predicted E(apred
i ) and baseline values 347

E(aBL
i ) using the SciBERT (Beltagy et al., 2019) 348

sentence encoder E . 349

SciBERTScore =
1

N

N∑
i=0

⟨E(apred
i ), E(aBL

i )⟩
∥E(apred

i )∥∥E(aBL
i )∥

350

3.5 Evaluator LLM Selection 351

To select a specific LLM as an evaluator, we pro- 352

pose self-self comparison task as a baseline, where 353

an LLM generates a pseudocode8 for a protocol 354

and then evaluates the score using the same LLM 355

against the generated pseudocode. For example, 356

this means evaluating GPT-4 generated pseudocode 357

against the same pseudocode using GPT-4. Our 358

assumption was that the score should be close to 359

the maximum9 when the baseline and target pseu- 360

docode are the same. Our goal was to select the 361

model with the best results as the evaluator. We 362

evaluated each model based on six criteria in Sec- 363

tion 3.4. More details in Appendix A.3. 364

3.6 Evaluating LLMs using LLAM-EVAL 365

Using LLAM-EVAL, we evaluate across three tasks 366

for each model: (1) GPT-4 generated pseudocode 367

as a baseline with predefined actions given in 368

8Pseudocode with pseudofunctions defined at the begin-
ning to be precise.

9maximum score sn = 5 in this work
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prompt, (2) the same task with no predefined369

actions, (3) the original protocol as a baseline370

with predefined actions. We evaluate GPT vari-371

ations (Brown et al., 2020; OpenAI, 2023), Llama,372

Mixtral, Gemma, Cohere, and Gemini (Google,373

2024). Details are in Appendix A.4.374

3.7 Implementation Details375

To ensure a fair evaluation of LLMs, we consid-376

ered additional factors that may affect performance377

and present several settings. We consider that378

LLMs tend to perform better when the actions379

are presented in the same order as in the protocol.380

While previous work extracted different actions381

from each protocol10, we predefined the actions382

which is equivalent to shuffling. Also, while using383

LLAM-EVAL, we encountered instances where the384

output was a sentence instead of a score (number).385

To address this issue, we modified the parameters,386

dataset, and prompts. Further details are in Ap-387

pendix A.5.388

4 Analysis389

4.1 Evaluator LLM Selection390

Llama-3 achieved the highest scores across all six391

tasks, while there were small differences across392

models (Table 2). We chose Llama-3 as an evalua-393

tor, which is free of cost to date. Note that evalu-394

ations for other models not presented in the table395

were not feasible, as numerical responses were not396

generated. More details are in Appendix A.3.397

4.2 Evaluating LLMs on SPFT398

Our results show that GPT-4o and Cohere+399

is a powerful protocol formulator (Table 3).400

We found our work compatible to previous401

work (O’Donoghue et al., 2023).402

403

Is applying domain knowledge an effec-404

tive strategy for evaluation? We applied domain405

knowledge by predefining the finite set of actions406

performed in biology labs. To evaluate the407

efficacy of this method, we compare the responses408

generated with predefined actions included in the409

prompts to those generated without them (Table 4).410

The performance is enhanced for most models,411

with the exception of the Recall. Further research412

should be conducted to explore these findings.413

10In previous work, this required shuffling, as LLMs pre-
sented the pseudofunctions in the same order as in the proto-
col.

