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ABSTRACT

This paper investigates the problem of minimizing polarization within a network,
operating under the foundational assumption that the evolution of underlying opin-
ions adheres to the most prevalent model, the Friedkin-Johnson (FJ) model. We
show that this optimization problem under integrality constraints is NP-Hard. Fur-
thermore, we establish that the objective function fits into a specialized category of
nonconvex functions called invex, where every local minimum is a global minimum.
We extend this characterization to encompass a comprehensive class of matrix
functions, including those pertinent to polarization and multiperiod polarization,
even when addressing scenarios involving stubborn actors. We propose a novel non-
convex framework for this class of matrix functions with theoretical guarantees and
demonstrate its practical efficacy for minimizing polarization without getting stuck
at local minima. Through empirical assessments conducted in real-world network
scenarios, our proposed approach consistently outperforms existing state-of-the-art
methodologies. Moreover, we extend our work to encompass a novel problem
setting that has not been previously studied, wherein the observer possesses access
solely to a subset of initial opinions. Within this agnostic framework, we introduce
a nonconvex relaxation methodology, which provides similar theoretical guarantees
as outlined earlier and effectively mitigates polarization.

1 INTRODUCTION

In recent times, there has been a notable surge in the utilization of social media, accompanied by its
increasingly pivotal role in shaping the discourse of global politics. Prominent social networks such
as Twitter, Mastodon, Reddit, and others have emerged as influential platforms for users to articulate
their viewpoints and participate in socio-political dialogues. Ironically, the original intention of social
media to foster connectivity among individuals has, at times, yielded an unintended consequence: the
emergence of echo chambers. This phenomenon arises from the preferential attachment behavior
exhibited by users who tend to associate with others of similar inclinations, including shared political
beliefs, as elucidated by Adamic & Glance (2005). Consequently, this trend has culminated in the
polarization of active users within social media platforms along partisan lines, which, in turn, poses
a potential threat to democratic ideals. The exposure of individuals primarily to like-minded peers
serves to reinforce their preexisting convictions, a phenomenon identified by Cass (2002). This
reinforcement of congruent perspectives, in turn, steers users toward confirmation bias, inadvertently
increasing the polarization of the network (Kahneman, 2011).

Polarization within the realm of social networking platforms can be attributed to a complex interplay
between an individual’s actions and the underlying social algorithms governing the provision of
customized user experiences, which encompass features like personalized links and community
recommendations (Lazer, 2015). Bakshy et al. (2015) delved into the impact of social media,
exemplified by Facebook, on user perspectives and illuminated the salient role played by individual
choices. These choices include interactions within one’s social circles and the deliberate consumption
of specific content, both of which wield substantial influence over the extent to which individuals
are exposed to divergent ideological viewpoints. Consequently, comprehending the dynamics of
polarization necessitates a profound understanding of the intricate processes through which people
form their opinions and perspectives, rooted in the dual forces of social influence and social selection.
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A vast amount of literature on opinion dynamics tries to model the evolution of opinions mathemati-
cally and study how it affects human behavior (Bonabeau, 2002; Centola, 2018). Within the scope
of this study, our primary emphasis centers on the examination of opinion dynamics as manifested
within network structures. Among the well-recognized category of opinion dynamics models, a
prominent subset is constituted by averaging models applied to networks. These models character-
ize an individual’s opinion as a weighted aggregate of the opinions held by their neighbors in the
network, a concept that has been extensively elaborated upon in Friedkin (1986); DeGroot (1974);
Proskurnikov & Tempo (2017), and Abelson (1964).

In this paper, we seek to understand how an administrator of a social networking platform can
strategically modify the network’s topology while adhering to predefined budget constraints, with
the overarching objective of mitigating polarization. For the rest of this paper, we assume that the
underlying opinions evolve using one of the popular averaging models, Friedkin and Johnsen’s
opinion formulation model, which incorporates the initial opinions of individuals into the averaging
process. We aim to address the scenario outlined below.

Instance: Consider an undirected network denoted as G, characterized by V users (nodes) and E
edges. Each user maintains an immutable initial opinion. The evolution of these opinions is governed
by the Friedkin-Johnsen (FJ) opinion dynamics model. Within this framework, a budget denoted as k,
where k > 0, can be allocated either for distribution among the existing edges of G or for adding
new edges to the network.

Problem 1. How can the network administrator alter the network topology within the budget k to
minimize polarization?

Figure 1 shows the reduction in polarization using our proposed nonconvex relaxation on the classic
Karate Club Network. While expressed or external opinions are empirically quantifiable, a funda-
mental limitation of the FJ model is the near impossibility of having prior knowledge of the initial
opinions of all users. In many real-world scenarios, only a few users share their opinions on a
social media platform about a topic, while many may prefer not to share their opinions publicly. In
response to this challenge, we expand our research to address an unexplored problem setting, where
the observer or administrator has access to only a subset of users’ initial opinions. This is described
below.

Problem 2. Let s represent the vector of initial opinions of users defined by s =
[
sT1 sT2

]T
, where

s1 denotes the vector containing the known initial opinions of users, and s2 is the vector of the
unknown initial opinions. How can the administrator/observer minimize polarization by altering the
network topology when oblivious to s2?

Our Main Contributions:
• Global Optimality: We provide a general matrix result showing that every local minimum

is a global minimum for a general class of matrix functions, sTM−ks, with M ≻ 0, s ∈ Rn

and an integer k > 1, where polarization and multiperiod polarization represent specific
cases. [Theorem 1, Section 4.1]. We also extend this result to the presence of stubborn
actors [Lemma 1].

• Hardness: We show that the minimizing polarization under integral constraints is NP-Hard
[Lemma 5].

• Invex Relaxation for both known and partially known initial opinions : We provide
an invex (nonconvex) relaxation with guarantees of global minimum for minimizing polar-
ization and multiperiod polarization for known initial opinions. We use projected gradient
descent to solve this relaxation, notably surpassing existing state-of-the-art approaches
[Section 6]. We also provide an invex (nonconvex) formulation with similar theoretical
guarantees to minimize polarization when the administrator has access only to a partial set
of users’ initial opinions [Section 5].

• A Novel Framework: Our contribution centers on the introduction of a novel continuous
optimization framework for minimizing single and multiperiod polarization, as well as
polarization under stubborn actors. Instead of prescribing a particular method, we provide a
general framework that can be employed with various continuous optimization algorithms.

Organization: The paper is structured as follows: Section 2 reviews the Friedkin-Johnsen model
and the terminology pertinent to polarization. Section 3 discusses the prior related research. Section
4 is dedicated to a comprehensive theoretical examination of the objective function associated with
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Figure 1: Reduction in Polarization on Karate Club Network

polarization minimization. Section 5 provides nonconvex formulations designed for scenarios where
the administrator/observer has partial and complete access to users’ initial opinions. Finally, Section
6 presents empirical findings relevant to the problem under investigation.

