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Abstract001

While recent progress in video retrieval has002
been advanced by the exploration of supervised003
representation learning, regarded as a strategy004
for training time alignment, in this paper, we005
focus on index time alignment, by transforming006
the video to text, bridging the representation007
gap between the video and query. However,008
naively generating captions from videos is sub-009
optimal – captions generated from the videos010
often miss crucial details and nuances. In this011
work, we take a step further by exploring the012
index time enrichment strategy – enhancing013
the text representation of video with diverse014
information. Specifically, we design a novel015
relevance-boosted caption generation method,016
bringing extra relevant details into video cap-017
tions by using LLMs. To emphasize key infor-018
mation, we also extract key visual tokens from019
captions and videos. Moreover, to highlight020
the unique characteristics of each video, we021
propose a distinctiveness analysis method that022
infuses the key features into text representation.023
Benefiting from these methods, extensive exper-024
iments on several video retrieval benchmarks025
demonstrate the superiority of DIANE over ex-026
isting fine-tuned and pretraining methods with-027
out any data. A comprehensive study with both028
human and automatic evaluations shows that029
the enriched captions capture the key details030
and barely bring noise to the captions. Codes031
and data will be released.032

1 Introduction033

Video Retrieval (Luo et al., 2022; Gao et al., 2021;034

Ma et al., 2022; Liu et al., 2022a; Zhao et al.,035

2022; Gorti et al., 2022; Fang et al., 2022) is to036

select the corresponding video from a pool of can-037

didate videos given a text query. Recent years have038

witnessed the rapid development of VR with the039

support from powerful pretraining models (Luo040

et al., 2022; Gao et al., 2021; Ma et al., 2022; Liu041

et al., 2022a), improved retrieval methods (Berta-042

sius et al., 2021; Dong et al., 2019; Jin et al., 2021),043

and video-language datasets construction (Xu et al., 044

2016). However, it remains challenging to pre- 045

cisely match video and language due to the raw 046

data being in heterogeneous spaces and the use of 047

modality-specific encoders. 048

One popular paradigm for video retrieval (Luo 049

et al., 2022; Ma et al., 2022; Liu et al., 2022b) 050

is on the training time alignment, which is to 051

firstly learn a joint feature space across modalities 052

and then compares representations in this space. 053

However, with the discrepancy between different 054

modalities and the design of modality-independent 055

encoders, it is challenging to directly match repre- 056

sentations of different modalities generated from 057

different encoders (Liang et al., 2022). On the 058

other hand, pioneering works (Wang et al., 2021, 059

2022e) explored index time alignment, converting 060

images into captions for better presentation learn- 061

ing on image-language tasks, demonstrating that 062

captioners can mitigate modality discrepancy. 063

Inspired by the trade-off between the training 064

time scaling (Kaplan et al., 2020) and the test time 065

scaling (Snell et al., 2024), we believe that leverag- 066

ing more computation in indexing time can further 067

boost performance. However, a naive strategy of 068

translating video candidates to captions may not be 069

optimal – the captioners often miss important infor- 070

mation in the video, thus leading to poor retrieval 071

performance. In this work, to take one step forward, 072

building on top of indexing time alignment, we ex- 073

plore the index time enrichment, to further enhance 074

the representation of video in the text modality. 075

To achieve index time alignment, we first gener- 076

ate video captions for videos, which can be directly 077

used for retrieval. However, we notice that the 078

captions might miss important information in the 079

video, thus leading to unsatisfying retrieval per- 080

formance (see Table 1). To this end, we propose 081

three zero-shot strategies for index time enrich- 082

ment, including caption enrichment, extracting vi- 083

sual tokens from captions and videos, and distinc- 084
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tiveness analysis. Specifically, caption enrichment085