414

Can the original protocol itself serve as a 415

baseline? Evaluation of LLMs in SPFT in 416

previous work requires manual processes and 417

pseudocode extraction step in SPFT. However, 418

evaluation using the original protocol itself 419

completely eliminates the manual processes of 420

pseudofunction evaluation and the GPT-generated 421

pseudocode extraction step, thereby enhancing 422

flexibility and automation. To this end, we evaluate 423

using the original protocol as a baseline. While 424

scores obtained using this approach is not close to 425

the maximum score (Table 3), we observe that the 426

relative ranking of the models remains relevant to 427

the results of using the pseudocode as a baseline. 428

429

Will LLM as an evaluator prefer responses 430

from itself? It is reported that LLM as an evaluator 431

prefer responses from itself over human responses 432

in text summarization tasks (Liu et al., 2023). 433

Therefore, a potential concern is that the evaluator 434

may prefer outputs from itself regardless of its 435

quality. While results in Table 2 and 4 address 436

this concern, Table 3 shows that Llama-3 as an 437

evaluator does not prefer its outputs over that of 438

GPT-4. Our results suggest that GPT’s preference 439

for its own responses in previous work (Liu et al., 440

2023) may be a phenomenon unique to GPT. 441

4.3 The BIOPROT 2.0 Dataset 442

We introduce BIOPROT 2.0, a dataset with sci- 443

entific protocols and the corresponding pseu- 444

docodes with a larger number of datapoints. Pre- 445

vious work highlights that a dataset with these 446

two components can aid protocol formulation of 447

LLMs (O’Donoghue et al., 2023). The pseudocode 448

extracted from protocols are only composed of 449

pseudofunctions (actions) predefined above the pre- 450

vious step, as each model was prompted to use 451

only the provided functions but to define the argu- 452

ments on their own. The summary of generated 453

pseudocode are in Table 5. This dataset can be 454

used to formulate scientific protocols to achieve 455

a prompted goal using a toolformer like (Schick 456

et al., 2023) chain-of-thought LLM agent (Wei 457

et al., 2023). 458

5 Conclusion 459

We introduce ProtocoLLM, a flexible and automatic 460

framework designed to evaluate LLMs’ capabilities 461

on Scientific Protocol Formulation Tasks (SPFT). 462
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Original Criteria New Criteria
Models Coherence Consistency Fluency Relevance Precision Coverage

GPT-4o 4.95± 0.26 4.98± 0.25 4.95± 0.27 4.93± 0.44 4.97± 0.23 4.95± 0.08
GPT-4 4.98± 0.23 4.99± 0.19 4.99± 0.19 4.99± 0.14 4.99± 0.18 4.99± 0.17
GPT-3.5 4.96± 0.23 4.97± 0.21 4.77± 0.52 4.96± 0.25 4.95± 0.30 4.99± 0.12
Llama-3 5.00 ± 0.02 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.06

Table 2: Self-Self Comparison Task Results: We report the mean and standard deviation of scores over ten
runs. Values in bold indicate the highest scores for each criterion. Higher values for all metrics represent better
performance. Note that a larger dataset was used for this task. Details in Appendix A.3.

Prompt Original Criteria New Criteria
Models Ac Pr Coherence Consistency Fluency Relevance Precision Coverage Average

GPT-4o ✓ ✗ 4.10 ± 0.79 3.80 ± 0.85 3.86 ± 0.67 4.32 ± 0.71 4.02 ± 0.65 4.26 ± 0.73 4.06
✗ ✗ 4.28 ± 0.50 3.94 ± 0.64 4.04 ± 0.37 4.45 ± 0.54 4.18 ± 0.41 4.39 ± 0.50 4.21
✓ ✓ 4.29 ± 0.57 4.73± 0.50 4.42± 0.53 4.75 ± 0.48 3.90 ± 0.48 4.67 ± 0.56 4.46

GPT-4 ✓ ✗ 5.00± 0.00 5.00± 0.00 5.00± 0.08 5.00± 0.00 4.99± 0.11 5.00± 0.00 5.00
(Baseline) ✗ ✗ 5.00± 0.00 5.00± 0.00 5.00± 0.04 5.00± 0.03 5.00± 0.03 5.00± 0.00 5.00

✓ ✓ 4.32± 0.53 4.70± 0.58 4.53± 0.51 4.75± 0.44 3.99± 0.29 4.67± 0.48 4.49
GPT-3.5 ✓ ✗ 3.61± 0.97 3.51± 1.02 3.58± 0.85 4.11± 0.78 3.82± 0.73 3.90± 0.83 3.75

✗ ✗ 3.83± 0.82 3.71± 0.81 3.76± 0.68 4.19± 0.64 3.96± 0.57 3.97± 0.71 3.90
✓ ✓ 4.13± 0.65 4.76 ± 0.49 4.48± 0.52 4.69± 0.49 3.79± 0.58 4.49± 0.67 4.39

Llama3-8b ✓ ✗ 2.25± 1.00 1.93± 0.99 2.27± 0.83 2.39± 1.08 2.61± 0.96 2.56± 1.09 2.33
✗ ✗ 2.90± 0.89 2.69± 0.92 3.02± 0.88 3.41± 0.81 3.47± 0.70 3.19± 0.82 3.12
✓ ✓ 2.80± 1.02 3.00± 1.26 3.10± 1.00 3.39± 1.09 2.93± 0.92 3.27± 1.06 3.08