Notation: The set of natural and real numbers is denoted by N and R, respectively. For a matrix
M , Mij is the entry in the ith row and jth column. The identity matrix is represented as I . The
vectorized form of a matrix M is denoted as vec(M). The sets encompassing positive definite (PD)
and positive semi-definite (PSD) matrices are respectively designated as Sn

++ and Sn
+. The Laplacian

matrix of the adjacency matrix for graph G is denoted as L and defined by the equation L = D −W ,
where D is a diagonal matrix of (weighted) degrees associated with each node and W is the weighted
adjacency matrix. It is known that the graph Laplacian is a positive semi-definite matrix, and the set
of Laplacian matrices L is a convex set. The algebraic connectivity of a given Laplacian matrix is
provided by its second smallest eigenvalue, λ2. We use Tr to denote the trace of the matrix. In the
context of a vector s, ∥s∥1 and ∥s∥2 correspond to the ℓ1 and ℓ2 norms, respectively. Furthermore,
the ℓ0 norm signifies the count of non-zero entries within the matrix or vector.

2 PRELIMINARIES

2.1 FRIEDKIN-JOHNSEN MODEL (FJ)

FJ is a well-regarded opinion dynamics framework that considers the inherent opinions of individuals
within a network (Friedkin, 1986). Within this model, we represent the immutable, initial opinions of
users/actors as s ∈ Rn and the expressed opinions as z ∈ Rn. Additionally, we use wij ≥ 0 to denote
the weight associated with edge (i, j) ∈ E. The fixed-point iteration at the time step t governing the
FJ opinion dynamics model is expressed as follows:

z
(t)
i =

si +
∑

j∈N(i) wijz
(t−1)
j∑

j∈N(i) wij + 1
. (1)

At each discrete time step, each actor within the network adopts an expressed opinion that is
proportionally influenced by the average of their own inherent opinion and the opinions held by
their network neighbors. It is well-established that the FJ dynamics exhibit convergence towards an
equilibrium set of opinions z∗ given by z∗ = (I + L)−1s (Bindel et al., 2015). FJ model has also
been studied in the presence of stubborn actors Xu et al. (2022). The fixed-point iteration governing
the dynamics of node i in this context is given as follows:
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z
(t)
i =

kisi +
∑

j∈N(i) wijz
(t−1)
j∑

j∈N(i) wij + ki
. (2)

In the equation above, the variable ki, ki ≥ 0, signifies the degree of stubbornness for a given node.
Through the iterative application of equation (2), the expressed opinion vector at equilibrium, denoted
as z∗, is given by (L+K)−1Ks, where K represents a diagonal matrix with ki as its diagonal entries.
A detailed discussion of the mathematical models of social influence is provided in the supplementary
section.

2.2 POLARIZATION UNDER FJ DYNAMICS

In this section, we formally define our problem and provide an array of definitions that are used in
the literature. In the following, the notations s̄ and z̄ represent mean-centered initial opinions and
expressed opinions, respectively. In the context of a graph G with associated initial opinions, s̄, the
expressed opinions at equilibrium are determined by the expression z̄ = (I + L)−1s̄

Definition 1 (Polarization). The polarization or controversy of an undirected network is defined as
P(z̄) = z̄T z̄ = s̄T (I + L)−2s̄ (Chen et al., 2018; Musco et al., 2018). Polarization formalizes how
close the given network is to consensus.
Definition 2 (Polarization-Disagreement Index). Polarization-Disagreement Index is defined as the
inner product of initial and expressed opinions and is expressed as sT (I +L)−1s (Chen et al., 2018).
Definition 3 (Polarization under stubbornness). Given an undirected network, G with initial opinions,
s, expressed opinions z, and the stubbornness matrix K denoting the degree of stubbornness, the
polarization with stubbornness is given by P(z) = sTK(L+K)−1K(L+K)−1Ks.

When K = I , this definition reduces to non-mean-centered polarization of expressed opinions (Xu
et al., 2022).
Definition 4 (Minimizing Polarization). When presented with a symmetric adjacency matrix A0

depicting a graph along with its initial opinions, denoted as s ∈ Rn, and operating under a budget
constraint k ∈ N, the primary aim of a network administrator is to determine a graph G with a
symmetric adjacency matrix A that minimizes polarization. This objective can be articulated as:

argmin
G

P(z)

subject to ∥ vec(A)− vec(A0)∥0 ≤ 2k
(3)

Definition 5 (Average Conflict Risk (ACR)). ACR, also referred to as expected conflict risk, is
defined by taking expectation over all initial opinions. Assuming that the opinions are sampled from
a uniform distribution, it evaluates to Tr((I + L)−2) (Chen et al., 2018).

3 PRIOR WORK

Numerous researchers across the scientific community have been actively engaged in the study
of polarization and its associated characteristics. Previous research on polarization minimization
can be broadly classified into two categories: one approach centers on diminishing polarization by
introducing perturbations to initial opinions, while the other attains polarization reduction through
modifications to the network structure. In this work, our primary focus lies in the domain of reducing
polarization by altering the network structure. For a broader review of other related research pertinent
to the first category, we refer readers to the supplementary section A. We first discuss the related work
pertinent to Problem 1. Musco et al. (2018) delved into the problem of determining an undirected
graph topology with a prescribed edge count to minimize polarization and disagreement. Their
work established the convexity of the network’s Polarization-Disagreement (PD) index with respect
to the Laplacian matrix L. Moreover, they provided proof of the existence of a graph topology
with O( n

ϵ2 ) edges, approximating the optimum within a factor of (1 + ϵ) through the utilization
of Spielman and Srivastava’s sparsification algorithm based on effective resistance (Spielman &
Srivastava, 2008). Chen et al. (2018) defined polarization as the sum of squares of expressed opinions
and proposed a measure called ACR (defined in 5) to minimize polarization in the presence of
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an unknown opinion vector. Chitra & Musco (2020) augmented the Friedkin-Johnsen (FJ) model
by establishing connections between users who share matching ideologies, aiming to minimize
disagreement among users. On similar lines, Gaitonde et al. (2020) showed that the entire graph
spectra of the Laplacian matrix are relevant rather than their extreme eigenvalues to maximize
repeated disagreement in a network. Bhalla et al. (2023) extended the FJ model and showed how
polarization increases via swaps of more agreeable opinionated edges for more disagreeable ones.
Recently, Rácz & Rigobon (2023) studied how an administrator or a centralized planner can alter
the network to reduce polarization. They show the nonconvexity of the polarization function and
bound its value using the Cheeger constant (Chung, 1997). Furthermore, they show that the value of
polarization is not monotonic by the addition of edges unless the initial opinions vector is chosen to
be the eigenvector corresponding to the second smallest eigenvalue of L. Rácz & Rigobon (2023)
explored the Fiedler difference vector approach (FD) and the coordinate descent approach (CD) as
mechanisms for polarization reduction and observed that FD effectively reduces polarization without
diminishing network homophily, which is defined as a tendency where similar individuals connect to
each other. In the CD approach, non-edges that yield the most significant polarization reduction are
iteratively added to the graph until the budget constraint is satisfied. We employ CD, FD, and ACR
(defined in 5) approaches as baselines for comparative evaluation against our proposed nonconvex
relaxations in Section 6. Since Problem 2 has never been dealt with before, no prior work is dedicated
to it. However, related research exists in the limiting case where none of the initial opinions are
observed, effectively reducing it to the problem of ACR (5) Chen et al. (2018).