augments video captions by encouraging large lan-086

guage models (LLMs) to add relevant details to087

captions. Moreover, to emphasize key entities, e.g.,088

objects, relationships, attributes, and phrases, we089

extract visual tokens from captions and videos and090

utilize them for detailed descriptions. We also pro-091

pose a distinctiveness analysis method to identify092

key distinctive features among similar videos. Fi-093

nally, DIANE utilizes off-the-shelf text retrieval094

methods, e.g., BM25, for zero-shot text retrieval095

matching video captions enriched by the proposed096

methods.097

In summary, our contributions are as follows:098

• We propose a zero-shot video retrieval method099

focusing on test time alignment without re-100

quiring any training procedure or human-101

annotated data, only using the off-the-shelf102

captioning method and large language mod-103

els.104

• Our proposed DIANE achieves SOTA perfor-105

mance on several metrics across three video106

retrieval benchmarks, outperforms previous107

methods, including fine-tuning methods and108

few-shot methods.109

• Detailed analysis reveals the effectiveness of110

different indexing time enrichment strategy.111

We will open-source the code and data to fa-112

cilitate future research.113

2 Related Work114

Video retrieval, which involves cross-modal align-115

ment and abstract understanding of temporal im-116

ages (videos), has been a popular and fundamen-117

tal task of language-grounding problems (Wang118

et al., 2020a,b, 2021; Yu et al., 2023). Most of119

the existing video retrieval frameworks (Yu et al.,120

2017; Dong et al., 2019; Zhu and Yang, 2020;121

Miech et al., 2020; Gabeur et al., 2020; Dzabraev122

et al., 2021; Croitoru et al., 2021) focus on learn-123

ing powerful representations for video and text124

and extracting separated representations. For ex-125

ample, in Dong et al. (2019), videos and texts126

are encoded using convolutional neural networks127

and a bi-GRU (Schuster and Paliwal, 1997) while128

mean pooling is employed to obtain multi-level129

representations. MMT (Gabeur et al., 2020) uses130

a cross-modal encoder to aggregate features ex-131

tracted by temporal images, audio, and speech for132

encoding videos. Following that, MDMMT (Dz- 133

abraev et al., 2021) further utilizes knowledge 134

learned from multi-domain datasets to improve per- 135

formance empirically. Further, MIL-NCE (Miech 136

et al., 2020) adopts Multiple Instance Learning 137

and Noise Contrastive Estimation, addressing the 138

problem of visually misaligned narrations from un- 139

curated videos. 140

Recently, with the success of self-supervised pre- 141

training methods (Devlin et al., 2019; Radford et al., 142

2019; Brown et al., 2020), vision-language pre- 143

training (Li et al., 2020b; Gan et al., 2020; Singh 144

et al., 2022) on large-scale unlabeled cross-modal 145

data has shown promising performance in various 146

tasks, e.g., image retrieval (Radford et al., 2021), 147

image captioning (Chan et al., 2023), and video 148

retrieval (Luo et al., 2022; Wang and Shi, 2023a). 149

Recent works (Lei et al., 2021; Cheng et al., 2021; 150

Gao et al., 2021; Ma et al., 2022; Park et al., 2022a; 151

Wang et al., 2022b,d; Zhao et al., 2022; Gorti et al., 152

2022) have attempted to pretrain or fine-tune video 153

retrieval models in an end-to-end manner. CLIP- 154

BERT (Lei et al., 2021; Bain et al., 2021), as a pi- 155

oneer, proposes to sparsely sample video clips for 156

end-to-end training to obtain clip-level predictions 157

and then summarize them. Frozen in time (Bain 158

et al., 2021) uses end-to-end training on both image- 159

text and video-text pairs data by uniformly sam- 160

pling video frames. CLIP4Clip (Luo et al., 2022) 161

finetunes models and investigates three similar- 162

ity calculation approaches for video-sentence con- 163

trastive learning on CLIP (Radford et al., 2021). 164

Further, TS2-Net (Liu et al., 2022b) proposes a 165

novel token shift and selection transformer archi- 166

tecture that adjusts the token sequence and selects 167

informative tokens in both temporal and spatial 168

dimensions from input video samples. While the 169

mainstream of VR models (Xue et al., 2023; Wu 170

et al., 2023) focuses on fine-tuning powerful image- 171

text pre-trained models, on the other side, as a 172

pioneer, (Tiong et al., 2022; Wang et al., 2022e) 173

propose to use large language models (LLMs) for 174

zero-shot video question answering. 175

Zero-shot cross-modal retrieval. With the huge 176

success of pretrained visual-language model (Rad- 177

ford et al., 2021; Luo et al., 2022), zero-shot cross- 178

modal retrieval has attracted more and more re- 179

search interest recently. Due to the powerful rep- 180

resentation learning ability in image and text do- 181

mains, CLIP (Radford et al., 2021) achieves sat- 182

isfying zero-shot retrieval performance on sev- 183

eral representative image-text retrieval bench- 184
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Index Time
Alignment

squdward in spongebob is
singing when riding a
bike........

Video Caption

Relevance-Boosted
Caption Generation

Relevance-Boosted
Caption

Squidward cruises down the
street on his bike, enjoying
the wind.........

Index Time
Enrichment

Visual Token For
Video Caption

Visual Token For
Video Frame

Distinctiveness
Analysis

Top two similar
videos

Squidward singing a hip-hop song
with music being overlaid and synced
to his actions and riding a bike

Object: ["Squidward", "Bicycle"...] 
Attributes: ["squidward's nose is large"...]
Phrases: ["A happy squidward"...]
Relationships: ["Squidward rides bike"...] 

Structured
Captions

Text Text
Retrieval

Object: ["Squidward", "street", "wind"]
Attributes: ["happy", "loud"...]
Phrases: ["squidward in spongebob"...]
Relationships: ["rides a bike", "enjoy winds"...] 

Figure 1: The illustration of our proposed DIANE. DIANE includes four steps. First, we implement index time
alignment to generate video captions for video using off-the-shelf video captioning methods. Then, to enrich the
captions and emphasize the important information in the captions, we propose an index time enrichment approach
including relevance-boosted caption generation, extracting visual tokens from video captions and frames, and
distinctiveness analysis. Finally, after obtaining structured video captions, we employ off-the-shelf text retrieval
methods to perform zero-shot video retrieval.

marks (Huiskes and Lew, 2008; Lin et al., 2014).185

Inspired by this achievement, Liu et al. (2023a,b);186

Chen et al. (2023c); Liu et al. (2024); Guo et al.187

(2024) boost the performance of zero-shot image-188

text retrieval by better representation learning meth-189

ods. On the other side, benefiting from large-190

scale video benchmarks (Xu et al., 2016; Chen and191

Dolan, 2011; Fabian Caba Heilbron and Niebles,192

2015), video-language pre-trained models (Wang193

et al., 2022c; Chen et al., 2023a; Xu et al., 2023;194

Chen et al., 2023c; Li et al., 2023b; Liu et al.,195

2023c; Zhu et al., 2024) also achieve satisfying196

zero-shot video retrieval results.197

3 Index Time Alignment198

Instead of aligning the modality representation dur-199

ing the training time, we explore how to bridge200

the modality gap during the index time. One intu-201

itive solution is to leverage the video captioning202

technique to translate the video into text.203

Specifically, we employ Tewel et al. (2021, 2022)204

to generate video captions and then use GPT-205

2 (Radford et al., 2019) to enrich sentences using206

the prompts, i.e., “Video presents”.207

4 Index Time Enrichment208

Vanilla video captioning is deficient, since im-209

portant details are often missed in captions. In210

this work, we further explore several strategies211

for representation enrichment via augmenting with212

relevance-boosted captions, visual tokens, and dis-213

tinctiveness analysis.214

4.1 Relevance-Boosted Caption Generation 215

As shown in Figure 3, we notice that the gener- 216

ated captions often miss some important informa- 217

tion, leading to unsatisfying retrieval performance. 218

A simple solution to this problem is to fine-tune 219

the captioning models, which will improve their 220

caption-generation abilities. However, this ap- 221

proach needs a huge amount of annotated video- 222

caption data and expensive computation resources, 223

and the fine-tuned models do not always generalize 224

well (Tang et al., 2021). To this end, we propose 225

the relevance-boosted caption generation, which 226

is training-free and generates detailed captions that 227

contain almost every detail of the video. 228

Specifically, we use large language models 229

(LLMs) (Brown et al., 2020; Touvron et al., 2023) 230

to conduct the relevance-boosted generation using 231

the following prompt template. 232
233

The following is a caption from a 234

video: [" + <Video Caption> + "]. 235

Based on this caption, generate two 236

paraphrased captions capturing the 237

key information and main themes, 238

each of which should be in one 239

sentence with up to twenty words. 240

Meanwhile, please be creative, you 241

can have some imagination and add 242

the necessary details. Generated 243

sentences should be in the number 244

list. Also please generate text 245

without any comment. 246247

By scaling up the index time computation, we 248
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generate multiple relevance-boosted captions from249