Llama3-70b ✓ ✗ 3.61± 0.94 3.14± 1.10 3.53± 0.82 3.73± 0.97 3.72± 0.70 3.77± 0.79 3.58
✗ ✗ 3.98± 0.64 3.72± 0.75 3.92± 0.49 4.20± 0.57 4.03± 0.36 4.09± 0.53 3.99
✓ ✓ 4.02± 0.75 4.17± 0.98 4.15± 0.66 4.37± 0.74 3.78± 0.59 4.25± 0.69 4.12

Mixtral ✓ ✗ 3.41± 1.03 2.90± 1.13 3.57± 0.83 3.36± 1.14 3.68± 0.77 3.54± 0.93 3.41
✗ ✗ 3.95± 0.68 3.68± 0.79 3.94± 0.53 4.18± 0.66 4.05± 0.43 4.00± 0.61 3.97
✓ ✓ 4.06± 0.69 4.32± 0.84 4.28± 0.59 4.37± 0.71 3.88± 0.44 4.31± 0.70 4.21

Gemma-7b ✓ ✗ 3.06± 0.97 2.81± 1.03 3.47± 0.86 3.52± 0.93 3.55± 0.78 3.19± 0.89 3.27
✗ ✗ 2.93± 0.85 2.66± 0.88 3.63± 0.76 3.61± 0.71 3.66± 0.61 3.06± 0.80 3.26
✓ ✓ 3.81± 0.75 4.13± 0.83 4.25± 0.61 4.26± 0.75 3.76± 0.60 3.94± 0.79 4.02

Cohere+ ✓ ✗ 3.95± 0.74 3.63± 0.87 3.87± 0.60 4.11± 0.74 3.98± 0.50 4.07± 0.63 3.94
✗ ✗ 3.97± 0.60 3.71± 0.73 3.95± 0.46 4.15± 0.56 4.03± 0.38 4.04± 0.50 3.98
✓ ✓ 4.44± 0.52 4.63± 0.61 4.53 ± 0.52 4.73± 0.47 4.04± 0.30 4.66± 0.49 4.50

Cohere ✓ ✗ 3.51± 0.91 3.06± 1.02 3.56± 0.74 3.66± 0.87 3.71± 0.63 3.70± 0.76 3.53
✗ ✗ 3.71± 0.68 3.44± 0.83 3.83± 0.56 4.05± 0.53 3.94± 0.41 3.84± 0.56 3.80
✓ ✓ 3.98± 0.63 4.11± 0.87 4.14± 0.51 4.29± 0.63 3.83± 0.48 4.24± 0.64 4.10

Gemini-1.0 ✓ ✗ 2.77± 1.09 2.30± 1.08 2.90± 0.95 2.80± 1.10 3.13± 0.92 3.15± 1.01 2.84
✗ ✗ 3.46± 0.93 3.22± 1.01 3.59± 0.83 3.89± 0.77 3.80± 0.69 3.66± 0.79 3.60
✓ ✓ 3.37± 0.93 3.68± 1.11 3.73± 0.80 3.87± 0.87 3.42± 0.78 3.86± 0.84 3.66

Gemini-2.0 ✓ ✗ 3.09± 1.05 2.53± 1.10 3.75± 0.70 2.98± 1.08 3.63± 0.73 3.43± 0.89 3.24
✗ ✗ 3.88± 0.82 3.61± 0.91 4.11± 0.60 4.13± 0.73 4.14± 0.54 3.93± 0.73 3.97
✓ ✓ 3.80± 0.80 3.95± 0.97 4.30± 0.58 4.18± 0.72 3.80± 0.49 4.11± 0.68 4.02

Gemini-1.5 ✓ ✗ 3.02± 1.05 2.48± 1.02 3.10± 0.93 2.97± 1.07 3.32± 0.84 3.42± 0.93 3.05
✗ ✗ 4.12± 0.66 3.86± 0.72 4.03± 0.55 4.33± 0.62 4.13± 0.50 4.21± 0.59 4.11
✓ ✓ 3.34± 0.95 3.62± 1.04 3.76± 0.76 3.81± 0.86 3.36± 0.77 3.80± 0.84 3.61