4 THEORETICAL RESULTS

In this section, we study the global optimality of polarization. To that end, we show that it falls under
a special kind of nonconvex function, namely the invex function. Invex functions can be seen as a
generalization of convex functions. Hanson (1981) defined invexity as follows.
Definition 6. Let f(θ) be a function defined on a set C. Let η be a vector-valued function defined in
C × C such that the Frobenius inner product, ⟨η(θ1, θ2),∇f(θ2)⟩, is well defined ∀ θ1, θ2 ∈ C. Then
f(θ) is a η-invex function if f(θ1)− f(θ2) ≥ ⟨η(θ1, θ2),∇f(θ2)⟩, ∀ θ1, θ2 ∈ C.

A function is an invex function iff it attains global minima at every stationary point Ben-Israel &
Mond (1986). Next, we prove the invexity of a general class of functions. While this result can be
of independent interest, we restrict our attention to minimizing polarization and related problems.
Unless explicitly stated, all the formulations mentioned below work for both mean and non-mean-
centered vectors. By little abuse of notation, we represent η as a vector or matrix, depending on the
specific context, in order to enhance the clarity of our presentation when the implications of such a
representation are readily discernible.

Note: All the proofs are in the supplementary material.
Theorem 1. The class of matrix functions f(M) = sTM−ks, with M ≻ 0 and any integer k > 1
are η-invex for η(·,M) = M .
Corollary 1. As a consequence of Theorem 1, the polarization function, f(L) = sT (I + L)−2s, is
η-invex for η(·, L) = I + L.

The nonconvexity of the function sTM−2s for M ≻ 0 can be shown by restricting it to a line.

For example, plot of f(z) = sT
[
z 0.9
0.9 1

]−2

s with respect to z ∈ [1, 2] and s =

[
1
1

]
is visibly

nonconvex (the figure is provided in the supplementary material section C). Thus, sTM−2s is a
nonconvex but invex function. In the following lemma, we show that the polarization remains invex
even in the presence of stubborn actors.
Lemma 1. Let K represent the diagonal matrix of stubbornness coefficients associated with stubborn
actors in the network. The polarization function f(L) = sTK(L+K)−1K(L+K)−1Ks is η-invex
for η(·, L) = (L+K)

2 .
Lemma 2. For L ∈ L, the Average Conflict Risk, f(L) = Tr(I + L)−2, is convex.

The above result follows due to the fact that for any positive definite matrix A, Tr(A−r) for r > 0 is
convex due to the positivity of trace of products of positive definite matrices (proposition 10.6.17
from Bernstein (2009)).
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4.1 MULTIPERIOD POLARIZATION

So far, we have considered a single time period polarization. As an extension, it is natural to consider a
similar objective over a prolonged time instance. We consider a T -period polarization as an extension
to one-period polarization defined in (1). In the first time period, the expressed opinions z(T (1)) are
(I+L)−1s. These become the initial opinions for the next subsequent step, and the expressed options
at the second period become z(T (2)) = (I +L)−2s. The polarization of these opinions is then added
to the initial polarization. This process is repeated for T + 1 time steps, where T ∈ N ∪ {∞}. In a
multi-period setup, the objective is to minimize polarization across all time periods. By incorporating
this, we get the following framework:

min
L∈L

sT [(I + L)−2 + (I + L)−4 + (I + L)−6 + · · ·+ (I + L)−2T −2]s . (4)

Lemma 3. The multiperiod polarization, i.e., the objective function given in equation equation 4, is
η-invex for η(·, L) = I + L.

The following Lemma quantitatively characterizes the global minimum and helps us understand the
graph structures where the global minimum is attained for multiperiod polarization.
Lemma 4. The global minimum for multiperiod polarization is attained for complete graphs.

The theoretical results provided in Theorem 1, Corollary 1, Lemmas (1, 2 and 3) imply that every
local minimum is a global minimum for optimization problems such as ACR 5 and sTM−ks, M ≻ 0.
There exists polynomial time algorithms to solve ACR. However, the polarization function given in
equations 3 is not known to be convex (Rácz & Rigobon, 2023). Moreover, Lemma 5 shows that
minimizing polarization under integrality constraints is NP-Hard. This rules out the possibility of
having a polynomial time algorithm unless P = NP .
Lemma 5. Let G be an undirected graph with its associated graph Laplacian L. Let the budget k
denote the number of graph edits in terms of edges. For a specific choice of initial opinions vector,
identifying a graph Laplacian, L, nearest to the given graph Laplacian, L0 within a budget k and
having minimum adversarial polarization is NP-hard.

5 NONCONVEX RELAXATION FOR MINIMIZING POLARIZATION

While Theorem 1 and Lemma 3 establish that polarization and multiperiod polarization are invex
functions, they do not readily provide a framework to solve them. Next, we develop a nonconvex
relaxation framework for Problem 1 and 2 to minimize polarization. We first delve into a scenario
where the observer is limited to accessing only a subset of the users’ initial opinions within the
network (Problem 2). The vector of initial opinions of users, denoted as s =

[
sT1 sT2

]T
, is partitioned

into two components: s1, comprising the known initial opinions of users, and s2, representing the
initial opinions that remain concealed from the observer. We assume that s2 follows a distribution
characterized by a zero mean and an identity covariance matrix, such as the standard Gaussian or
uniform distributions. Formally, we take E(s2) = 0 and E(s2sT2 ) = I . Let us represent (I + L)−2

as
[
W11 W12

W12 W22

]
, with each Wij being a block matrix having appropriate dimensions. For the sake

of clarity, we omit the dimension details when they are evident from the context. Using the definition
of polarization, we obtain:

f(L) = sT (I + L)−2s =
[
sT1 sT2

] [W11 W12

W12 W22

] [
s1
s2

]
= sT1 W11s1 + sT1 W12s2 + sT2 W12s1 + sT2 W22s2

It is important to highlight that f(L) is a random variable owing to the presence of s2. Therefore, our
objective is to minimize the expected polarization. Taking the expectation on both sides leads to:

E(f(L)) = E(sT1 W11s1) + E(Tr(W22s2s
T
2 )) = sT1 W11s1 +Tr(W22)
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While a two-step approach involving the initial minimization of sT1 W11s1 followed by the mini-
mization of Tr(W22) might seem appealing, the budget constraint prohibits their decoupling. Our
subsequent result establishes that the expected polarization E(f(L)) is an invex function.

Theorem 2. Given a vector s ∈ Rn defined as s =
[
sT1 sT2

]T
, where s1 ∈ Rn−m and s2 ∈ Rm,

and assuming that s2 is selected from a distribution satisfying E(s2) = 0 and E(s2sT2 ) = I , it follows
that E(f(L)) is invex.

