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ABSTRACT

Spatial grounding is crucial for referring image segmentation (RIS), where the
goal of the task is to localize an object described by language. Current founda-
tional vision-language models (VLMs), such as CLIP, excel at aligning images
and text but struggle with understanding spatial relationships. Within the lan-
guage stream, most existing methods often focus on the primary noun phrase
when extracting local text features, undermining contextual tokens. Within the
vision stream, CLIP generates similar features for images with different spatial
layouts, resulting in limited sensitivity to spatial structure. To address these lim-
itations, we propose COPATCH, a zero-shot RIS framework that leverages inter-
nal model components to enhance spatial representations in both text and image
modalities. For language, COPATCH constructs hybrid text features by incorporat-
ing context tokens carrying spatial cues. For vision, it extracts patch-level image
features using our novel path discovered from intermediate layers, where spatial
structure is better preserved. These enhanced features are fused into a clustered
image–text similarity map, COMAP, enabling precise mask selection. As a result,
COPATCH significantly improves spatial grounding in zero-shot RIS across Ref-
COCO, RefCOCO+, RefCOCOg, and PhraseCut (+ 2–7 mIoU) without requiring
any additional training. Our findings underscore the importance of recovering
and leveraging the untapped spatial knowledge inherently embedded in VLMs,
thereby paving the way for opportunities in zero-shot RIS.

1 INTRODUCTION

Understanding spatial concepts is a fundamental cognitive ability that enables humans to interact
with complex environments for real-life tasks (Wolbers & Hegarty, 2010). While humans naturally
acquire spatial grounding ability (Wolbers & Hegarty, 2010; Piaget, 1952; Newcombe & Hutten-
locher, 2000), current vision-language models (VLMs) still face significant challenges in this area.
In particular, CLIP (Radford et al., 2021), one of the most widely used pretrained foundational
VLMs, shows limited ability to perform even basic spatial or positional understanding (Tong et al.,
2024; Tang et al., 2023; Peng et al., 2024; Kamath et al., 2023; Du et al., 2024; Chatterjee et al.,
2024; Huang et al., 2023). This limitation is especially critical in real-world applications that rely
heavily on fine-grained spatial grounding, such as robotic object manipulation (Billard & Kragic,
2019; Jang et al., 2006) and autonomous driving (Chen et al., 2024; Kim et al., 2024).

A particularly demanding testbed for spatial grounding is zero-shot referring image segmentation
(RIS). In this task, the model needs to accurately segment the object referred by a natural language
expression, without any task-specific training. This requires a pretrained CLIP to comprehend both
the semantic meaning and the spatial location of the referred object (Subramanian et al., 2022;
Yu et al., 2023; Suo et al., 2023; Wang et al., 2025; Liu & Li, 2025; Ni et al., 2023; Han et al.,
2024; Lüddecke & Ecker, 2022). The challenge becomes even more significant when multiple
similar objects appear in different locations (Nagaraja et al., 2016; Mao et al., 2016; Wu et al., 2020)
(Figure 1). Although the CLIP-based methods have made significant progress in aligning visual and
textual semantics (An et al., 2025a), they continue to struggle with precise spatial grounding.
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Figure 1: Limitations of existing zero-shot RIS approaches. Prior works lack in (a) incorporating
contexts containing important cues for local-level text feature extraction, (b) filtering out top masks
that may contain overlapping contents, and (c) spatially grounding all the target objects.

More specifically, existing zero-shot RIS approaches fail to encode spatial information via original
feature extraction pathways for both texts and images. On the text side, their focus is on the primary
noun phrase when extracting local-level text features. However, this could leave out important cues,
namely, context tokens, that may appear after the primary noun chunk. This often leads to identical
mask outputs for semantically different expressions, as shown in Figure 1a. On the image side, pre-
vious methods directly use the original CLIP image features, discarding spatial layout information
maintained until the final layer. As a result, masked images with similar, overlapping semantics are
selected in the top candidate masks (Figure 1b), reducing the reliability of the final mask selection
process. These limitations underscore the need to leverage untapped model components to enhance
zero-shot RIS ability for CLIP.

In this work, we present COPATCH, a training-free framework that unlocks the underexplored spatial
understanding ability of CLIP for RIS. Our approach has two main components: First, we construct
hybrid text features that incorporate context tokens carrying useful spatial cues. This textual guid-
ance enables the model to capture subtle spatial distinctions of the same object names in referring
expressions. Second, we devise an expressive patch-level spatial map through a newly identified
pathway in CLIP’s visual encoder. This is motivated by our observation that the intermediate layers
of the visual encoder can better preserve spatial information than the last layer. By combining these
two sources, we generate a context-aware spatial map, CoMap, which reranks top candidate masks
with greater spatial precision.

The novelty of COPATCH lies in its ability to enhance both text and image modalities without any
additional training. Unlike gradient-based (Selvaraju et al., 2016) (Figure 1c) or attention-based (Li
et al., 2023; Bousselham et al., 2024) localization methods, our approach is computationally efficient
while offering stronger zero-shot spatial grounding. This shows that precise zero-shot segmentation
can be achieved not by redesigning models or costly fine-tuning, but by strategically leveraging the
underused capacities already present in pretrained foundational models.

To summarize, our contributions are as follows: 1) Novel pathway for informative spatial map
generation. We discover a new computation-efficient pathway in CLIP’s visual encoder. This en-
ables the extraction of a context-aware spatial map, CoMap, with a single forward pass without
recomputations. 2) Effective mask scoring strategy. We propose a novel scoring framework that
leverages CoMap to effectively rerank top candidate masks, ensuring that the most semantically
aligned, non-overlapping masks are retained. This significantly improves the reliability of the final
mask selection process. 3) SoTA zero-shot RIS performances. Our proposed COPATCH achieves
mIoU scores of 55.62, 55.38, and 54.08, in the RefCOCO (Nagaraja et al., 2016), RefCOCO+ (Na-
garaja et al., 2016), and RefCOCOg (Mao et al., 2016) test sets, outperforming the current SoTA (Liu
& Li, 2025) by +4.03p, +2.01p, and +4.95p. We hope our work paves the future work in proposing
various zero-shot RIS methods by extracting enhanced inherent spatial knowledge from VLMs.