Table 3: ProtocoLLM Evaluation Results of three tasks for each model: (1) GPT-4 generated pseudocode as a
baseline with predefined actions given in prompt, (2) the same task with no predefined actions, (3) the original
protocol as a baseline with predefined actions. ’Ac’ and ’Pr’ represent whether the predefined actions and the
original protocol were given for evaluation, respectively. We report the mean, standard deviation, and average of
scores over five runs. The best and second best performance besides a baseline (GPT-4) for each criterion and task
is bolded and underlined, respectively. The scores range from a minimum of 1 to a maximum of 5. Higher values
for all metrics represent better performance.
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Models Actions Precision Recall SciBERT BLEU Ldn

GPT-4o ✓ 0.581± 0.390 0.548± 0.414 0.783± 0.111 0.102± 0.189 0.216 ±0.110
✗ 0.600± 0.375 0.620± 0.373 0.778 ± 0.103 0.118± 0.188 0.214± 0.106

GPT-4 ✓ 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.905± 0.198 0.055± 0.129
(baseline) ✗ 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.911± 0.173 0.021± 0.043
GPT-3.5 ✓ 0.817± 0.308 0.425± 0.404 0.766± 0.115 0.102± 0.205 0.205 ± 0.117

✗ 0.732± 0.357 0.572± 0.378 0.742± 0.099 0.099± 0.178 0.200 ± 0.106

Llama3-8b ✓ 0.763± 0.323 0.708± 0.411 0.801± 0.128 0.135± 0.329 0.413± 0.351
✗ 0.759± 0.322 0.570± 0.352 0.744± 0.100 0.075± 0.174 0.242± 0.133

Llama3-70b ✓ 0.825± 0.319 0.917 ± 0.220 0.883 ± 0.136 0.563 ± 0.464 0.287± 0.203
✗ 0.812± 0.268 0.769 ± 0.260 0.772± 0.097 0.161 ± 0.210 0.206± 0.095

Mixtral ✓ 0.855± 0.280 0.605± 0.393 0.784± 0.120 0.135± 0.288 0.603± 0.366
✗ 0.754± 0.291 0.735± 0.290 0.771± 0.093 0.130± 0.215 0.499± 0.261

Gemma-7b ✓ 0.911± 0.249 0.641± 0.406 0.838± 0.139 0.205± 0.342 0.243± 0.130
✗ 0.849 ± 0.261 0.651± 0.337 0.775± 0.116 0.092± 0.180 0.221± 0.096

Cohere+ ✓ 0.646± 0.373 0.548± 0.352 0.767± 0.110 0.075± 0.172 0.363± 0.300
✗ 0.600± 0.366 0.604± 0.368 0.744± 0.100 0.095± 0.153 0.325± 0.265

Cohere ✓ 0.645± 0.361 0.551± 0.380 0.717± 0.097 0.077± 0.193 0.360± 0.247
✗ 0.767± 0.295 0.630± 0.314 0.750± 0.099 0.091± 0.165 0.204± 0.105

Gemini-1.0 ✓ 0.852± 0.319 0.867± 0.313 0.875± 0.133 0.444± 0.497 0.410± 0.699
✗ 0.758± 0.319 0.584± 0.360 0.765± 0.111 0.112± 0.211 0.247± 0.182

Gemini-2.0 ✓ 0.942 ± 0.147 0.878± 0.288 0.843± 0.165 0.342± 0.415 0.381± 0.254
✗ 0.736± 0.350 0.651± 0.339 0.758± 0.104 0.128± 0.197 0.308± 0.268

Gemini-1.5 ✓ 0.889± 0.258 0.896± 0.202 0.814± 0.163 0.355± 0.461 0.371± 0.217
✗ 0.628± 0.377 0.682± 0.367 0.773± 0.101 0.135± 0.205 0.214± 0.116

Table 4: Evaluation Results Using Reference-Based Metrics. Comparison with and without predefined actions
given in prompts. We report mean and standard deviation of scores over five runs. The best and second best
performance for each criterion is bolded and underlined, respectively. Except for Ldn, higher values for all metrics
represent better performance.