LLM. However, some of these captions might intro-250

duce noise or lack strong relevance to the video’s251

content. To mitigate potential negative impacts,252

we apply a filtering method to assess the seman-253

tic similarity between relevance-boosted captions254

and the original video caption by leveraging a pre-255

trained text encoder (Reimers and Gurevych, 2019).256

Specifically, each video in our dataset has two gen-257

erated captions. For the retrieval process, we con-258

catenate these captions for each video and then259

perform the ranking.260

4.2 Visual Token for Caption261

To understand what kind of information is essen-262

tial to video retrieval, we analyze the contextual263

text of video captions by breaking down the video264

captions into four different visual tokens using265

model en_core_web_sm from the SPACY (Neu-266

mann et al., 2019), i.e., phrase, object, relationship,267

and attribute. Finally, we structure the information268

into the following structure,269
270

<Caption> <Phrases> <Attributes> <271

Relationships> <Objects>272273

4.3 Visual Token for Video Frame274

We propose a systematic approach to extract and275

structure information from video scenes using the276

Qwen2.5-7B-VLM model (Qwen et al., 2025).277

Video frames are uniformly sampled at 5 frames278

per second (fps), and we select a representative279

frame every five frames to balance action continu-280

ity and keyframe retention (Truong and Venkatesh,281

2007). This ensures temporal coherence and pre-282

serves salient visual tokens.283

Visual Token Extraction: The Qwen/Qwen2.5-284

VL-7B-Instruct model generates structured visual285

tokens for each frame using a predefined prompt.286

The visual tokens for the video frame include ob-287

jects, attributes, relationships, and phrases which288

are serialized into a structured JSON format for289

downstream analysis:290
291

Extract the information from this292

image, Include:293

Objects: List all visible objects294

Attributes: Describe properties of295

objects (color, size, texture, etc.)296

Relationships: Describe spatial and297

action relationships between objects298

Phrases: Key descriptive phrases299

about the scene;300

Provide the output strictly as a 301

JSON list with the following format. 302

```json 303

{ "Objects": ["object1", "object2", 304

...], "Attributes": ["attribute1", " 305

attribute2", ...], "Relationships": 306

["relationship1", "relationship2", 307

...], "Phrases": ["phrase1", " 308

phrase2", ...], } 309310

4.4 Distinctiveness Analysis 311

While videos may share common elements, identi- 312

fying the unique and distinctive features of a spe- 313

cific video is valuable. To identify the unique 314

characteristics of a video, we propose a distinc- 315

tiveness analysis method. First, we leverage the 316

video captions obtained in Section 4.1 and obtain 317

captions embeddings using the Sentence Trans- 318

former (Reimers and Gurevych, 2019). For each 319

video, we use cosine similarity to identify the most 320

similar videos. We further leverage LLMs to con- 321

trast the video against others, especially the most 322

similar ones, highlighting its distinctive features 323

with text representation. 324

Specifically, we use the captions extracted in 325

Section 4.1 and feed them into the Qwen/Qwen2.5- 326

VL-7B-Instruct model to generate sentences reveal- 327

ing the uniqueness of each video. The prompt for 328

this process is structured as follows. 329

330
Given the frame images from the 331

original video, as well as from 332

similar videos 1 and 2, and the 333

corresponding video descriptions: 334

335

Current Video: 336

{current_caption} 337

338

Most Similar Videos: 339

1. {most_similar_captions[0]} 340

2. {most_similar_captions[1]} 341

342

Generate one sentence (less than 50 343

words) describing the unique 344

characteristic of the Current Video 345

without mentioning the Most 346

Similar Videos: 347348
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5 Experiments349

5.1 Video Retrieval350

We compute the similarity score at the video351

level between text and video enriched represen-352

tation using off-the-shelf retrieval methods, i.e.,353

BM25 (Robertson and Walker, 1994) and sentence354

transformers (Reimers and Gurevych, 2019). We355

provide the experimental results with BM25 for356

comparing with existing method. More results of357

sentence transformers can be found in Table 8.358

5.2 Benchmarks, Baselines, and Evaluation359

Metrics360

Benchmarks. Following previous work (Luo et al.,361

2022; Ma et al., 2022), we use three representa-362

tive benchmarks for evaluating DIANE, i.e., MSR-363

VTT (Xu et al., 2016), MSVD (Chen and Dolan,364

2011), and ActivityNet (Fabian Caba Heilbron and365

Niebles, 2015). Details of the dataset split are pre-366

sented in Appendix A.1.367

Baselines To show the empirical efficiency of our368

DIANE, we compare it with fine-tuned models369

(LiteVL (Chen et al., 2022), NCL (Park et al.,370

2022b), TABLE (Chen et al., 2023b), VOP (Huang371

et al., 2023), X-CLIP (Ma et al., 2022), Discrete-372

Codebook (Liu et al., 2022a), TS2-Net (Liu et al.,373

2022b), VCM (Cao et al., 2022), HiSE (Wang374

et al., 2022b), CenterCLIP (Zhao et al., 2022),375

X-Pool (Gorti et al., 2022), S3MA (Wang and376

Shi, 2023b)), and MV-Apapter (Jin et al., 2024),377

pre-trained methods (VLM (Xu et al., 2021a),378

HERO (Li et al., 2020a), VideoCLIP (Xu et al.,379

2021b), EvO (Shvetsova et al., 2022), OA-380

Trans (Wang et al., 2022a), RaP (Wu et al., 2022),381

OmniVL (Wang et al., 2022c), mPLUG-2 (Xu et al.,382

2023), InternVL (Chen et al., 2023c), Langauge-383

Bind (Zhu et al., 2024), UCOFIA (Wang et al.,384

2023), ProST (Li et al., 2023c), and UATVR (Fang385

et al., 2023), ), and a few-shot method, i.e.,386

VidIL (Wang et al., 2022e).387

Evaluation metric. To evaluate the retrieval per-388