2 RELATED WORKS

Referring Image Segmentation. Referring Image Segmentation (RIS) aims to segment image re-
gions described by text expressions. Early supervised methods rely on mask annotations to learn
dense cross-modal correspondences. LAVT (Yang et al., 2022) introduces a language-aware vi-
sion transformer that employs early fusion and stacked cross-modal attention for feature refinement.
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CRIS (Wang et al., 2022b) adds a CLIP-driven decoder trained with a contrastive loss to enhance
text–pixel alignment. RISCLIP (Kim et al., 2023b) adapts CLIP features through parameter-efficient
fusion layers. ETRIS (Xu et al., 2023) inserts lightweight adapter modules between frozen CLIP en-
coders, achieving competitive accuracy with few additional parameters. Prompt-Driven RIS (Shang
et al., 2024) injects instance-aware prompts into CLIP and refines masks using SAM (Kirillov et al.,
2023). UniNeXt (Lin et al., 2023) aims for unification, integrating RIS with other vision tasks using
shared transformer heads.

To mitigate the high cost of pixel-level annotations, weakly-supervised methods emerged, relying
only on image-text pairs. Techniques include enforcing text-region consistency (Strudel et al., 2022).
Moreover, the prior approaches maintain intra-chunk semantic coherence (Lee et al., 2023a), connect
regions to linguistic cues via shatter-and-gather mechanisms (Kim et al., 2023a), and mine text-
region interactions (Liu et al., 2023). Pseudo-supervised approaches, such as Pseudo-RIS (Yu et al.,
2024), further bridge the gap by leveraging foundation models to generate high-quality pseudo-
masks for training, eliminating the need for manually generating ground-truth masks.

Zero-shot Referring Image Segmentation. Recent zero-shot RIS methods leverage pretrained
vision-language models (VLMs) to avoid costly pixel-wise annotations and training with the follow-
ing standard pipeline: 1) generating candidate masks using a pretrained segmentation model (Kir-
illov et al., 2023; Cheng et al., 2022; Liang et al., 2023; Wang et al., 2022a), 2) computing a sim-
ilarity score between each masked image and the referring expression, and 3) selecting the mask
with the highest score as output. To improve zero-shot mask scoring (the second stage), various
methods have been proposed: ReCLIP (Subramanian et al., 2022) uses a heuristic spatial relation
resolver to score the isolated mask proposals by calculating the probability for each noun chunk
node. CLIPSeg (Lüddecke & Ecker, 2022) segments the image using a set of prompts at inference
time. Several fully training-free comparison baseline methods include: a) Region Token (Li et al.,
2022a) method calculates the cosine similarity between spatial feature per pixel and text embeddings
for extracting a final mask (Suo et al., 2023). b) CLIPSurgery (Li et al., 2023) and c) Cropping
use the average activation score (Suo et al., 2023) and cosine similarity between cropped image
features and text features (Yu et al., 2023) for scoring masks. d) Global-Local uses the cosine sim-
ilarity between global-local image features and text features (Yu et al., 2023). e) TAS augments
the mask scores using features of negative texts generated by an external captioner, BLIP-2. f) Hy-
bridGL (Liu & Li, 2025) proposes a new image/text feature extraction strategy by fusing global
image features into local image features (G2L) and using the cosine similarity between the hybrid
G2L image and global-local text features.

Our method aligns more similarly to several recent zero-shot RIS methods that use a spatial map
as a guide for the mask scoring step. For instance, Ref-Diff (Ni et al., 2023) uses a diffusion
model to generate their own spatial map and uses a weighted sum of images multiplied by the
positional bias matrix and mask proposals. CaR (Sun et al., 2024) uses Grad-CAM as the spatial
map to generate mask proposals and filters the masks using similarity between each query (that may
contain irrelevant texts) and masked images. IteRPrimE (Wang et al., 2025) uses an interpolated
Grad-CAM heatmap generated using the primary word to guide the model for the candidate mask
selection. HybridGL (Liu & Li, 2025) uses pretrained GEM (Bousselham et al., 2024) as the spatial
map and reranks the initial mask scores with their proposed spatial relation and coherence guidance.
Our COPATCH is distinguished from HybridGL because it uses different spatial relation guidance
using our proposed spatial map, but incorporates their spatial coherence method to boost the final
performance (see Method and Ablation Study in Sections 3.2 and 4.3).

3 COPATCH: CONTEXT TOKEN-PATCH LEVEL EMBEDDING SYNERGY

Our proposed framework, COPATCH, is designed to recover CLIP’s latent spatial grounding ability
by jointly enhancing text and image representations (Figure 2). This framework has two essential
components: 1) Hybrid text features with context tokens, which preserve spatial cues in referring
expressions (Section 3.1), and 2) context-aware spatial map, CoMap, generated by our enhanced
text and spatial-aware image features (Section 3.2). Unlike prior zero-shot RIS methods that rely
on minimal noun-phrase anchors or coarse spatial grounding signals (e.g., GradCAM in Figure 1c),
our design utilizes inherently embedded contextual tokens and spatial information from intermediate
layers to enable richer spatial grounding at a lower cost.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Clustered Image-Text 
Similarity Map

Vi
su
al

En
co
de
r

(𝑙
!"

la
ye

r)

Pr
oj

ec
tio

n

La
ye

rN
or

m

𝓔["#$]
& ∈ ℝ',)∗

𝓔*& ∈ ℝ*×*,)
∗

Pr
oj

ec
tio

n

Hybrid Text Features
a bush of plant

behind the right blonde man

Mask 
Generator

Te
xt

En
co
de
r

La
ye

rN
or

m

Sp
at

ia
l G

ui
de

r

Image-Text Similarity

a bush of plant. blonde man
𝑬#$%&

𝑬'(&

𝑁, +𝑁-

Referring Text

…𝑴)*%+!(,(-

𝑴'$,!(-

0.50

0.45

0.42

0.39

Top Candidate
Mask Selection

Figure 2: The overall design of our COPATCH framework. Our context-aware spatial map,
CoMap, (i.e., clustered image-text similarity map) is generated using: 1) Patch-level image fea-
tures extracted from the l-th layer of the visual encoder. 2) Hybrid text features extracted with the
combination of the global sentence and local primary noun and context token features. The spatial
map is then used to select better top mask candidates, enabling precise final mask selection.