Statistic Value (m± σ)

# of protocols 300
Tokens / protocol 812.3± 469.9
# of steps 14.81± 10.74
Tokens / step 54.28± 42.41
Tokens / description 139.0± 135.7
Tokens / generated pseudocode 623.8± 223.2
# of lines / generated pseudocode 83.06± 28.89
# of pseudofunctions / edited pseudocode 10.28± 6.582

Table 5: Statistics of BIOPROT 2.0. ’Edited Pseu-
docode’ refers to the pseudocode that was reformatted,
while preserving its content, to obtain the scores pre-
sented in Table 4.

This framework prompts the target model and GPT-463

4 to extract pseudocode from biology protocols464

using only predefined lab actions, then evaluates465

the target model’s output using LLAM-EVAL, with466

the GPT-4 generated pseudocode as a baseline and467

Llama-3 as the evaluator. Our prompt-based eval-468

uation method, LLAM-EVAL, provides significant469

flexibility in terms of evaluation models, materi-470

als, criteria, and is free of cost. We assess various471

models, including GPT variants, Llama, Mixtral,472

Gemma, Cohere, and Gemini, and find GPT and473

Cohere to be particularly effective in formulating 474

scientific protocols. Additionally, we present BIO- 475

PROT 2.0, a dataset containing biology protocols 476

and corresponding pseudocodes, which supports 477

LLMs in the formulation and evaluation of SPFT. 478

Our work is extensible to the assessment of LLMs 479

on SPFT across various domains and other fields 480

that require protocol generation for specific goals. 481
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6 Limitations482

We recognize several limitations. The predefined483

actions may not encompass all actions performed484

in a biology labs. The definitions of predefined485

actions may be incomplete. To precisely define an486

action, it is necessary to define not only the func-487

tion but also the function arguments. The number488

of protocols in BIOPROT 2.0 may be insufficient489

for evaluation purposes. The performance of Pro-490

tocoLLM may decline outside of biology. Address-491

ing this requires redefining domain-specific actions492

and exploring other LLMs for diverse fields. Future493

work should investigate these cross-disciplinary im-494

plications. LLMs are continuously evolving due495

to regular updates. The LLMs used for evaluation496

in this work might become unavailable in the fu-497

ture. Upgraded versions of LLMs may result in498

performance degradation and metrics may differ499

from those obtained using previous models. Due500

to selecting Llama-3 as the evaluator, our results501

may be susceptible to its biases and hallucinations.502

The outcomes when evaluated with models other503

than Llama-3 are unknown. Future work should504

investigate the outcomes using different LLMs as505

an evaluator. Using an API of LLMs as an evalua-506

tor, such GPT, is often not free of charge and can507

be costly. We used GPT-4 generated responses as508

a baseline; however, it may not accurately repre-509

sent the ground truth. Future work should explore510

the implications of employing alternative resources511

(e.g., manually annotated pseudocodes, responses512

generated by other models) as the baseline. We513

observed basic actions classified as NoAction in514

minor cases. It has been reported that GPT prefers515

outputs from LLMs, which also produced our eval-516

uation materials including all ground truth and tar-517

get pseudocodes. This can potentially influence518

the scores. The four criteria mentioned in G-Eval519

may not sufficiently fulfill the role of evaluating520

protocols where real-world validation is crucial.521

Also, applying these criteria originally designed522

for summarization tasks may be inappropriate for523

evaluating SPFT. Even if the protocol pseudocode524

is successfully synthesized, real-world experiments525

may fail depending on the person performing the526

protocol or the condition of the physical equipment,527

especially in cases that are more complex than stem528

cell culture or require delicate manual work and529

experience.530

Ethical Considerations 531

The use of manually verified protocols in LLMs 532

is strictly prohibited for generating false protocols 533

on platforms like STAR Protocols (Cell Press) and 534

Nature Protocols. Numerous sites also prohibit 535

the use of these protocols in conjunction with any 536

form of AI tool. Our framework can be applied 537

to the protocols of these sites. Although we have 538

endeavored to exclude protocols that can create 539

dangerous substances, there remains the potential 540

for generating protocols that inadvertently produce 541

hazardous products or byproducts. 542
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Appendix767