formance of our proposed model, we use recall389

at Rank K (R@K, higher is better), median rank390

(MdR, lower is better), and mean rank (MnR, lower391

is better) as retrieval metrics, which are widely used392

in previous retrieval works (Radford et al., 2021;393

Luo et al., 2022; Ma et al., 2022).394

Implementation details and related model de-395

tails are defferd to Appendix A.3.396

Methods Venue
Text-to-Video Retrieval

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

Training-based
LiteVL-S EMNLP’2022 46.7 71.8 81.7 2.0 -
X-Pool CVPR’2022 46.9 72.8 82.2 2.0 14.3
CenterCLIP SIGIR’2022 44.2 71.6 82.1 2.0 15.1
TS2-Net ECCV’2022 47.0 74.5 83.8 2.0 13.0
X-CLIP ACM MM’2022 46.1 74.3 83.1 2.0 13.2
NCL EMNLP’2022 43.9 71.2 81.5 2.0 15.5
TABLE AAAI’2023 47.1 74.3 82.9 2.0 13.4
VOP CVPR’2023 44.6 69.9 80.3 2.0 16.3
DiscreteCodebook ACL’2022 43.4 72.3 81.2 - 14.8
VCM AAAI’2022 43.8 71.0 - 2.0 14.3
CenterCLIP SIGIR’2022 48.4 73.8 82.0 2.0 13.8
HiSE ACM MM’2022 45.0 72.7 81.3 2.0 -
TS2-Net ECCV’2022 49.4 75.6 85.3 2.0 13.5
S3MA EMNLP’2023 53.1 78.2 86.2 1.0 10.5
UCOFIA ICCV’2023 49.4 72.1 - - 12.9
ProST ICCV’2023 49.5 75.0 84.0 2.0 11.7
UATVR ICCV’2023 49.8 76.1 85.5 2.0 12.9
MV-Adapter CVPR’2024 46.2 73.2 82.7 - -

Zero-Shot (Pretrained Models)
VLM ACL’2021 28.1 55.5 67.4 4.0 -
HERO EMNLP’2021 16.8 43.3 57.7 - -
VideoCLIP EMNLP’2021 30.9 55.4 66.8 - -
EvO CVPR’2022 23.7 52.1 63.7 4.0 -
OA-Trans CVPR’2022 35.8 63.4 76.5 3.0 -
RaP EMNLP’2022 40.9 67.2 76.9 2.0 -
OmniVL NeurIPS’2022 34.6 58.4 66.6 - -
mPLUG-2 ICML’2023 48.3 75.0 83.2 - -
InternVL arXiv’2023 42.4 65.9 75.4 - -
LanguageBind ICLR’2024 42.6 65.4 75.5 - -

Few-Shot
VidIL NeurIPS’2022 40.8 65.2 - - -
Zero-Shot
DIANE w/o relevance-boosted caption genertion 20.3 40.9 51.7 9.0 60.3
DIANE 58.7 76.6 84.4 1.0 17.9

Table 1: Text-to-Video retrieval results on MSR-VTT.
The best results are marked in bold. The second best
results are underlined.

Methods Venue
Text-to-Video Retrieval

R@1↑ R@5↑ R@10↑ MnR↓

MSVD

RaP EMNLP’22 35.9 64.3 73.7 -
LanguageBind ICLR’24 52.2 79.4 87.3 -
DIANE 57.2 80.0 88.2 15.6

ActivityNet

LanguageBind ICLR’24 35.1 63.4 76.6 -
DIANE 59.0 71.4 77.0 387.4

Table 2: Text-to-Video retrieval results on MSVD and
ActivityNet. The best results are marked in bold.

5.3 Quantitative Results 397

In this part, we present the qualitative results of 398

DIANE on three VR benchmarks. 399

MSR-VTT. We found that the contextual video text 400

obtained directly through video captioning methods 401

generally have mediocre performance (R@1: 20.3) 402

compared to other baseline Text-Video Retrieval 403

method. However, after using LLM to do relevance 404

boosting from the video caption, the R@1 of our 405

method nearly doubled (R@1 = 40.9) shown in 406

Table 4 . Therefore, we further boosted each sen- 407

tence and expanded it into two sentences. From the 408

results presented in Table 1, it can be seen that this 409

approach outperforms the second-best method by 410

9.9. This indicates the significant impact of rele- 411

vance boosting and expanding captions on enhanc- 412

ing the performance of Text-Video Retrieval sys- 413
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Caption VT4C VT4V DA
Text-to-Video Retrieval

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

✓ 54.0 73.9 80.2 1.0 24.6
✓ ✓ 57.8 75.7 83.5 1.0 19.5
✓ ✓ 53.8 74.7 81.2 1.0 23.6
✓ ✓ 55.3 76.8 82.5 1.0 21.1

✓ ✓ ✓ 55.2 82.1 83.6 1.0 21.6
✓ ✓ ✓ 58.2 76.4 83.6 1.0 18.87
✓ ✓ ✓ 57.8 77.0 84.1 1.0 18.6

✓ ✓ ✓ ✓ 58.7 76.6 84.4 1.0 17.9

Table 3: Retrieval performance with different combi-
nations of enrichment strategies (Visual tokens for cap-
tions and video frames, Distinctiveness Analysis) on
MSR-VTT using DIANE. “VT4C”, “VT4V”, and “DA”
represent visual tokens for captions, visual tokens for
video frames, and distinctiveness analysis. Best in Bold.

# of Relevance Boosted Captions
Text-to-Video Retrieval

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

1 40.9 55.5 60.9 3.0 227.3
2 58.7 76.6 84.4 1.0 17.9
3 55.7 73.9 82.2 1.0 21.2

Table 4: Retrieval performance with different numbers
of relevance-boosted captions on MSR-VTT using DI-
ANE. Best in Bold.

LLM
Text-to-Video Retrieval

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

LLaMA 58.7 76.6 84.4 1.0 17.9
GPT 3.5 61.2 80.4 86.8 1.0 15.0

Table 5: Retrieval performance with different LLM
models on MSR-VTT using DIANE. Best in Bold.

Template
Text-to-Video Retrieval

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

Basic Template 58.7 76.6 84.4 1.0 17.9
Structured Template 55.7 74.6 81.2 1.0 21.1

Template with Detailed Description 55.9 74.6 81.7 1.0 21.2
Narrative Format Template 56.5 74.7 81.7 1.0 20.9

Table 6: Retrieval performance with different template
formats on MSR-VTT using DIANE. Best in Bold.

tems. Compared to DiscreteCodebook (Liu et al.,414

2022a), which aligns modalities in an unsupervised415

manner, DIANE outperforms DiscreteCodebook416

on every metric. Meanwhile, DIANE also out-417

performs VidIL (Wang et al., 2022e), which uses418

few-shot prompting, demonstrating the usability419

of integrating zero-shot LLM on text-to-video re-420

trieval. This suggests that leveraging zero-shot on421

LLMs is a promising approach to enhance text-to-422

video retrieval performance. Also, we notice that423

DIANE has bad results on mean rank. To under-424

stand why this happens, we visualize the distribu-425

tion of rank in Figure 2. It is obvious that though426

most of the videos have very good rank, e.g., lower427

than 10, there are still some captions ranked in the428

last.429

MSVD and ActivityNet. The results on MSVD430

and ActicityNet are shown in Table 2. DIANE431

achieves the best R@1 on text-to-video retrieval on 432

two datasets compared to the previous methods. 433

5.4 Ablation Studies 434

In this part, we present a series of ablation experi- 435

ments on MSR-VTT to better understand the effec- 436