This result stems from the observation that the expected polarization can be expressed as a summation
of invex functions. To illustrate this, we rephrase the expected polarization as E(f(L)) = aT (I +

L)−2a +
∑m

i=1 b
T
i (I + L)−2bi, where a =

[
sT1 0

]T
and bi =

[
0 eTi

]T
for all i = {1, · · · ,m},

with ei ∈ Rm denoting the standard unit vector containing a 1 at its i-th entry. We propose the
following nonconvex relaxation for this scenario:

min
L

aT (I + L)−2a+

m∑
i=1

bTi (I + L)−2bi

subject to L ∈ L
∥ vec(L)− vec(L0)∥1 ≤ 4k .

(5)

It is worth noting that the proposed nonconvex (Invex) formulation framework provides a general-
ization of the established Average Conflict Risk (ACR) measure (5) for the purpose of polarization
minimization. Observe that we relax the nonconvex budget constraint ℓ0 to ℓ1 and express it in
terms of Laplacian rather than adjacency matrix (unlike stated in equation (3)). The budget con-
straint has been modified to 4k instead of 2k because it affects four entries of the Laplacian matrix
({(i, j), (j, i), (i, i), (j, j)}).

When all initial opinions are known (Problem 1), i.e., s = s1, equation 5 simplifies to:

min
L

sT (I + L)−2s

subject to L ∈ L
∥ vec(L)− vec(L0)∥1 ≤ 4k .

(6)

This is a result of
∑m

i=1 b
T
i (I + L)−2bi = 0 since bi = 0 (as s2 is a null vector). In this paper, we

aim to solve the equation 5 and equation 6. A practical limitation when solving such nonconvex
formulations is that the resulting Laplacian can become dense. Even for smaller budgets, we observed
that the solution tends to converge to a complete graph with smaller weights distributed across the
network. To address this, we further prune the solution obtained by using a thresholding parameter ρ
to discard smaller weights in L and set them to zero. Notice that after pruning the resultant matrix, L̂
need not be a Laplacian. We get the optimal Laplacian Lproj closest to L̂ by projecting the diagonal
entries: Lproj

ii = −
∑n

j=1,j ̸=i L̂ij ,∀i ∈ {1, · · · , n} (Sato, 2019). Only the diagonal entries need to
be updated after pruning. The nonconvex relaxations mentioned above can be readily extended to
address multiperiod polarization and polarization scenarios involving stubborn actors due to the invex
nature of the objective functions (Lemma 1 and 3). It is worth noting that any first-order algorithm
should be applicable to our framework provided in equations (5, 6) to attain global optimality. We
use the projected gradient descent (PGD) algorithm to solve the equations 5, 6. In the next section,
we empirically demonstrate that our relaxations lead to better minima with a few iterations of PGD.

6 EXPERIMENTAL RESULTS

6.1 FOR KNOWN INITIAL OPINIONS (PROBLEM 1)

Apart from the Coordinate Descent approach (CD) proposed by Rácz & Rigobon (2023), two other
approaches to minimize polarization are to minimize Tr((I+L)−2) (ACR defined at 5) and maximize
λ2(L) (from Lemma 5) (Ghosh & Boyd, 2006; Wang & Van Mieghem, 2010). The heuristic approach
to maximize λ2(L) is based on adding edges between nonadjacent vertices in the graph that have the
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largest absolute difference in the entries of Fiedler vector (Chung, 1997). In this section, we compare
the empirical performance of our nonconvex (invex) relaxation (equation 6) with the Coordinate
Descent approach (CD) proposed by Rácz & Rigobon (2023), ACR (Tr minimization) and Fiedler
Difference vector (FD) (Wang & Van Mieghem, 2010). We use the projected gradient descent method
(PGD) in CVX (Diamond & Boyd, 2016; Agrawal et al., 2018) to solve our proposed nonconvex
relaxation. We study the performance of our approach on real-world and synthetic networks. For
synthetic networks, we consider the stochastic block models. Further experimental results on networks
such as Zachary’s Karate Club, Sawmill Network, The US Senate Network, Polbooks, Preferential
Attachment (scale-free) graphs, and Erdös-Rényi are provided in the supplementary material.

Stochastic Block Model: The Stochastic Block Model (SBM) generates random graphs with inher-
ent community structure, emphasizing node groups. In our simulation, we create two communities,
each with 250 nodes. Inter-cluster and intra-cluster densities are 0.02 and 0.08, resulting in 500 nodes
and 6,359 edges in the network. We distribute initial opinions in two ways: (1) assigning "-1" to one
block and "+1" to the other, creating well-connected opinionated clusters (see Figure 2(a)), and (2)
uniformly distributing "+1" and "-1" opinions within each block (Figure 2(b)). Across both scenarios,
the invex relaxation method consistently outperforms the Coordinate Descent, Tr, and FD methods.
We use the thresholding parameter |ρ| = 0.0002, step size α = 0.5, and run PGD for 100 iterations.
In the first scenario, with distinctly separated opinionated clusters, the average number of edges using
our proposed nonconvex (invex) relaxation with thresholding parameter ρ is 7,942. In the second
scenario, with uniform opinion distribution, it is 7,616 (after thresholding).
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(a) Change in polarization with budget k in SBM
when an initial opinion of “-1” is assigned to one
community of nodes and an opinion “+1” to the other
community.
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(b) Change in polarization for uniformly distributed
opinions within each community in SBM.

Figure 2: Reduction in Polarization on Stochastic Block Model

Our empirical analysis shows that our proposed nonconvex relaxation consistently outperforms other
methods in reducing polarization. The Fiedler Difference (FD) approach primarily aims to reduce
polarization by increasing algebraic connectivity, as demonstrated in Lemma 5. While raising the
second smallest eigenvalue (λ2) may cause other eigenvalues to increase as L ∈ Sn

+, this increase
is insufficient for FD to achieve significant polarization reduction. In the second scenario of our
construction of SBM, the FD approach seeks to maximize λ2 by introducing additional edges within
the opinionated clusters, potentially inadvertently fostering the creation of echo chambers.

Twitter: The Twitter dataset, originally gathered for the analysis of the Delhi legislative assembly
elections debate by De et al. (2014) through hashtags such as #BJP, #AAP, #Congress, and #Polls2013,
comprises an undirected network involving 548 users with a total of 3638 interactions. Initial opinions
are derived from user interactions on Twitter employing sentiment analysis. Figure 3(a) illustrates the
polarization variation across different budgets (k = 1, 15, 20, 25, 30) using our nonconvex relaxation
(equation 6), CD, Trace minimization, and FD methodologies. The projected gradient descent method
for equation 6 is executed for a maximum of 130 iterations across all budgets, with a step size of
α = 0.5 and a thresholding parameter |ρ| = 0.0002. Notably, the reduction in polarization is most
pronounced when employing nonconvex relaxation (equation 6) compared to all other approaches.
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(a) Change in polarization using our proposed non-
convex relaxation, CD, Trace and FD on the Twitter
network.
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Figure 3: Reduction in Polarization on the Twitter network (Problem 1) and on SBM with partially
observable initial opinions (Problem 2)

6.2 FOR PARTIALLY OBSERVABLE INITIAL OPINIONS (PROBLEM 2)

In this section, we study the empirical performance of our proposed invex relaxation method, as
presented in equation 5, and the Average Conflict Risk (ACR) measure defined in 5. It’s worth noting
that equation 5 serves as a generalization of the ACR measure.