3.1 CONTEXT TOKEN (CT) EXTRACTION FOR REFINED HYBRID TEXT FEATURES

Motivation. Previous studies have demonstrated the effectiveness of hybrid text features that com-
bine global and local-level features. Herein, the local text feature encodes only the primary noun
phrase. Specifically, it is commonly extracted as the primary noun phrase (Yu et al., 2023; Liu &
Li, 2025) or chunk (Wang et al., 2025). However, this could leave out important spatial cues that
might appear after the selected noun phrase (e.g., “woman smiling” in “a bush of plant behind a mid-
dle woman smiling” in Figure 1a). Without appending contextual cues, different expressions may
collapse to the same mask, limiting spatial disambiguation. Here, we hypothesize that augmenting
context information when generating local-level features could improve spatial grounding.

Method. We construct hybrid text features that fuse both global and context-aware local repre-
sentations. Given the referring expression t, we first extract global-level text features by feed-
forwarding the entire text input into the text encoder (ϕT ), resulting in ESen(= ϕT (t)). For local
features, we extract two parts: primary noun phrase (NO) and the context token (NC) (implementa-
tion details in Appendix B.1). Then, these two chunks are concatenated at an input level and encoded
jointly, generating ENoun(= ϕT ([NO ∣NC])). Lastly, we merge the global-level and local-level text
features by addition per hidden dimension (EConText = γESen + (1 − γ)ENoun ∈ Rd). Our final hy-
brid text feature is then used for generating our context-aware spatial map (similar attention-level
merging in Appendix C.8). Unlike previous hybrid feature approaches that restrict local features to
a single noun phrase, our formulation guides the model with better spatial cues from the contextual
tokens for localizing target objects. This yields a more discriminative textual representation, serving
as the foundation for our context-aware spatial map introduced in the next subsection.

3.2 CONTEXT-AWARE SPATIAL MAP FOR TOP CANDIDATE (TC) MASK SELECTION

Motivation. Although CLIP is often described as spatially blind (Tong et al., 2024; Tang et al.,
2023; Kamath et al., 2023; Du et al., 2024; Yuksekgonul et al., 2023; Yu et al., 2023), we claim that
this perception largely stems from their use of the original image extraction pathway. In CLIP, the
final image feature is extracted as a single global vector at its final layer for image-text alignment,
rendering the model inherently spatially agnostic. Our analysis reveals that its intermediate layers
retain valuable, discriminative spatial information. Figure 3 illustrates that the cosine similarity
between position-shifted images decreases with increasing layer depth, rising steeply at the final
layer (unlike image-only feature extractor, DINO (Zhang et al., 2023; Tong et al., 2024)). This
observation motivates us to explicitly leverage intermediate patch embeddings, rather than using
final-layer image features, for constructing our own spatial map.

Method – Stage 1: Context-Aware Spatial Map Generation. To better capture spatial cues, we
compute image–text similarity at the patch level. Given the image v, we extract patch-level image
embeddings using the l-th exit layer of the visual encoder (ϕl

V ). At the l-th layer, we forward the
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patch-level image embeddings, E lp ∈ Rp×p×d∗ into the post layer norm (LN). These embeddings
are normalized and projected into the joint embedding space using the pretrained projection layer,
resulting in the following patch-level image features: El

p = LN(E lp) ⋅Wd∗→d ∈ Rp×p×d.
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Figure 3: Cosine similarity trend across layers
for image pairs containing objects at different
locations. An overall decreasing trend is observed
with a high peak (∼1.0) at the last layer (indicated
by ⋆) for CLIP.

We then compute the patch-level similarity
map as follows: M̃l = (M̃l

ij)1≤i,j≤p ∈ R
p×p,

where M̃l
ij = cos(El

p[i, j],EConText),∀i, j ∈

{1, ..., p}. This map highlights how strongly
each image patch aligns with the referring
expression, offering a spatially-enhanced al-
ternative to the original CLIP’s image features.
Based on a property of cosine similarity, we
correct an inversion artifact (see Appendix B.2)
previously noted in Li et al. (2023) that
appears in M̃l. We negate the patch embed-
dings before normalization as follows: Ml

ij =

cos(Ẽl
p[i, j],E

⊺
ConText),where Ẽl

p[i, j] =

LN(−E lp[i, j]) ⋅Wd∗→d. Unlike prior methods
that rely solely on CLIP’s global representation,
this step directly restores spatial sensitivity
from intermediate layers.

Algorithm 1 Spatial Map Clustering

Require: Spatial mapM ∈ Rp×p
1: B = (Bij), where ∀i, j: Bij ← [Mij > δ]
2: C ← 0p×p, l ← 0
3: for each patch coordinate k in B do
4: if B[k] = 1 and C[k] = 0 then
5: l ← l + 1
6: Q← new Queue()
7: Q.push(k), C[k] ← l
8: while Q is not empty do
9: p← Q.pop()

10: for each neighbor n of p do
11: if n is valid and B[n] = 1 and
C[n] = 0 then

12: Q.push(n), C[n] ← l
13: end if
14: end for
15: end while
16: end if
17: end for
18: return Interpolated C

Figure 4: Clustering algorithm for CoMap gen-
eration. Clusters of the spatial map are formed by
threshold-exceeding adjacent patches and interpo-
lated into the final spatial map, CoMap (or C).

Method – Stage 2: Mask Selection via Clus-
tered Context-Aware Spatial Map (CoMap).
We present a framework to select the final
mask out of mask candidates (M ’s) generated
from pretrained segmentation models, utiliz-
ingMl. To convert the patch-level activations
into coherent spatial cues, we cluster adjacent
patches with high similarity (Figure 4). Adja-
cent patches with high similarity form the same
clusters, which are then interpolated into the fi-
nal context-aware spatial map, CoMap.

The map is used to rerank the top candidate
masks (MSorted in Figure 2) selected based
on the original image-text similarity: Sm =

cos(Em
Img,E

⊺
ConText) ∈ R,∀m = 1, ...,M (M : #

of predicted masks per sample). Specifically,
we sort candidate masks (MClustered in Figure 2)
based on their degree of overlap with all gener-
ated clusters from CoMap. Then, MClustered is
used to filter out MSorted by 1) leaving the first
candidate mask from MSorted and 2) reranking
the top-(k − 1) candidate masks from MSorted
based on the overlap with MClustered. Among
these top-k candidate masks, the final mask is
selected to be compared with the ground-truth
mask (top-k performance is also reported to validate the top-k candidate masks). The selection is
based on the similarity between our hybrid text features and negative text features (i.e., features
of primary noun(s) that come after the positional relation) if there is an explicit spatial cue (e.g.,
‘behind’) using the spatial guider (i.e., Spatial Coherence or SC from Liu & Li (2025)).