tiveness of different components of DIANE, using 437

LLaMA2-7b-chat-hf and BM25. Due to space lim- 438

itations, we present the ablation study on retrieval 439

methods and the exploration of different visual to- 440

kens in Appendix. 441

Impact of combination of different components 442

from Index Time Enrichment. To determine the 443

optimal combination of components for text-to- 444

video retrieval, we conduct experiments with dif- 445

ferent configurations of visual tokens for captions 446

and video frames, as well as distinctiveness analy- 447

sis, as shown in Table 3. The results demonstrate 448

that incorporating additional components generally 449

improves retrieval performance. Notably, the best 450

performance is achieved when all components are 451

combined, yielding the highest R@1, R@5, and 452

R@10 scores while minimizing MnR. This con- 453

firms the effectiveness of leveraging both caption 454

and video visual tokens alongside distinctiveness 455

analysis to enhance retrieval accuracy. 456

Number of relevance-boosted captions. In this 457

part, we aim to explore how many relevance- 458

boosted captions work the best. More captions 459

have the potential to offer more detailed descrip- 460

tions, which may enhance the viewer’s comprehen- 461

sion of the visual content. Previous studies (Biten 462

et al., 2019; Tang et al., 2023) have demonstrated 463

that longer captions tend to be more descriptive 464

and semantically rich, achieving improved com- 465

prehension and retrieval performance. However, 466

more relevance-boosted captions might mean more 467

noises are injected. So balancing the number of 468

relevance-boosted captions would be highly impor- 469

tant. From the results shown in Table 4, we notice 470

that paraphrasing into two or three sentences sig- 471

nificantly improved R@1, R@5, and R@10. Con- 472

sidering computational constraints and the similar 473

effectiveness of paraphrasing into two and three 474

sentences, we decide to boost it into two sentences. 475

We also investigate relevance-boosted performance 476

with different LLM models, including LLaMa and 477

GPT-3.5 in Table 4. 478

Complexity of prompt templates for extracting 479

visual tokens. The complexity of the prompt plays 480

a pivotal role in shaping the output generated by 481

the model, influencing the depth of analysis and 482
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Figure 2: These figures illustrate the distribution of the rank of each (test) gallery video (captions) retrieved by (test)
text queries.

Automatic Evaluation Metric Human Evaluation Text-to-Video Retrieval
Relevance HHEM Factual Accuracy Relevance Coherence Specificity R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

High-level 16.1% 0.33 0.42 0.24 -0.95 56.9 75.1 82.6 1.0 21.4
Medium-level 14.7% 0.52 0.78 1.21 0.07 57.3 75.2 82.4 1.0 18.1

Low-level 9.6% 0.85 0.81 1.38 0.68 57.6 74.9 83.3 1.0 19.1
DIANE 10.9% 0.87 0.86 1.28 0.52 58.7 76.6 84.4 1.0 17.9

Table 7: Retrieval performance with different levels of Relevance Boosting on MSR-VTT. Best in Bold.

the richness of information conveyed. An intri-483

cate prompt may provide the model with additional484

context and guidance, enabling it to produce more485

detailed responses. Specifically, we compare four486

templates (Basic, Structured, Detailed Description,487

and Narrative Format) offering different levels of488

complexity for organizing video content as shown489

in Appendix A.6. The results are shown in Table 6.490

The results show that with the simplest template491

(basic template), R@1, R@5, and R@10 on text-to-492

video retrieval has better performance. This might493

be because the simplest format template enables a494

more straightforward extraction of visual tokens,495

which can aid in the efficiency and accuracy of496

retrieval by presenting the information in a direct497

storytelling format. We observed that, while the498

narrative format performs worse than the basic tem-499

plate in text-to-video retrieval, it still outperforms500

other formats (such as the structured template and501

the detailed description template). This may be502

because the narrative format provides the model503

with more context and direction, but it can also504

cause the model to miss some key information that505

is important for accurate retrieval.506

6 Analysis on Quality of507

Relevance-Boosted Captions508

As the details brought by relevance-boosted genera-509

tion might bring irrelevant information, we analyze510

the quality of relevance-boosted captions.511

6.1 Automatic Evaluation512

Inspired by Li et al. (2023a), we generate video513

captions with varying levels of relevant details by514

using different prompts to control the level of rel-515

evance generation. Specifically, we generate cap-516

tions at three levels: high, medium, and low (see517

Appendix B). We used the HHEM model (Hon- 518

ovich et al., 2022) to compute the hallucination rate 519

by comparing the relevance-boosted captions and 520

original video captions. As shown in Table 7, lower 521

levels of generation do not significantly change re- 522

trieval results. We also observe that captions with 523

a lower boosting rate perform worse than captions 524

with higher levels. 525

6.2 Qualitative Results 526

To qualitatively validate the effectiveness of DI- 527

ANE, we present an example in Figure 3. The re- 528

trieval results show that relevance-boosted captions 529

have more information in the video than vanilla 530

video captions. Besides, our proposed methods 531

clearly emphasize the important visual tokens, i.e., 532

phrase, object, relationship, and attribute, further 533

boosting the performance. 534

6.3 Human Evaluation 535

We also conduct a human evaluation to further eval- 536

uate the relevance-boosted captions. 537

Participants: Our human evaluation task involves 538