Stochastic Block Model: We generate an SBM model using the parameters as described in 6.1,
where the unknown initial opinions of users are drawn from a uniform distribution over all vectors in
{−1,+1}n. Figure 3(b) illustrates the polarization variation with the budget, considering scenarios
where the observer possesses access to 30% and 80% of users’ initial opinions. We experimented
on two partial observable percentages of initial opinion. It is evident that our proposed nonconvex
(invex) relaxation consistently outperforms the Average Conflict Risk (ACR) measure and is equal to
its value Tr(I + L)−2 only when the observer has no knowledge of any users’ opinions.

Interpretation in social context: Based on empirical observations, our optimization approaches
presented in equations equation 5 and equation 6 effectively minimize polarization by introducing
additional edges among users with polarized opinions. This aligns with findings from previous
research, including Chitra & Musco (2020); Kahneman (2011); Rácz & Rigobon (2023). Utilizing
continuous relaxation techniques as demonstrated in equation 5 and equation 6, we can identify
significant interactions within a social network, typically represented by edges with high weights
that play a pivotal role in the minimization of polarization. Armed with this insight, a network
administrator can offer link recommendations and promote exposure to diverse content among
network users. This strategic approach helps prevent the reinforcement of like-minded opinions,
ultimately contributing to the reduction of polarization within the network.

Conclusion and Future Directions: This paper addresses polarization mitigation by altering
network topology in two scenarios: when initial opinions are known and when the observer has partial
knowledge of the opinions. We introduce a novel nonconvex relaxation framework for known opinions
and demonstrate the projected gradient descent’s efficacy in polarization minimization. We extend this
to scenarios with incomplete knowledge of initial opinions, proposing a novel nonconvex formulation
that generalizes the ACR (trace minimization) approach. Continuous relaxation techniques, as shown
in equation 5 and equation 6, identify pivotal interactions that can be leveraged to provide link
recommendations and diversify content exposure to mitigate polarization.

Existing scalability studies primarily focus on the computation of the polarization, denoted as
sT (I + L)−2s (Xu et al., 2021). In the future, it might be of significant interest to explore the
applicability of analogous concepts, in conjunction with our findings, to minimize polarization for
larger network configurations.
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Supplementary Material: An Invex Relaxation Approach for
Minimizing Polarization from Fully and Partially Observed

Initial Opinions

A FURTHER RELATED WORK

In this section, we present additional references that pertain to research on polarization using FJ
dynamics. Guerra et al. (2013) identified a characteristic of polarized networks, namely, a lower
concentration of high-degree nodes in the vicinity of boundaries separating distinct communities.
Zhu et al. (2021) provided a scalable greedy algorithm for optimizing the polarization-disagreement
index for a given graph by adding a set of edges. They show that the index is monotonic with respect
to the addition of edges, and despite the function being non-submodular, they provided a bounded
approximation ratio. Chen & Rácz (2021) explored the amplification of disagreement and polarization
through perturbations in the initial opinions held by network nodes. Bhalla et al. (2021) scrutinized
the dependence of polarization on localized edge dynamics, revealing that the introduction of an edge
between closely affiliated like-minded users leads to an increase in polarization. Matakos et al. (2017)
provided greedy heuristics to minimize polarization by perturbing initial opinions.

B PROOFS OF THEOREMS AND LEMMAS

B.1 PROOF OF THEOREM 1

Proof. We first compute the gradient of the function. Let X = Mk. Then f(M) = sT (X)−1s. It is
known that:

∂X−1

∂mij
= −X−1 ∂X

∂mij
X−1 . (7)

By product rule,

∂Mk

∂mij
= J ijMk−1 +MJ ijMk−2 + · · ·+Mk−1J ij , (8)

where J ij is the matrix with 1 at (i, j)th entry and zero else where. By substituting eq equation 8 in
equation 7, we get:

∂sTX−1s

∂mij
= −sTM−kJ ijM−1s− sTM−(k−1)J ijM−2s− · · · − sTM−1J ijM−ks .

Considering M−l as A and M−q as B and using identity that sTAJ ijBs = (AT ssTBT )ij (eq (454)
from Petersen et al. (2008)) we get

∂sTX−1s

∂mij
= −(M−kssTM−1)ij − (M−(k−1)ssTM−2)ij − · · · − (M−1ssTM−k)ij .

This implies:

∂sTM−ks

∂M
= −M−kssTM−1 −M−(k−1)ssTM−2 − · · · −M−1ssTM−k . (9)

Equation equation 9 represents the gradient of the function sTM−ks with respect to M . Let M , N
∈ Sn

++. To show invexity for function a f , we need to show that there exists an η(N,M) such that

f(N)− f(M) ≥ ⟨η(N,M),∇f(M)⟩ .

In our case, this implies that we need to show the existence of η(N,M) such that

sTN−ks− sTM−ks ≥
〈
η(N,M),

∂sTM−ks

∂M

〉
.
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After substituting for the gradient, we get

sTN−ks− sTM−ks ≥ −
〈
η(N,M),M−kssTM−1

〉
− · · · −

〈
η(N,M),M−1ssTM−k

〉
.

With little algebraic manipulation, we can write

sTN−ks− sTM−ks ≥ −Tr(η(N,M)TM−kssTM−1)− · · · − Tr(η(N,M)TM−1ssTM−k) .

The right-hand side of the above expression can be expressed as

−
k−1∑
i=0

Tr(sTM−(i+1)η(N,M)TM−(k−i)s) .

By choosing η(N,M) = M , we get

sTN−ks− sTM−ks ≥ −
k−1∑
i=0

Tr(sTM−ks) ,

which implies

sTN−ks+

k−2∑
i=0

sTM−ks ≥ 0 .

The above result follows because of the positive definiteness of N and M . To complete the proof, we
also need to show that if ∇f(M) = 0, then f(N) ≥ f(M), ∀N , i.e., the stationary point is indeed
the global minimum of the function. By equating the gradient to zero, we get

−M−kssTM−1 = M−(k−1)ssTM−2 + · · ·+M−1ssTM−k .

Right multiplication with M gives us

−M−kssT = M−(k−1)ssTM−1 + · · ·+M−1ssTM−(k−1) ,

which implies

−Tr(M−kssT ) = Tr(M−(k−1)ssTM−1) + · · ·+Tr(M−1ssTM−(k−1)) .

It follows that
−Tr(sTM−ks) = Tr(sTM−ks) + · · ·+Tr(sTM−ks) ,

and thus
sTM−ks = 0 .

The above equation shows that this class of functions does not have any stationary point.