Our approach challenges the prevailing assumption that CLIP is spatially blind by unlocking la-
tent spatial knowledge from its intermediate representations. In contrast to prior methods that rely
on computationally intensive gradient techniques or attention maps, our approach directly extracts
spatially-aware features using our CoMap. This training-free extraction without recomputation is
not only more efficient but also more faithful to the model’s inherent spatial understanding.
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Pretrained RefCOCOg RefCOCO RefCOCO+
Models val (U) test (U) val (G) val testA testB val testA testB

Zero-shot RIS methods (CLIP ViT-B/32)
Region Token (Suo et al., 2023; Li et al., 2022a) - 16.33 16.88 17.31 17.06 18.02 16.28 18.83 20.31 17.78
CLIPSurgery (Li et al., 2023) - 20.44 21.80 21.23 18.04 14.34 21.28 18.39 14.34 22.98
Cropping (Yu et al., 2023) FreeSOLO 31.88 30.94 31.06 24.83 22.58 25.72 26.33 24.06 26.46
Global-Local (Yu et al., 2023) FreeSOLO 33.52 33.67 33.61 26.20 24.94 26.56 27.80 25.64 27.84
Global-Local† FreeSOLO 32.23 33.11 31.80 23.90 21.74 25.85 24.18 21.97 26.45
Global-Local (Yu et al., 2023; Suo et al., 2023) SAM 42.02 42.02 42.67 32.93 34.93 30.09 38.37 42.05 32.65
HybridGL† (Liu & Li, 2025) SAM 44.52 44.93 44.52 38.26 39.43 37.91 36.04 38.65 32.07
TAS (Suo et al., 2023) SAM, BLIP-2 46.62 46.80 48.05 39.84 41.08 46.24 43.63 49.13 36.54
COPATCH (Top-1) Mask2Former 52.24 52.15 51.69 46.76 52.09 40.18 44.07 50.66 35.86
COPATCH (Top-3) Mask2Former 68.52 68.19 68.73 62.25 66.20 59.51 65.64 69.71 61.40
Mask2Former Upper Bound† - 76.85 77.56 76.85 79.73 81.35 76.49 79.75 81.35 76.57

Zero-shot RIS methods (CLIP ViT-B/16)
CaR (Sun et al., 2024) SAM 36.67 36.57 36.63 33.57 35.36 30.51 34.22 36.03 31.02
Ref-Diff (Ni et al., 2023) SAM, SD 44.02 44.51 44.26 37.21 38.40 37.19 37.29 40.51 33.01
HybridGL (Ni et al., 2023) SAM 51.25 51.59 - 49.48 53.37 45.19 43.40 49.13 37.17
COPATCH (Top-1) Mask2Former 54.42 55.62 54.71 50.05 55.38 43.01 46.83 54.08 37.67
COPATCH (Top-3) Mask2Former 71.21 72.29 72.11 65.38 67.77 62.45 67.41 69.86 63.83

Zero-shot RIS methods (DFN ViT-H/14)
COPATCH (Top-1) Mask2Former 56.23 55.88 55.68 50.91 56.59 44.79 47.05 54.12 38.91
COPATCH (Top-3) Mask2Former 74.23 74.90 75.04 68.33 72.00 65.55 71.26 74.22 68.04

Weakly/Pseudo-supervised RIS methods
CHUNK (ALBEF) (Lee et al., 2023a) - 32.90 - - 31.10 32.30 30.10 31.30 32.10 30.10
TSEG (ViT-S/16 & BERT) (Strudel et al., 2022) - 23.41 - - 25.95 - - 22.62 - -
PPT (CLIP ViT-B/16) (Dai & Yang, 2024) SAM 42.97 - - 46.76 45.33 46.28 45.34 45.84 44.77
Pseudo-RIS (ResNet50) (Yu et al., 2024) SAM, CoCa 45.99 46.67 46.80 41.05 48.19 33.48 44.33 51.42 35.08

Table 1: Comparison of mIoU performances across zero-shot and weakly/pseudo-supervised
RIS methods on RefCOCOg, RefCOCO, and RefCOCO+ datasets. We attain the overall best
performances for CLIP (ViT-B/32 and ViT-B/16) and DFN (ViT-H/14), outperforming the SoTA,
TAS (Suo et al., 2023), and HybridGL (Liu & Li, 2025). † stands for the reproduced results.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Train Dataset All Unseen

Zero-shot RIS methods
Global-Local (Yu et al., 2023) ✗ 23.64 22.98
Global-Local† ✗ 22.43 21.54
TAS (Suo et al., 2023) ✗ 25.64 24.66
Ref-Diff (Ni et al., 2023) ✗ 29.42 -
IteRPrimE (Wang et al., 2025) ✗ 38.10 37.90
HybridGL (Liu & Li, 2025) ✗ 38.39 -
HybridGL† ✗ 37.60 37.91
COPATCH (Top-1) ✗ 38.53 38.31
COPATCH (Top-3) ✗ 45.36 45.14

Supervised RIS methods

CRIS (Wang et al., 2022b)
RefCOCO 15.53 13.75

RefCOCO+ 16.30 14.62
RefCOCOg 16.24 13.88

LAVT (Yang et al., 2022)
RefCOCO 16.68 14.43

RefCOCO+ 16.64 13.49
RefCOCOg 16.05 13.48

Pseudo-RIS (Yu et al., 2024) RefCOCO+ 28.68 29.14
PhraseCut 32.75 33.52

Table 2: Comparison of oIoU performances
across zero-shot and supervised RIS meth-
ods on PhraseCut dataset. COPATCH (CLIP
ViT-B/16) surpasses all the existing methods, in-
cluding Pseudo-RIS (Yu et al., 2024) trained on
PhraseCut datasets.