reading relevance-boosted captions from different 539

levels, video captions without relevance-boosting, 540

and rating those relevance-boosted captions from 541

them. We recruited 10 participants (7M, 3F). We 542

conducted a rigorous qualification process, evaluat- 543

ing their English proficiency, to ensure high-quality 544

annotations. We hired them by sending invited 545

emails to graduate students. We allocated up to 546

30 minutes for each participant to complete the 547

study, and for their valuable time and input, each 548

participant received a compensation of $15. 549

Task: We randomly selected 50 pairs of relevance- 550

boosted captions and original video captions 551

from DIANE. Note that each pair has only one 552
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a girl wearing red top and black trouser
is putting a sweater on a dog…

HAMSTER’S New Home Tour
a girl putting a sweater on the dog…

The pink-clad girl dresses her dog in a
matching sweater, creating a cute and
cozy pair. A stylish dog is accessorized
with a pink sweater, complementing its
owner's fashionable outfit.

The pink-clad girl dresses her dog in a matching sweater, creating a
cute and cozy pair. A stylish dog is accessorized with a pink sweater,
complementing its owner‘s fashionable outfit. <The pink-clad girl,
her dog, a cute and cozy pair, A stylish dog, a pink sweater, its
owner’s fashionable outfit…..> <cute, cozy, stylish,pink, …> <clad
matching, knit sweater> <girl, dresses, small dog, pink outfit>………
<Difference: a girl wearing a red top, holding a small dog, and
examining a pink-striped sweater in a pink-themed room >

Ground Truth TextVideo Video Caption

Relevance-Boosted Captions Structured Captions

Figure 3: A retrieval example demonstrates that relevance-boosted captions contain more information compared to
vanilla video captions in the video though some noises are also added.

relevance-boosted caption and one original video553

caption. Each participant is assigned 50 pairs. Each554

pair is evaluated by 10 individuals. In each trial,555

a participant reads 4 relevance-boosted captions556

for the original video caption: one by high-level557

boosting, one by medium-level boosting, one by558

low-level boosting, and one from DIANE. The559

order of these four is also randomized, so partici-560

pants do not know which generated caption is from561

which method. The participant is asked to rate the562

4 captions along four dimensions using a five-point563

Likert scale from -2 to 2.564

• Factual Accuracy: The relevance-boosted cap-565

tion is factually correct to convey the content566

from the video caption.567

• Relevance: The relevance-boosted caption is rel-568

evant to the video caption.569

• Coherence: The relevance-boosted caption is co-570

herent to the video caption.571

• Specificity: The relevance-boosted caption is spe-572

cific and detailed to the video caption.573

Evaluation Results: We conducted Wilcoxon574

tests (Woolson, 2007) with a significance level575

of 0.05 to compare the performance of high-level,576

medium-level, low-level boosting, and DIANE in577

the Factual Accuracy, Relevance, Coherence, and578

Specificity dimensions. The Wilcoxon test is a579

non-parametric statistical test used to compare two580

paired groups of data. The obtained p-values indi-581

cate the probability of observing the reported dif-582

ferences if there were no true differences between583

the models.584

The results indicate significant differences in585

the Factual Accuracy dimension, where DIANE586

outperforms High-level boosting (V = 4836, p =587

1.45e-30), Medium-level boosting (V = 4819, p =588

7.22e-31). For the Coherence dimension, we no-589

tice that they are almost at the same level, likely590

because captions refined by the LLM are already 591

sufficiently coherent for users. In the Relevance di- 592

mension, DIANE surpasses high-level boosting (V 593

= 3247, p = 1.44e-21), medium-level boosting (V = 594

3693, p = 1.69e-20), low-level boosting (V = 3188, 595

p = 1.53e-20). For the Specificity dimension which 596

considers whether the relevance-boosted caption is 597

detailed and specified, Low-level boosting outper- 598

forms all methods: High-level boosting (V = 4463, 599

p = 1.25e-7), Medium-level boosting (V = 3830, p 600

= 3.48e-14), DIANE (V = 2260, p = 2.63e-7). It is 601

worth noting that while low-level boosting is more 602

detailed than DIANE, it performs slightly worse 603

in VR, possibly due to the higher importance of 604

factual accuracy in evaluating the effectiveness of 605

relevance-boosted captions. Future work can fo- 606

cus on designing an innovative framework for the 607

relevance-boosted captioning method to integrate 608

useful dimensions. 609

7 Conclusion 610

In this paper, we present an innovative zero-shot 611

framework, DIANE, which revolutionizes video 612

retrieval by capitalizing on existing captioning 613

methods, large language models (LLMs), and text 614

retrieval techniques. By sidestepping the need for 615

model training or fine-tuning, our framework of- 616

fers a streamlined approach to retrieval. To over- 617

come the shortcomings of traditional captioning 618

methods, we propose a groundbreaking index time 619

enrichment to enhance retrieval performance by 620

relevance-boosted caption generation technique, 621

highlighting key visual tokens, and distinctive- 622

ness analysis. Through extensive experimentation 623

across diverse benchmarks, we demonstrate the 624

superior efficacy of DIANE compared to conven- 625

tional fine-tuned and pretraining methods, even in 626

the absence of training data. 627
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Limitations628

In the future, it would be interesting to explore629

more detailed methods for zero-shot video retrieval,630

such as incorporating the audio modality and cor-631

responding off-the-shelf foundation models. More-632