B.2 PROOF FOR LEMMA 1

Proof. Let x = sTK. Then f(L) = xT (L+K)−1K(L+K)−1x. The gradient of the function is
given by

∇f(L) = −(L+K)−1xxT (L+K)−1K(L+K)−1 − (L+K)−1K(L+K)−1xxT (L+K)−1 .

Let L1, L2 ∈ Sn
+. To show invexity for function f , we need to show that there exists an η(L1, L2)

such that
f(L1)− f(L2) ≥ ⟨η(L1, L2),∇f(L2)⟩ .

For our problem, this means that we need to show

xT (L1 +K)−1K(L1 +K)−1x− xT (L2 +K)−1K(L2 +K)−1x ≥
−
〈
η(L1, L2), (L2 +K)−1xxT (L2 +K)−1K(L2 +K)−1

〉
−
〈
η(L1, L2), (L2 +K)−1K(L2 +K)−1xxT (L2 +K)−1

〉
= −Tr(η(L1, L2)

T (L2 +K)−1xxT (L2 +K)−1K(L2 +K)−1)

− Tr(η(L1, L2)
T (L2 +K)−1K(L2 +K)−1xxT (L2 +K)−1)

= −Tr(xT (L2 +K)−1K(L2 +K)−1η(L1, L2)
T (L2 +K)−1x)

− Tr(xT (L2 +K)−1η(L1, L2)
T (L2 +K)−1K(L2 +K)−1x)
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for a particular choice of η(L1, L2). By choosing η(L1, L2) =
L2+K

2 , we get

xT (L1 +K)−1K(L1 +K)−1x− xT (L2 +K)−1K(L2 +K)−1x ≥
− Tr(xT (L2 +K)−1K(L2 +K)−1x) .

As (L1 +K)−1 is a symmetric positive definite matrix, the matrix obtained by left multiplying it
with a positive diagonal matrix is the same as right multiplying it with the same diagonal matrix and
is positive definite. Thus

xT (L1 +K)−1K(L1 +K)−1x = xT (L1 +K)−1K
1
2K

1
2 (L1 +K)−1x ≥ 0 .

By following similar computation as shown in Theorem 1, it can be observed that the function has no
stationary points and is η-invex for η(·, L) = (L+K)

2 .

B.3 PROOF FOR LEMMA 3

Proof. From Theorem 1 we know that the class of functions f(I + L) = sT (I + L)−ks are η-invex
for η(·, L) = I + L. Using the linearity of trace and partial derivative operators and following the
similar computation as shown in Theorem (1), we can conclude that

∑T
i=1 s

T (I + L)−2is is η-invex
for η(·, L) = I + L.

B.4 PROOF OF LEMMA 4

Proof. Recall that the Laplacian spectrum of the complete graph has an eigenvalue 0 with multiplicity
1 and an eigenvalue of n with multiplicity n − 1. When the opinions are mean-centered opinion
vectors s (such that sT 1 = 0), the expressed opinions are given by z = (I+L(Kn))

−1s = s
n+1 . The

polarization of expressed opinions in the first time period is zT z = ∥z∥2 = ∥s∥2

(n+1)2 . The T -period
polarization for the complete graph is

∥s∥2
(n+ 1)2

+
∥s∥2

(n+ 1)4
+ · · ·+ ∥s∥2

(n+ 1)2T
.

As each element in the above summation is the lower bound for the corresponding terms from the
repeated polarization function, the global minimum for (4) is attained for Kn.

B.5 PROOF FOR LEMMA 5

Proof. Consider the following two optimization problems:

argmin
L

max
s∈Rn,s⊥1,∥s∥2

2≤1
sT (I + L)−2s

subject to L ∈ L,
Lij = {−1, 0}, for i ̸= j

∥ vec(L)− vec(L0)∥0 ≤ 4k ,

(10)

and
max
L

λ2(L)

subject to L ∈ L,
Lij = {−1, 0}, for i ̸= j

∥ vec(L)− vec(L0)∥0 ≤ 4k .

(11)

Mosk-Aoyama (2008), showed that finding a set of edges within a specified budget to add to the graph
so that the algebraic connectivity of the augmented graph is maximized is NP-hard. By Courant-
Fischer theorem (Golub & Van Loan, 2013), we can observe that the inner maximization problem
in (10) takes the maximum value of 1

(1+λ2(L))2 , when s, the mean-centered initial opinion vector,
is the second smallest eigenvector of L. Thus for the outer minimization problem, we need an L
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obtained from L0 by adding k edges and with maximum λ2. The graph associated with the Laplacian
matrix returned by equation (10) is the same as the solution of equation (11). Thus, the computational
hardness of minimizing polarization given in equation (10) is at least that of maximizing algebraic
connectivity within the budget k.

B.6 PROOF OF THEOREM 2

Proof. In the following we represent (I + L)−2 as
[
W11 W12

W12 W22

]
, with each Wij being a block

matrix having appropriate dimensions. For the sake of clarity, we omit the dimension details when
they are evident from the context. For a given set of initial opinions vector s =

[
sT1 sT2

]T
, the

polarization function can be expressed as follows:

f(L) = sT (I + L)−2s =
[
sT1 sT2

] [W11 W12

W12 W22

] [
s1
s2

]
= sT1 W11s1 + sT1 W12s2 + sT2 W12s1 + sT2 W22s2

On taking expectation with respect to the vector of unknowns s2 we get

E(f(L)) = sT1 W11s1 +Tr(W22)

Observe that the above equation can be rewritten as

E(f(L)) = aT (I + L)−2a+

m∑
i=1

bTi (I + L)−2bi (12)

where a =
[
sT1 0

]T
and bi =

[
0 eTi

]
for all i = {1, · · · ,m}, with ei ∈ Rm denoting the standard

unit vector containing a 1 at its i-th entry. Notice that aT (I + L)−2a and
∑m

i=1 b
T
i (I + L)−2bi

are η-invex. Using the linearity of trace and partial derivative operators and following the similar
computation as shown in Theorem (1), we can conclude that E(f(L)) = aT (I+L)−2a+

∑m
i=1 b

T
i (I+

L)−2bi is η-invex for η(·, L) = I + L.

C EXAMPLE TO DEMONSTRATE THE NONCONVEXITY OF THE FUNCTION
sTM−2s

Here, we provide a visual depiction illustrating the nonconvex nature of the function sTM−2s,

M ∈ Sn
++. In Figure 4, we plot the function f(z) = sT

[
z 0.9
0.9 1

]−2

s with respect to z ∈ [1 2]

and s =

[
1
1

]
. Notice that this function is nonconvex.

D ADDITIONAL EMPIRICAL RESULTS FOR KNOWN INITIAL OPINIONS
(PROBLEM 1)

In this section, we provide additional empirical results on various networks for minimizing polar-
ization for known initial opinions (experiments are run using CVX solver (Diamond & Boyd, 2016;
Agrawal et al., 2018; Grant & Boyd, 2014; 2008)).