The details on the datasets and evaluation met-
rics are in Appendix A. For implementation,
we use CLIP (ViT-B/32 and ViT-B/16) (Rad-
ford et al., 2021) as a model backbone to en-
sure a fair comparison with previous zero-shot
RIS methods, as well as DFN (ViT-H/14) (Fang
et al., 2023) that shows a better spatial ground-
ing capability among CLIP variations (Tong
et al., 2024). Before the final evaluation, we
perform a hyperparameter search to find the op-
timal exit layer (l) of the visual encoder, the ini-
tial threshold (δ), and the proportion of spatial
coherence (α) (Section 3.2). This is conducted
using only a 10% of the RefCOCOg val set, and
we use fixed l, δ, and α for all evaluations (l:
10, 8, and 22, δ: 0.5, 0.3, 0.5, and α: 0.5, 0.7,
and 0.5 for COPATCH (CLIP ViT-B/32, CLIP
ViT-B/16, and DFN ViT-H/14).

4.2 MAIN RESULTS

Comparison to State of the Arts. As shown in Table 1 (more performance results in Appen-
dices C.3 and C.10) and Figure 5, we achieve notable superior performance over existing SoTA
zero-shot methods (Yu et al., 2023; Suo et al., 2023; Liu & Li, 2025; Ni et al., 2023; Li et al., 2023;
Sun et al., 2024), even higher than the results of weakly- and pseudo-supervised approaches (Strudel
et al., 2022; Lee et al., 2023a; Yu et al., 2024) (the results using different pretrained models in Ap-
pendix C.2). In particular, our COPATCH (DFN ViT-H/14) attains the best results on 8 out of 9
evaluation splits. COPATCH with CLIP backbones also demonstrates strong performance and is
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Global-Local 
(+CT+TC)

Ground-
Truth

CO-PATCH
(top-1)

Global-
Local

Referring
Text

CO-PATCH
(top-3)

a glass bowl of 
food that is 
sitting on a 

whicker circle 
holder

a boy in pajamas 
in a suitcase

the right half of a 
long sandwich 
with banana 
peppers and 

green spices on 
the side.

Figure 5: Qualitative comparison across zero-shot RIS methods. Our COPATCH demonstrates
strong spatial grounding ability. The first row shows a case where both COPATCH top-1 and top-
3 methods segment correctly compared to Global-Local (Yu et al., 2023) and new Global-Local
(+CT+TC, as in Table 3a). The second row captures a case that is incorrectly segmented using
COPATCH (top-1) but accurately segmented on the “right half” with COPATCH (top-3).

enhanced further if the final mask is selected among the top-3 candidate masks generated using
our CoMap. For example, in the RefCOCOg validation (U) and test sets with ViT-B/32, we ob-
serve gains of +16.28 and +16.04 mIoU, respectively. These results reach 89.16% and 87.91% of
the mask upper bound (oracle)1 performances, indicating that the top candidate masks selected us-
ing the clusters from CoMap are highly informative in locating the target object (Figure 5, second
row). Although there are still several cases where COPATCH may not be able to segment correctly
due to CLIP’s limited understanding of some vocabularies (e.g., “glass” in Figure 5, third row),
our approach achieves the best results even on the very challenging PhraseCut dataset. We obtain
oIoU scores of 38.41 (all) and 38.12 (unseen), outperforming recent SoTA zero-shot and supervised
methods (Table 2). These results highlight the robustness and generalizability of our method across
various datasets.

RefCOCOg RefCOCO RefCOCO+

Figure 6: Subset performance comparison be-
tween Global-Local (Yu et al., 2023) and CO-
PATCH. We observe a significant gain for all the
spatial and non-spatial validation subsets.

Spatial Subset Evaluation. To evaluate the
fine-grained spatial grounding ability of CLIP,
we conduct a targeted evaluation on sam-
ples that contain explicit spatial cues (e.g.,
“left”, “bottom”, and “closest to”). To iden-
tify such samples, we utilize Qwen2.5-14B-
Instruct (Yang et al., 2024) to classify each re-
ferring expression as spatial or non-spatial and
extract the cue if present (prompt details in Ap-
pendix C.6). These automatically generated an-
notations take up 50.72%, 62.40%, and 23.48%
of the validation samples in RefCOCOg, Ref-
COCO, and RefCOCO+. Figure 6 shows sig-
nificant gains using COPATCH over the base-
line, with +20.83% and +15.55% mIoU im-
provements on the spatial and non-spatial subsets of RefCOCOg. These improvements demonstrate
that our spatial map CoMap contributes to the gains on spatial subsets, while the integration of
context-aware tokens enhances performance on non-spatial subsets by providing richer semantic
information.

1This performance is calculated based on IoU between the best segmented mask produced by the pretrained
segmentation model and the ground-truth mask. Since its performance is fairly decent (75 to 80), we conclude
that the low performance of zero-shot RIS methods is not mainly due to pretrained models.
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4.3 ABLATION STUDIES AND ANALYSIS

C
O
-P
A
TC
H

Ite
R
Pr
im
E

a clock on a pink wall with the 
characters ‘ha noi’ printed 

beneath it

the chair with 
the stuffed 
animal owl 
sitting in it.

cut out log
closest to camera

Figure 7: Spatial map comparison of Grad-
CAM used in IteRPrimE and CoMap used in
our COPATCH. Our spatial map better localizes
the target objects (e.g., “chair”, “clock”, “log”) in
referring expressions.

Spatial Map Analysis. We analyze the effec-
tiveness of our CoMap by comparing it with
the widely-used Grad-CAM (Selvaraju et al.,
2016) used in SoTA zero-shot RIS method with
ALBEF (Li et al., 2021) as backbone, IteR-
PrimE (Wang et al., 2025). Figure 7 illus-
trates a qualitative comparison between Grad-
CAM (used in IteRPrimE) and CoMap used
in our method. We observe that CoMap
better captures target objects in many cases
(e.g., “chair” in the first column). Moreover,
CoMap (ViT-B/16) achieves better average per-
formance (e.g., +6.9 mIoU) with lower infer-
ence latency (e.g., −2.95 sec. per sample), as
shown in the Appendix C.1.

In addition, we evaluate how our spatial map
contributes to the quality of top candidate
masks. Unlike prior methods (Yu et al., 2023)
that rely on global image-text cosine similarity, our map captures fine-grained patch-level spatial
correspondences. This is particularly important in scenarios where distinguishing targets accord-
ing to their spatial configuration is essential for accurate localization. To reflect this challenge, we
design our experiments to select the final mask given different numbers of top candidate masks.
Table 3a shows that our approach consistently outperforms Global-Local, demonstrating the effec-
tiveness of our CoMap for generating accurate and reliable region proposals (qualitative results in
Figure 8). Specifically, we select top-k candidate masks based on the ranking of original image-text
similarity for Global-Local and new image-text similarity reranked using the automatically gener-
ated clusters from CoMap for COPATCH. Using the top three candidate masks consistently yields
the best performance (Table 3a) and sufficient diversity (Figure 8) for the final mask selection.