A BIOPROT 2.0768

A.1 Data Curation769

We used protocols.io (Teytelman et al., 2016) API770

for data collection. Protocols of 1 ≤ score ≤ 5771

and 3 ≤ steps are collected. The collected data772

was in a .json format, every data point with slight773

differences in keys. Some protocols were present774

in the git repository but could not be found when775

retrieved using the API, and vice versa11. Also,776

even if the file ID in the git repository and the pro-777

tocol ID retrieved using the API are the same, the778

dictionary key number_of_steps may differ12. Key-779

words13 extracted from the keywords.txt file and the780

descriptions were converted to lowercase temporar-781

ily for comparison and scoring. As of May 2024,782

we collected a total of approximately 15k mirrored783

public protocols from protocols.io’s GitHub before784

refinement. Protocols were excluded if dictionary785

key steps is empty. Protocols were manually ver-786

ified by experts in biology. The protocols were787

removed if they were multiple duplicated files for788

an identical protocol14. For the same title, we score789

the latest version of the protocol.790

A.2 Metrics and Evaluation791

Definitions of Evaluation Criteria792

• Consistency: Consistency (1-5) - the fac-793

tual alignment between the source and the tar-794

get pseudocode. A factually consistent pseu-795

docode contains only statements that are en-796

tailed by the source pseudocode. Annotators797

11The protocol with ID 3737 exists in protocol.io but
doesn’t exist in git repository.

12The number_of_steps for the protocol with ID 10489 is 3
in the git repository but 0 when retrieved using the API.

13The keywords are: Biology, Cell, DNA, Protein, Stem
Cell, Molecular Biology, Molecular, Gene, Virus, E. coli,
cDNA, Agarose, Agarose Gel, in vitro, PCR, NGS, Ethanol,
Illumina, Cell Theory, Evolution, Genetics, Homeostasis, Cell
Membrane, Mitochondria, Nucleus, Ribosomes, DNA Repli-
cation, Mutation, Chromosomes, Gene Expression, Natural
Selection, Speciation, Adaptation, Phylogenetics, Ecosys-
tems, Biodiversity, Conservation, Bacteria, Viruses, Fungi,
Pathogens, Proteins, Enzymes, Metabolism, Photosynthesis,
Gel Electrophoresis, Cloning, CRISPR-Cas9, Neurons, Brain,
Synapses, Neurotransmitters, Antibodies, Vaccines, Immune
Response, Autoimmunity, Embryogenesis, Stem Cells, Mor-
phogenesis, Regeneration, Pollination, Growth Hormones,
Tropisms, Coral Reefs, Oceanic Zones, Marine Conservation,
Aquatic Ecosystems, Endangered Species, Habitat Destruc-
tion, Conservation Strategies, Rewilding, Genetic Engineering,
Bioreactors, Bioinformatics, and Synthetic Biology.