Multi-period polarization: Note that the Laplacian that minimizes single-period polarization also
minimizes multi-period polarization. In this section, we provide experimental details on single-period
polarization (equation 5 and equation 6) and the performance of various approaches to minimize
multi-period polarization equation 4 can directly be inferred from their performance in minimizing
single-period polarization.
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Figure 4: Nonconvexity of the function sTM−2s

Karate Club network: This network represents a social conflict between an instructor and an
administrator within a karate club, as documented by Zachary (1977). It is an undirected network
comprising 34 nodes and 78 edges, where each node corresponds to a club member, and edges
signify connections between members. Figure 1(a) illustrates the division of club members into
two opinionated clusters due to the conflict. We attribute an initial opinion of "+1" or "-1" to each
opinionated cluster.

In Figure 5, we present the polarization variations across different budget allocations for our invex
relaxation model equation 6, the Coordinate Descent (CD) method, Tr minimization, and the Fiedler
Difference (FD) approach. It is evident that the invex relaxation model consistently outperforms CD
and other methods in terms of polarization reduction. FD reduces polarization by adding a single
edge, resulting in the sparsest graph configuration. For our invex relaxation approach, by utilizing
the thresholding parameter |ρ| = 0.0002, with 100 iterations of PGD, and employing a step size of
α = 0.5, the average number of edges across different budgets amounts to 184.
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(a) Change in polarization with a budget on Karate
Club network. Our nonconvex relaxation consider-
ably reduces polarization compared to all other ap-
proaches.
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(b) Change in Polarization on Sawmill Strike Net-
work. Invex relaxation produces the best reduction in
polarization compared to CD.

Figure 5: Polarization on Karate and Sawmill Networks

Sawmill Strike network: This network represents employees working at a sawmill during a
period of strike. It is an undirected network comprising 24 nodes and 76 edges. The strike’s
prolonged duration was believed to be due to ineffective communication between two distinct groups
of employees within the network. The network was initially analyzed in Michael (1997) to identify
leaders during the strike. In this study, we leverage this network to identify potential edges that could
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minimize polarization. We attribute an initial opinion of "+1" to one group and "-1" to another group
of nodes.

Figure 5 (b) depicts the variation in polarization as the budget increases. Notably, our invex relaxation
approach consistently achieves the most substantial reduction in polarization across different budget
allocations when compared to the Coordinate Descent (CD) method. For our invex relaxation method,
employing |ρ| = 0.0002 and with a step size of α = 0.5, the average number of added edges amounts
to 190.

The US Senate: This network captures the co-sponsorship of bills among US senators during
session 114, as documented by Neal (2022). In this representation, each senator assumes the role of
either a sponsor or co-sponsor of a bill, and edges between senators signify their joint co-sponsorship
of a bill during that session. Recent studies, such as those by Hohmann et al. (2023) and Neal (2020),
have explored the relevance of such co-sponsorship networks in the context of polarization. This
particular network encompasses a total of 102 nodes, with 46 Democrats, 54 Republicans, and 2
Independents, interconnected by 1832 edges. We assign an initial opinion of “+1” to Democrats,
“−1” to Republicans, and “0” to Independents.

Figure 6 visually presents the polarization reduction achieved using our proposed invex relaxation
(equation 6), comparing it to the Coordinate Descent ((Rácz & Rigobon, 2023)), the Tr minimization,
and the Fiedler Difference (FD) approaches. In our computational experiments, we ran projected
gradient descent for 100 iterations, employing a step size of α = 0.2 and setting |ρ| = 0.0002.
The average number of edges added across all budgets amounts to 2436. The results, as depicted,
demonstrate that our invex relaxation (equation 6) significantly outperforms all existing approaches
in terms of minimizing polarization.

Polbooks: This network comprises books related to US politics and was compiled during the 2004
presidential election, as documented by Rossi & Ahmed (2015). Interactions within the network
reflect instances where customers on the Amazon platform frequently purchased these books together.
The books are categorized based on their political leanings, falling into three categories: Liberal,
Conservative, or Neutral. Specifically, there are a total of 43 books classified as Liberal, 49 as
Conservative, and 13 as Neutral. We assign an initial opinion of “ + 1” to Liberal, “ − 1” to
Conservative, and “0” to Neutral. Figure 6(a) illustrates the variation in polarization across different
budgets. The projected gradient descent for invex relaxation is executed for a maximum of 100
iterations, utilizing a step size of α = 0.2 and |ρ| = 0.0002.
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(a) Change in polarization with budget using invex
relaxation, CD, Tr and FD on Polbooks
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(b) Reduction in polarization with budget using invex
relaxation, CD, Tr, and FD approaches on the US
Senate Network.

Figure 6: Reduction in Polarization on Polbooks and US Senate networks

Preferential Attachment (Scale Free) Network: Preferential Attachment (PA) describes a mech-
anism of graph evolution where higher-degree nodes have a greater probability of receiving new
neighbors. It is designed to model the power law behavior (Faloutsos et al., 1999). For our analysis,
an incoming vertex connects to at most four other existing vertices in the graph. The resultant PA
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network has 200 nodes and 768 edges. Nodes in the network are assigned an initial opinion of “+1”
and “−1” uniformly at random.

Figure 7(a) visually illustrates the reduction in polarization across budgets ranging from k = 1 to
k = 15. Notably, our invex relaxation method (equation equation 6) consistently achieves the lowest
polarization compared to other approaches. In our computational experiments, we executed projected
gradient descent for up to 100 iterations, employing a step size of α = 0.8 and |ρ| = 0.0002. On
average, after applying the thresholding parameter ρ, the invex relaxation approach added 1, 410
edges across all budgets.
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(a) Reduction in polarization with varying budgets
using invex relaxation, CD, Tr, and FD approaches
on Preferential Attachment network.
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(b) Reduction in polarization with varying budgets
using invex relaxation, CD, Tr, and FD approaches
on Erdös-Rényi Graph.

Figure 7: Reduction in Polarization on Preferential Attachment and Erdös-Rényi graphs

Erdös-Rényi: In this model, each pair of vertices are connected independently with a probability p
(Erdos & Renyi, 1960). We construct an Erdös-Rényi graph with 100 vertices and p = 0.1. Nodes in
the network are assigned an initial opinion of “+1” and “−1” uniformly at random. The step size for
invex relaxation equation 6 is set to α = 0.8. The projected gradient descent on equation 6 is run
for 100 iterations with thresholding parameter ρ = 0.0002. The change in polarization is depicted in
Figure 7(b).

E ADDITIONAL EXPERIMENTATION FOR PARTIALLY OBSERVABLE INITIAL
OPINIONS:

Here, we present an additional baseline for comparison with the findings depicted in Figure 3(b).
We employ the Coordinate Descent (CD) approach ((Rácz & Rigobon, 2023)), which necessitates
complete knowledge of initial opinions. To facilitate our experimentation with CD, we estimate
unknown opinions using mean imputation, specifically setting s2 = mean(s1). The corresponding
outcome is illustrated in Figure 8. It is evident that CD outperforms Trace when it has access to larger
percentage of initial opinions.