Referring 
Text 

Ground-
Truth

smallest 
yellow 

cylinder

G
-L

 (+
C

T)
C

O
-P

A
TC

H

G
-L

 (+
 C

T)
C

O
-P

A
TC

H

Top-1 Top-2 Top-3 Top-1 Top-2 Top-3

a white sink 
behind some 
green leafy 

plant.

Referring Text 

Ground-Truth

Figure 8: Qualitative comparison of top candidate masks generated using original image-text
similarity from Global-Local (w/ CT) and averaged CoMap similarity score using our CO-
PATCH. The top candidate masks generated using our method show better diversity and accuracy.

Subcomponents. Table 3b demonstrates the effectiveness of the core components of COPATCH −
Context Token (CT) extraction (Section 3.1) and Top Candidate (TC) mask selection (Section 3.2).
We use Global-Local (Yu et al., 2023) as the backbone image/text extraction method since the vanilla
performances are higher than those of HybridGL (Liu & Li, 2025) (e.g., 5.53 higher mIoU on ViT-
B/32). We find that using our CT alone helps the models to achieve higher performances, especially
in ViT-B/32 (e.g.+2.58 for mIoU; qualitative results in Appendix C.5). After the text feature ex-
traction, mask scoring with top candidate masks from our ranked clusters (i.e., TC) proves more
effective than the previous approach (Liu & Li, 2025), which ranks masks solely by the cosine sim-
ilarity between raw image and text features. Specifically, our method achieves improvements of
+2.46 and +1.32 mIoU and oIoU on ViT-B/32. Finally, the mIoU and oIoU performances improve
by 2.80% and 4.18% using Spatial Coherence (SC) (Liu & Li, 2025). These results confirm that
each component of COPATCH contributes meaningfully, and their synergy is crucial for achieving
strong zero-shot RIS performance.
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Top Candidate Global-Local COPATCH
Mask Number mIoU oIoU mIoU oIoU

2 50.47 40.28 52.08 40.72
3 50.79 41.29 52.24 41.43
4 49.42 40.81 51.92 41.40
k – – 51.80 41.43

(a) Comparison of zero-shot RIS performances us-
ing top candidates selected by the original and our
candidate mask scores on RefCOCOg val (U) set.

CT TC SC ViT-B/32 ViT-B/16
mIoU oIoU mIoU oIoU

HybridGL 41.54 29.89 46.59 37.04
COPATCH ✓ 42.58 30.77 47.01 37.36
Global-Local 47.07 35.73 50.30 38.35
COPATCH ✓ 49.65 37.18 50.65 38.24
Global-Local ✓ ✓ 47.70 36.32 50.68 38.84
COPATCH ✓ ✓ 50.16 37.63 51.16 38.84
Global-Local ✓ ✓ ✓ 50.42 38.17 50.91 39.58
COPATCH ✓ ✓ ✓ 52.24 41.43 54.42 44.14

(b) Comparison of zero-shot RIS performances
without and with each subcomponent.

Table 3: Ablation study results using different numbers of top mask candidates and subcom-
ponents. (a) Our performances are consistently greater than when using top mask candidates se-
lected by Global-Local (Yu et al., 2023) (k: # of automatically generated clusters that differ per
data sample). (b) Using the baseline feature extraction methods–Global-Local (Yu et al., 2023) and
HybridGL (Liu & Li, 2025), all the subcomponents, Context Token (CT), Top Candidate (TC), and
Spatial Coherence (SC) are integral for building COPATCH.
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Figure 9: Hyperparameter tuning results for COPATCH (ViT-B/16) using 10% of the Ref-
COCOg val set. The deep-blue and sky-blue lines depict top-1 and top-3 performances across
exit layers. The golden bars represent the number of clusters averaged across data instances for
each exit layer. The overall IoU performance is insensitive to a particular hyperparameter value.

Hyperparameters. Figure 9 shows the performance change across different exit layers (Ap-
pendix C.9), initial threshold, and proportion of the spatial coherence method (Liu & Li, 2025).
We observe no significant drop in performance across varying hyperparameters tuned on 10% of
the RefCOCOg validation set (Mao et al., 2016). For all experiments in the main paper (Tables 1
and 2), we use a single fixed hyperparameter configuration (Appendix C.7). Despite this global set-
ting, COPATCH consistently outperforms previous methods across benchmarks, demonstrating that
our method is robust and generalizes well without requiring dataset-specific tuning. However, more
optimal performances could also be achieved if hyperparameter tuning is performed.

5 CONCLUSION

We propose COPATCH, a novel zero-shot RIS framework that addresses the spatial limitations of
CLIP by improving both its text and image representations. On the text side, COPATCH enriches
linguistic understanding by incorporating spatially informative context tokens, including beyond pri-
mary noun phrases commonly used in prior works. On the image side, we exploit spatial information
preserved in CLIP’s intermediate layers to generate fine-grained patch-level image features. These
are used to compute the context-aware spatial map, CoMap, which enables accurate top mask selec-
tion. Experimental results demonstrate that COPATCH consistently outperforms the SoTA zero-shot
RIS methods across RefCOCO, RefCOCO+, RefCOCOg, and PhraseCut benchmarks, with 2–7%
gains across different CLIP architectures. Notably, we achieve a 10–21% improvement on a chal-
lenging spatial subset. Our synergistic approach to enhancing both visual and textual representations
opens promising directions for spatially-grounded, semantically-robust zero-shot segmentation.
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APPENDIX

• Section A: Experimental Setups

• Section B: Method Details

• Section C: Additional Results

• Section D: Discussion

A EXPERIMENTAL SETUPS

Datasets. We evaluate our method on widely used RIS benchmarks: RefCOCO (Nagaraja et al.,
2016), RefCOCO+ (Nagaraja et al., 2016), and RefCOCOg (Mao et al., 2016). These datasets have
diverse linguistic and visual structures, where RefCOCO and RefCOCO+ have various objects of the
same category per image, and RefCOCOg has relatively longer, complex referring expressions (Yang
et al., 2022). RefCOCO includes more explicit positional relations (e.g., “left”, “bottom”) than
RefCOCO+ and RefCOCOg. In addition, following previous works, we include evaluations on
the PhraseCut dataset (Wu et al., 2020), which contains various phrase types such as attributes
(e.g., large), categories (e.g., cake), and relationships (e.g., on plate). PhraseCut is evaluated in two
settings − all (samples) and unseen, where the latter indicates evaluation only on samples that do
not contain a word from pre-defined 91 MS COCO (Lin et al., 2014) classes.