14such as protocol ID: 9216

were also asked to penalize summaries that 798

contained hallucinated facts. 799

• Fluency: Fluency (1-5): the quality of the 800

pseudocode in terms of grammar, spelling, 801

punctuation, word choice, and structure. 802

• Relevance: Relevance (1-5) - selection of 803

important information from the source pseu- 804

docode. The target pseudocode should include 805

only important information from the source 806

document. Annotators were instructed to pe- 807

nalize summaries which contained redundan- 808

cies and excess information. 809

• Precision: Precision (1-5) - the exactness 810

and accuracy of the expressions and termi- 811

nology used in the pseudocode. The target 812

pseudocode should avoid vague or ambiguous 813

terms and should use specific and appropri- 814

ate terminology that accurately reflects the 815

intended operations and logic. 816

• Coverage: Coverage (1-5) - the extent to 817

which the target pseudocode addresses all as- 818

pects of the source pseudocode. The target 819

pseudocode should comprehensively repre- 820

sent all the necessary steps, operations, and 821

details present in the source pseudocode with- 822

out omitting any critical information. 823

Note that above are criteria used for evaluation 824

when GPT-generated pseudocode was a baseline. 825

This was slightly modified when evaluating based 826

on original protocol. 827

828

Example LLAM-EVAL Prompt Below is a prompt 829

evaluating the generated pseudocode from a target 830

LLM based on the criteria Coherence using the 831

GPT-generated pseudocode as the ground truth. 832

The GPT-generated pseudocode for each protocol 833

is placed inside {{Ground_truth_pseudocode}}, 834

and the target model-generated pseudocode is 835

placed inside {{Target_pseudocode}}. 836

837

You will be given a source pseudocode as a 838

ground truth. You will then be given a target 839

pseudocode which is generated from an identical 840

source of protocol. 841

Your task is to rate the target pseudocode on 842

one metric. Please make sure you read and under- 843

stand these instructions carefully. Please keep this 844

document open while reviewing, and refer to it as 845

needed. 846

Evaluation Criteria: Coherence (1-5) - the over- 847

all quality of all lines in the pseudocode. The target 848
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pseudocode should not be a rough overview but849

should provide a precise description of the ground850

truth pseudocode.851

Evaluation Steps:852

1. Read the Ground Truth Pseudocode: Care-853

fully read and understand the source pseudocode854

provided as the ground truth. Ensure you compre-855

hend the logic, flow, and details of the algorithm or856

protocol described.857

2. Read the Target Pseudocode: Thoroughly858

read the target pseudocode that needs to be eval-859

uated. Pay attention to the details, structure, and860

clarity of the pseudocode.861

3. Compare Against Ground Truth: Compare862

each line and section of the target pseudocode with863

the corresponding parts of the ground truth pseu-864

docode. Ensure that all critical steps, variables,865

and logic present in the ground truth are accurately866

reflected in the target pseudocode.867

4. Assess Coherence: Evaluate the overall qual-868

ity of the target pseudocode based on how well869

it translates the ground truth. Consider the fol-870

lowing aspects: Clarity: Is the pseudocode easy871

to understand? Completeness: Does it cover all872

the steps and details present in the ground truth?873

Precision: Are the descriptions and instructions in874

the pseudocode precise and unambiguous? Con-875

sistency: Are there any contradictions or logical876

inconsistencies?877

5. Assign a Coherence Rating (1-5):878

1 (Poor): The target pseudocode is incomplete,879

confusing, and lacks most details from the ground880

truth. 2 (Fair): The target pseudocode is partially881

complete but has significant gaps and is often882

unclear. 3 (Good): The target pseudocode covers883

most details from the ground truth but has some884

minor inconsistencies or lacks clarity in parts.885

4 (Very Good): The target pseudocode is mostly886

complete and clear, with very few minor issues. 5887

(Excellent): The target pseudocode is complete,888

clear, precise, and fully coherent with the ground889

truth.890

891

Source Pseudocode:892

{{Ground_truth_pseudocode}}893

894

Target Pseudocode:895

{{Target_pseudocode}}896

897

Evaluation Form (scores ONLY):898

- Coherence:899

A.3 Evaluator LLM Selection 900

Models without numerical responses include: 901

Llama3-8b, Llama3-70b, Mixtral, and Gemma. 902

A.4 Evaluating LLMs on SPFT 903

Versions of LLMs

Model Name Call Strings

GPT-4o gpt-4o
GPT-4 gpt-4
GPT-3.5 gpt-3.5-turbo-1106
Llama3-8b llama3-8b-8192
Llama3-70b llama3-70b-8192
Mixtral mixtral-8x7b-32768
Gemma-7b gemma-7b-it
Cohere+ command-r-plus
Cohere command-r
Gemini-1.0 gemini-1.0-pro-001
Gemini-1.5 gemini-1.5-pro-001
Gemini-2.0 gemini-1.0-pro-002

Table 6: Versions of LLMs. Exact API call strings for
corresponding models.

904

A.5 Implementation Details 905

Except for n and seed, parameters were set to their 906

default values. We used approximately $1000 for 907

GPT API calls, $20 for Gemini, and other models 908

were free of cost. 909

910

Counting Tokens We counted the tokens of 911

the concatenated string of the title, original 912

description, and steps, separated by "\n\n". The 913

reason for this approach is to match the token 914

count with that of the previous work. 915

916

Inconsistencies LLAM-EVAL Outputs To 917

address this issue, we attempted the following 918

methods: (1) Modified max_token = 5 to 919

max_token = 1 : The scores became integers, 920

but the model still generated sentences in ad- 921

dition to scores. (2) Use different versions 922

of the model: Other model variations, such 923

as gpt-3.5-turbo-1106, did not enhance the 924

results. 925
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