over, as a pioneering work, our work mainly fo-633

cuses on exploring index time alignment and en-634

richment. It would be great if we could explore635

more text retrieval methods, video captioning meth-636

ods, and LLMs for relevance-boosted caption gen-637

eration.638
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A Experiments1223

A.1 Details of Benchmarks1224

• MSR-VTT (Xu et al., 2016) contains 10,0001225

videos with length varying from 10 to 321226

seconds, each paired with about 20 human-1227

labeled captions. Following the evaluation1228

protocol from previous works (Yu et al., 2018;1229

Miech et al., 2019), we use the training-9k /1230

test 1k-A splits for training and testing respec-1231

tively.1232

• MSVD (Chen and Dolan, 2011) contains1233

1,970 videos with a split of 1200, 100, and1234

670 as the train, validation, and test set, re-1235

spectively. The duration of videos varies from1236

1 to 62 seconds. Each video is paired with 401237

English captions.1238

• ActivityNet (Fabian Caba Heilbron and1239

Niebles, 2015) is consisted of 20,000 Youtube1240

videos with 100,000 densely annotated de-1241

scriptions. For a fair comparison, following1242

the previous setting (Luo et al., 2022; Gabeur1243

et al., 2020), we concatenate all captions to-1244

gether as a paragraph to perform a video-1245

paragraph retrieval task by concatenating all1246

the descriptions of a video. Performances are1247

reported on the “val1” split of the ActivityNet.1248

A.2 Baselines1249

To show the empirical efficiency of our DI-1250

ANE, we compare it with fine-tuned models1251

(LiteVL (Chen et al., 2022), NCL (Park et al.,1252

2022b), TABLE (Chen et al., 2023b), VOP (Huang1253

et al., 2023), X-CLIP (Ma et al., 2022), Discrete-1254

Codebook (Liu et al., 2022a), TS2-Net (Liu et al.,1255

2022b), VCM (Cao et al., 2022), HiSE (Wang1256

et al., 2022b), CenterCLIP (Zhao et al., 2022),1257

X-Pool (Gorti et al., 2022), S3MA (Wang and1258

Shi, 2023b)), and MV-Apapter (Jin et al., 2024),1259

pre-trained methods (VLM (Xu et al., 2021a),1260

HERO (Li et al., 2020a), VideoCLIP (Xu et al.,1261

2021b), EvO (Shvetsova et al., 2022), OA-1262

Trans (Wang et al., 2022a), RaP (Wu et al., 2022),1263

OmniVL (Wang et al., 2022c), mPLUG-2 (Xu et al.,1264

2023), InternVL (Chen et al., 2023c), Langauge-1265

Bind (Zhu et al., 2024), UCOFIA (Wang et al.,1266

2023), ProST (Li et al., 2023c), and UATVR (Fang1267

et al., 2023), ), and a few-shot method, i.e.,1268

VidIL (Wang et al., 2022e).1269

A.3 Implementation Details 1270

For video caption generation, we use Tewel et al. 1271

(2021, 2022) to generate video captions and GPT- 1272

2 (Radford et al., 2019) to enrich sentences. For 1273

relevance-boosted caption generation, we employ 1274

LLaMA2-7b-chat-hf (Touvron et al., 2023) and get 1275

two boosted captions. For extracting visual tokens, 1276

we use SPACY (Bird et al., 2009). For text retrieval, 1277

we use BM25 (Robertson and Walker, 1994). 1278

We use GPT2 (Radford et al., 2019) for sen- 1279

tence enrichment during video caption generation. 1280

GPT-2 (Radford et al., 2019), developed by Ope- 1281

nAI, is a large-scale transformer-based language 1282

model renowned for its ability to generate coher- 1283

ent and contextually relevant text. With 1.5 billion 1284

parameters, GPT-2 can be fine-tuned for a variety 1285

of natural language processing tasks, such as text 1286

generation, summarization, and captioning. In our 1287

task, we enrich image captions with GPT-2 with 1288

one NVIDIA A100 GPU using around 20 hours. 1289

We use Llama (Touvron et al., 2023)(version: 1290

Llama-2-7b-chat-hf) to conduct the relevance- 1291

boosted caption generation task. Llama (Tou- 1292

vron et al., 2023) is an advanced language model 1293

with approximately 7 billion parameters. Its default 1294

backend is designed for efficiency and scalability. 1295

The computational budget for LlaMA in our task is 1296

approximately 23 hours with one NVIDIA A100 1297

GPU. Its ability to understand context, generate 1298

coherent and contextually relevant responses, and 1299

perform a wide range of language-related tasks is 1300

significantly enhanced. LlaMA is a powerful and 1301

accessible tool, widely used in various applications. 1302

Therefore, it is included as an advanced baseline. 1303

We use Qwen2.5-VL-7B-Instruct (Qwen Team, 1304

2025) to conduct Index Time Enrichment (ITE) 1305

during video frame analysis. Qwen2.5-VL-7B- 1306

Instruct (Qwen et al., 2025), developed by the 1307

Qwen Team, is a large-scale visual-language model 1308

consisting of 7 billion parameters. This model is de- 1309

signed for efficient and context-aware visual token 1310

extraction from video frames. In our experiment, 1311

we use the Qwen2.5-VL-7B-Instruct model to gen- 1312

erate key visual tokens from video captions and 1313

video frames, which include objects, attributes, re- 1314

lationships, and descriptive phrases from sampled 1315

video frames. 1316

For the ITE process, the model is run on one 1317

NVIDIA H100 GPU for approximately 4 hours. 1318

The generated visual tokens are structured into a 1319

JSON format for further analysis and integration 1320
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Retrieval Methods
Text-to-Video Retrieval

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

BM25 58.7 76.6 84.4 1.0 17.9
Sentence Transformer 41.2 62.1 70.5 2.0 33.5

Table 8: Retrieval performance with different retrieval models on MSR-VTT using DIANE. Best in Bold.

Caption Phrase Object Relationship Attribute
Text-to-Video Retrieval

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

✓ 54.0 73.9 80.2 1.0 24.5
✓ ✓ 57.4 76.2 83.0 1.0 19.3
✓ ✓ 56.9 77.5 83.8 1.0 18.6
✓ ✓ 54.2 73.2 79.6 1.0 24.9
✓ ✓ 55.0 74.2 80.2 1.0 24.1

✓ ✓ ✓ 57.4 76.2 83.5 1.0 18.7
✓ ✓ ✓ 57.3 76.3 82.6 1.0 19.8
✓ ✓ ✓ 57.6 76.3 83.5 1.0 19.1
✓ ✓ ✓ 56.9 76.6 83.2 1.0 19.3