Evaluation Metrics. For evaluation metrics, we use Mean Intersection over Union (mIoU) and
Overall Intersection over Union (oIoU), following related works. The mIoU is computed as the
average IoU (= ∣P∩G∣∣P∪G∣ , where P : predicted mask generated with a mask generator and G: ground-
truth mask) across all data instances. The oIoU is computed as the total intersection over the total
union across all samples.
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Figure 10: Varying cosine similarity across layers for image pairs containing objects in dif-
ferent locations for different backbones and datasets. We observe a decreasing overall trend of
similarity for CLIP and a high peak at the last layer.
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Figure 11: Opposite visualization without the negation (above) and our final raw spatial map
(bottom). The final raw spatial map localizes the “target objects” and resolves the opposite visual-
ization issue.

Figure 12: Correlation plots between our final spatial map (CoMap) image-text similarity
scores (y-axis) and negative of the image-text similarity scores from the oppositely visualized
spatial map (x-axis). There exists a strong positive correlation between these two similarity score
values across data samples and datasets.

B METHOD DETAILS

B.1 CONTEXT TOKEN (CT) EXTRACTION FOR REFINED HYBRID TEXT FEATURES

Following previous work (Wang et al., 2025), we use the NLP software library, stanza (Qi et al.,
2020), to automatically extract NO and NC , where NC are noun or adjective tokens that are not
contained in NO that may appear right side of the primary noun phrase/chunk. Note that we observe
a slight performance improvement using stanza instead of spacy (Honnibal, 2017). For instance,
using Stanza and Spacy on our method (CoPatch) in the RefCOCOg (val) dataset results in IoU
performances of 52.24 and 51.50, respectively. Based on our preliminary analysis, we notice that
this method is particularly beneficial when NC consists of noun chunks that are well-captured by
the model (e.g., “woman smiling”) and color adjectives (qualitative results in Appendix C.4).

B.2 NOVEL SPATIAL MAP FOR TOP CANDIDATE (TC) MASK SELECTION

Method – Stage 1: Context-Aware Spatial Map Generation. We explain why the negation oper-
ation is necessary to create an intuitive spatial map (CoMap) that resolves the opposite visualization
problem described in previous work (Li et al., 2023). To begin with, the spatial map is built based on
the observation that the cosine similarity between embeddings of image pairs containing identical
objects in different locations is lower in intermediate layers than that of the final layer (Figure 10).
This decreasing trend phenomenon implies that the intermediate image embeddings may better pre-
serve spatial information than the original image features extracted from the last layer of the visual
encoder.

However, when we calculate the similarity between the hybrid text feature (EConText ∈ Rd) and patch-
level image features extracted from the l − th exit layer (El

p ∈ Rp×p×d), the similarity score values
of the resulting similarity map (M̃l ∈ Rp×p) is shown with opposite visualization (Figure 11). If we
simply negate the similarity map itself, the opposite visualization phenomenon is naturally resolved,
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but the range of similarity scores falls within -0.3 to 0.0 (x-axis in Figure 12). We could shift these
scores by an addition in order to make them fall into the original range of similarity scores (0.0 to
0.3). However, this postprocessing method requires an additional hyperparameter for the shifting
and does not fundamentally solve the opposite visualization problem.
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Figure 13: Comparison of raw spatial maps using different backbones for COPATCH. The
spatial map becomes more fine-grained for the backbone with higher dimensions for the number of
patches (7 × 7 in CLIP ViT-B/32; 14 × 14 in CLIP ViT-B/316; 16 × 16 in DFN ViT-H/14).

Surprisingly, simply negating the patch-level image embeddings before feeding them to the post-
layer norm and multiplying them with the projection weight naturally resolves the opposite vi-
sualization and out-of-range issues. As shown in Figure 12, the correlation between values of
Ml

ij = cos(Ẽl
p[i, j],EConText) (y-axis) and Ml

Neg = − cos(E
l
p[i, j],EConText) (x-axis) is positive

(∀i, j = {1, ..., p}). This observation is a product of the definition of cosine similarity:

cos(−x, y) =
(−x) ⋅ y

∥ − x∥∥y∥
=
−(x ⋅ y)

∥x∥∥y∥
= − cos(x, y)

This suggests that the feature negation can serve as a proxy for semantic opposition, providing an
effective mechanism at a low cost for enhancing the model’s spatial reasoning. Our raw spatial map
(Ml = (Ml

ij)1≤i,j≤p) can be found in Figure 13 across different backbones. The final interpolated,
clustered spatial map, CoMap, using different exit layers can also be observed in Figure 14.

Method – Stage 2: Mask Selection via Clustered Context-Aware Spatial Map (CoMap). Dur-
ing the clustering process, our algorithm first creates a binary mask (B) by thresholding the input

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 14: Comparison of our spatial map, CoMap generated using varying exit layers. Similar
to the mIoU performance trend across different exit layers in Figure 9a, CoMap captures the most
intuitive image-text similarity using the intermediate layers close the last layer (e.g., layer 9).

continuous spatial map (M) to identify all relevant patches (line 1). An output cluster map (C) is
initialized with all zeros, and a counter (l) is also initialized to 0 (line 2). Then, each patch coor-
dinate in the binary mask is iterated to find and assign a label to an unlabeled, active patch, which
serves as the seed for a new cluster (lines 3-7). The algorithm then initiates a Breadth-First Search
(BFS) from the seed, which continues as long as the queue (Q) is not empty, to progressively label
all patches belonging to the same connected component. Note that the number of automatically
generated clusters from our CoMap (k) may differ per sample.

C ADDITIONAL RESULTS

Here, we explain results not shown in the main paper. All inference is conducted on a single RTX
A4000 (16 Gi) for all the models with CLIP ViT-B/32 and ViT-B/16 backbones. For the DFN ViT-
H/14 backbone, a single RTX A6000 (48 Gi) is used. To ensure a fair comparison for calculating
the inference time in Table 4, we use the same device, RTX A6000, for all the methods.