F INFLUENCE MODELS

In this section, we will review some of the most commonly used social influence models. We assume a
real-valued, one-dimensional, continuous opinion space. In particular, we focus on linear continuous
opinion models such as the DeGroot (1974) and Friedkin (1986). For simplicity, we choose the
opinions to be scalar. Mathematically, they can also be a vector quantity representing an individual
stance over various social phenomena.

F.1 FRENCH-DEGROOT MODEL

French Jr (1956) proposed one of the first mathematical models for opinion formation and a group’s
collective behavior. Along these lines, DeGroot (1974) generalized this method and named it “iterative
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Figure 8: Change in polarization with budget for partially observable opinions of (30% and 80% of
known initial opinions) using invex relaxation, CD (with mean imputation, i.e., s2 = mean(s1)) and
Tr((I + L)−2)

opinion pooling”. This model describes a social learning process of opinion formation based on
observing other individuals in the network. It formalizes when and how quickly several actors can
reach a consensus of beliefs. In this model, the individuals’ opinion is modeled as the harmonic
average of the opinions of their neighbors in the network. Mathematically, the opinion update rule for
estimates is given by the following equation:

z
(t)
i =

1

deg(i)

∑
j∈N(i)

wijz
(t−1)
j . (13)

Here wij represents the weight of j’s opinion on i, and the opinion of i at time t is written as z(t)i .
The open neighborhood of vertex i in G is denoted by N(i). The DeGroot model always converges
to consensus when the graph is connected.

F.2 FRIEDKIN-JOHNSEN MODEL (FJ)

Friedkin and Johnsen generalized the DeGroot model by taking into account prejudice or initial
opinions of individuals in the network (Friedkin, 1986). Let s ∈ Rn represent the initial opinions of
actors in the network. In the opinion dynamics process, this vector is assumed to be immutable. Let
z ∈ Rn denote the expressed opinions. Let wij ≥ 0 denote the weight on edge (i, j) ∈ E. Fixed
point iteration of the FJ opinion dynamics model is then given as

z
(t)
i =

si +
∑

j∈N(i) wijz
(t−1)
j∑

j∈N(i) wij + 1
. (14)

At each time step, every actor adopts an expressed opinion that is proportional to the average of
its own initial opinion and the opinion of its neighbors. It is well known that the above-defined FJ
dynamics converge to an equilibrium set of opinions z∗ (Bindel et al., 2015) given by

z∗ = (I + L)−1s . (15)

In the above expression, I is an Identity matrix, and L is the combinatorial Laplacian of G given
by D −W . Note that (I + L) is a positive definite matrix, and hence the inverse exists. From the
equation (15), we can also observe that the expressed opinions are a contraction of initial opinions,
i.e., zi is a convex combination of initial opinions of all nodes, including node i in the network.
Consensus is not guaranteed in FJ dynamics. Bindel et al. (2015) used this to quantify the price for
not reaching the consensus. They show that updating zi as given in equation (14) is the same as
minimizing the following quadratic function:
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min
zi

(zi − si)
2 +

∑
j∈N(i)

wij(zi − zj)
2 .

The term (zi − si)
2 is the stress incurred at node i due to the difference between its initial and

expressed opinions (also known as internal conflict) and the second term,
∑

j∈N(i) wij(zi − zj)
2, as

the external conflict incurred due to the difference between the expressed opinions of the node i and
its neighbors.

F.3 IN-HOMOGENOUS STUBBORNNESS IN FJ MODEL

The stubbornness of actors/nodes in the network is defined as the degree of resilience to change from
their initial opinions. Recently Xu et al. (2022) studied the Friedkin-Johnsen model in the presence
of in-homogeneous stubbornness. The fixed point iteration of a node i on a graph G where every
node has a certain degree of stubbornness to their initial opinions is then given as

z
(t)
i =

kisi +
∑

j∈N(i) wijz
(t−1)
j∑

j∈N(i) wij + ki
. (16)

In the above equation, ki denotes the the degree of stubbornness and ki ≥ 0. By iterating the above
equation, the expressed opinion vector at equilibrium z∗ is given as

z∗ = (L+K)−1Ks , (17)

where K is a diagonal matrix with the degree of the stubbornness of each node in the network as its
diagonal entries. From (17), we see that if the initial opinions of all nodes are perturbed by a constant
c, the expressed opinions are changed to z∗ + c.

G INVEXITY OF POLARIZATION WITH PARTIALLY KNOWN OPINIONS

In this section, we revisit the results presented in Section 5, specifically focusing on Theorem 2,
but with less restrictive assumptions concerning the distribution of the unknown initial opinions s2.
While we maintain the assumption of zero mean for these opinions, we now allow for a more general
covariance matrix. Our objective is to establish the following result:

Theorem 3. Given a vector s ∈ Rn defined as s =
[
sT1 sT2

]T
, where s1 ∈ Rn−m and s2 ∈ Rm,

and assuming that s2 is selected from a distribution satisfying E(s2) = 0 and E(s2sT2 ) = Σ, it
follows that E(f(L)) is invex.

Proof. Borrowing the notations from the Proof of Theorem 2, we represent (I + L)−2 as[
W11 W12

W12 W22

]
, where each Wij is a block matrix with appropriate dimensions. For clarity, we

omit dimension details when evident. For a given initial opinions vector s =
[
sT1 sT2

]T
, the

polarization function is expressed as:

f(L) = sT (I + L)−2s =
[
sT1 sT2

] [W11 W12

W12 W22

] [
s1
s2

]
= sT1 W11s1 + sT1 W12s2 + sT2 W12s1 + sT2 W22s2

Taking the expectation with respect to the vector of unknowns s2, we obtain:
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E(f(L)) = sT1 W11s1 + E(sT2 W22s2) (18)

= sT1 W11s1 + E(Tr(W22s2s
T
2 )) (19)

= sT1 W11s1 +Tr(W22E(s2sT2 )) (20)

= sT1 W11s1 +Tr(W22Σ), (21)

where equation equation 20 follows due to the linearity of the trace function.

Since covariance matrix Σ is a positive semidefinite matrix, it has a unique square root, i.e., Σ = BBT

for a symmetric square matrix B. Using this property along with the cyclicity property of trace, we
rewrite equation 21 as below:

E(f(L)) = sT1 W11s1 +Tr(BW22B) (22)

If we represent B = [b1 b2 · · · bm] for vectors bi ∈ Rm,∀i = {1, · · · ,m}, then equation
equation 22 can be expressed as:

E(f(L)) = sT1 W11s1 +

m∑
i=1

bTi W22bi, (23)

which can be further rewritten as

E(f(L)) = aT (I + L)−2a+

m∑
i=1

b̄Ti (I + L)−2b̄i, (24)

where a =
[
sT1 0

]T
and b̄i =

[
0 bTi

]T
for all i = {1, · · · ,m}. Recall that aT (I + L)−2a

and
∑m

i=1 b̄
T
i (I + L)−2b̄i are η-invex. Using the linearity of trace and partial derivative operators

and following the similar computation as shown in Theorem (1), we can conclude that E(f(L)) =
aT (I + L)−2a+

∑m
i=1 b̄

T
i (I + L)−2b̄i is η-invex for η(·, L) = I + L.
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