✓ ✓ ✓ 57.6 77.4 83.8 1.0 18.2
✓ ✓ ✓ 54.0 73.3 79.6 1.0 24.9

✓ ✓ ✓ ✓ 58.0 75.9 83.7 1.0 19.3
✓ ✓ ✓ ✓ 57.8 76.3 84.1 1.0 18.3
✓ ✓ ✓ ✓ 57.8 76.0 82.5 1.0 19.5
✓ ✓ ✓ ✓ 57.3 76.7 83.2 1.0 18.9

✓ ✓ ✓ ✓ ✓ 58.7 76.6 84.4 1.0 17.9

Table 9: Retrieval performance with different combina-
tions of four visual tokens from video captions (Phrase,
Object, Relationship, Attribute) on MSR-VTT using
DIANE. Best in Bold.

into the video retrieval pipeline.1321

A.4 Impact of Combination of Visual Tokens1322

To choose the best combination method for the ex-1323

tracted visual tokens (phrases, attributes, objects,1324

and relationships), we conduct experiments using1325

different arrangements of these visual tokens, as1326

shown in Table 9. By reducing the inclusion of1327

visual tokens, the retrieval performance of DIANE1328

decreases, thereby proving the usefulness of inte-1329

grating these four visual tokens together.1330

A.5 Choice of Retrieval Methods1331

In this part, we investigate the impact of differ-1332

ent retrieval methods, i.e., BM25 (Robertson and1333

Walker, 1994) and sentence transformers (Reimers1334

and Gurevych, 2019). The results are shown in1335

Section 7. It shows that BM25 outperforms the1336

sentence transformer.1337

A.6 Prompts for Visual Token Extraction1338

1. Basic Template: the simplest, providing a1339

straightforward list of video elements, the one1340

shown in Section 4.2.1341

2. Structured Template: It adds categorized ele-1342

ments, making the information easier to navi-1343

gate for the retrieval method.1344
1345

Video Caption : <Caption>. Key1346

Phrases: <{Phrases}>. Main1347

Objects: <Objects>. Notable 1348

Features: <{Attributes}>. Key 1349

Relationships: <Relationship> 13501351

3. Template with Detailed Description: This fur- 1352

ther elaborates on each element, offering in- 1353

depth insights. 1354
1355

Detailed Video Description: 1356

Caption: <{Caption}> Objects and 1357

Attributes Overview: Each 1358

object, <{Objects}>, is detailed 1359

with attributes such as <{ 1360

Attributes}> to provide a 1361

clearer image. Relationship 1362

Analysis: The video's narrative 1363

is driven by relationships like 1364

<{Relationships}>, which are 1365

elaborated for better 1366

understanding. Phrases Insight: 1367

Phrases like <{Phrases}> are 1368

explained for their significance 1369

to the content. 13701371

4. Narrative Format Template: it weaves the ele- 1372

ments into a cohesive story, enhancing engage- 1373

ment and providing a thematic understand- 1374

ing. 1375
1376

Caption: <Caption> In this video 1377

, we observe <{Objects}> with <{ 1378

Attributes}>, a vivid 1379

representation of <{ 1380

Relationships}>. Phrases such as 1381

<{Phrases}> punctuate the 1382

narrative, offering insights 1383

into the unfolding story. 13841385

A.7 Are Relevance-Boosted Caption 1386

Generation and Visual Token(for caption 1387

and video) Extraction Necessary? 1388

We also conduct another ablation study to investi- 1389

gate the effect of the video caption repeating itself 1390

several times to form text that is the same length 1391
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Retrieval Methods
Text-to-Video Retrieval

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

DIANE 58.2 75.8 83.5 1.0 18.9
DIANE (video caption only repeats to the same length as structured caption) 54.0 73.9 80.2 1.0 24.6

DIANE (visual tokens for captions and videos only repeat to the same length as video caption) 18.6 25.1 27.1 15.0 444.6

Table 10: Comparative Analysis of Caption Repetition and Extracted Visual Token Repetition on Retrieval Perfor-
mance

as the structured caption stage. According to Ta-1392

ble 10, we find that our DIANE method outper-1393

forms the others, indicating that a blend of rele-1394

vance boosting (imagined or generated content)1395

and visual tokens significantly improves retrieval1396

results. Specifically, in text-to-video retrieval, DI-1397

ANE achieves much higher recall rates and lower1398

median and mean ranks than the other methods,1399

which rely solely on caption repetition or visual1400

tokens. Also, we find that caption repetition out-1401

performs visual tokens extraction repetition. This1402

suggests that incorporating relevance boosting is1403

crucial for enhancing retrieval effectiveness.1404

B Prompt to Generate Captions in1405

Different Levels of Relevance Boosting1406

B.1 Low-level Relevance1407

1408
The following is a caption from a1409

video: [" + text + "]. Based on this1410

caption, generate two paraphrased1411

captions capturing the key1412

information and main themes, each of1413

which should be in one sentence1414

with up to twenty words (Do not1415

include any details not mentioned in1416

the text. Focus on the main points1417

and key details.). Also Please1418

generate text without any comment.14191420

B.2 Medium-level Relevance1421

1422
The following is a caption from a1423

video: [" + text + "]. Based on this1424

caption, generate two paraphrased1425

captions capturing the key1426

information and main themes, each of1427

which should be in one sentence1428

with up to twenty words (Feel free1429

to elaborate on points that seem1430

important, even if not explicitly1431

mentioned.). Also Please generate1432

text without any comment.14331434

B.3 High-level Relevance 1435

1436
The following is a caption from a 1437

video: [" + text + "]. Based on this 1438

caption, generate two paraphrased 1439

captions capturing the key 1440

information and main themes, each of 1441

which should be in one sentence 1442

with up to twenty words (Feel free 1443

to add any details or 1444

interpretations that you think 1445

enhance the summary, even if they 1446

are not directly mentioned in the 1447

text.). Also Please generate text 1448

without any comment. 14491450
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