C.1 SPATIAL MAP COMPARISON

Segmentation Approaches. Our final spatial map, CoMap, is surprisingly comparable to sev-
eral zero-shot segmentation models, such as CLIPSurgery (Li et al., 2023) (Figure 15) and CLIP-
Trace (Shao et al., 2024) (Figure 16). CLIPSurgery is generated via recomputation of the self-
attention operation (A = σ(s ⋅ V V T )V instead of A = σ(s ⋅ QKT )V , where s: scaling factor)
for every layer (before the start of the new path). Similarly, CLIPTrace also requires a recomputa-
tion of self-attention for producing a more consistent semantic correlation matrix. However, CoMap
does not require recomputations for self-attention modules and produces intuitive activation patterns
similar to those of these segmentation models.
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COPATCHCLIPSurgery

Figure 15: Activation pattern comparison between CLIPSurgery and COPATCH. Our spatial
map shows a very similar activation as CLIPSurgery without attention recomputations.

COPATCHCLIP CLIPTrase

Figure 16: Activation pattern comparison between CLIPTrace and COPATCH. Although CO-
PATCH does not show completely clean activations without noises (red blobs on the last row), it can
still capture highly activated areas like CLIPTrace.

RefCOCOg RefCOCO RefCOCO+ Average
Time mIoU Time mIoU Time mIoU Time mIoU

IterPRIMe Wang et al. (2025) 3.20 46.0 5.42 40.2 4.82 44.2 4.48 43.5
COPATCH (CLIP ViT-B/32) 1.27 52.2 1.45 46.8 1.44 44.1 1.38 47.7
COPATCH (CLIP ViT-B/16) 1.40 54.4 1.60 50.1 1.60 46.8 1.53 50.4
COPATCH (DFN ViT-H/14) 2.24 56.2 2.52 50.9 2.53 47.1 2.43 51.4

Table 4: Inference time and performance comparison between IteRPrimE and COPATCH on
validation (U) sets. We report the time in seconds per iteration, averaged across the first 100 samples
for each dataset. Our methods comparatively take less time than IterPRIMe while achieving better
IoU performance.

Grad-CAM. When compared to Grad-CAM (Selvaraju et al., 2016), which is often applied in
several zero-shot RIS approaches (Subramanian et al., 2022; Wang et al., 2025; Lee et al., 2023a),
Figure 17 demonstrates that our CoMap can provide better spatial cues for a primary object from
a referring expression. Furthermore, our COPATCH (using CoMap) takes less inference time than
IteRPrimE, which uses Grad-CAM, as shown in Table 4 while achieving better IoU performance.
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Figure 17: Qualitative comparison between Grad-CAM (IteRPrimE) and CoMap (COPATCH).
Our CoMap can better capture and localize the primary objects in the referring expressions.

FreeSOLO SAM Mask2Former
mIoU oIoU mIoU oIoU mIoU oIoU

Global-Local (CLIP ViT-B/32) Yu et al. (2023) 33.59 31.02 38.56 27.04 45.23 32.59
HybridGL (CLIP ViT-B/32) Liu & Li (2025) 30.66 27.97 41.54 29.89 44.27 32.17
HybridGL† (CLIP ViT-B/16) 30.84 28.02 46.59 37.04 43.90 31.73
IteRPrimE (ALBEF) Wang et al. (2025) 29.03 26.36 25.23 21.27 46.89 41.09
Mask Upper Bound (CLIP ViT-B/32) 52.44 52.76 74.39 75.76 76.85 72.73

Table 5: Zero-shot performances of SoTA referring image extraction methods applied with
three mask generators on RefCOCOg val (U) set. The highest IoU performances are generally
achieved using Mask2Former across different methods. † stands for the reproduced results.

Pretrained RefCOCOg RefCOCO RefCOCO+
Models val (U) test (U) val (G) val testA testB val testA testB

COPATCH (CLIP ViT-B/32) SAM 50.59 50.64 51.27 47.59 50.25 44.04 50.54 53.42 45.98
COPATCH (CLIP ViT-B/16) SAM 57.67 57.88 58.35 50.06 48.94 50.88 51.65 50.75 52.93

Table 6: Zero-shot performances of SoTA referring image extraction methods applied with
SAM on RefCOCOg val (U) set. The highest IoU performances are generally achieved using
Mask2Former across different methods.

C.2 MASK GENERATOR SELECTION

For selecting the mask generator, we compare three widely used pretrained segmentation models,
FreeSOLO (Wang et al., 2022a), SAM (Kirillov et al., 2023), and Mask2Former (Cheng et al., 2022;
Liang et al., 2023) on several SoTA zero-shot RIS approaches (Yu et al., 2023; Wang et al., 2025;
Liu & Li, 2025). As can be observed in Table 5, we observe that Mask2Former is most effective in
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Pretrained RefCOCOg RefCOCO RefCOCO+
Models val (U) test (U) val (G) val testA testB val testA testB

Zero-shot methods (CLIP ViT-B/32)
Global-Local Yu et al. (2023) FreeSOLO 31.11 30.96 30.69 24.88 23.61 24.66 26.16 24.90 25.83
Global-Local Yu et al. (2023); Suo et al. (2023) SAM 27.57 27.87 27.80 22.43 24.66 21.27 26.35 30.80 22.65
HybridGL† Liu & Li (2025) SAM 36.16 36.27 36.16 32.02 32.50 31.98 29.73 31.75 26.64
TAS Suo et al. (2023) SAM, BLIP-2 35.84 36.16 36.36 29.53 30.26 28.24 33.21 38.77 28.01
COPATCH (Top-1) Mask2Former 41.43 41.98 41.37 37.17 44.63 31.53 35.15 43.14 29.97
COPATCH (Top-3) Mask2Former 57.96 57.78 57.80 50.28 58.79 46.09 54.02 62.24 47.86

Zero-shot methods (CLIP ViT-B/16)
Ref-Diff Ni et al. (2023) SAM, SD 38.62 37.50 38.82 35.16 37.44 34.50 35.56 38.66 31.40
HybridGL Ni et al. (2023) SAM 42.47 42.97 - 41.81 44.52 38.50 35.74 41.43 30.90
COPATCH (Top-1) Mask2Former 44.13 46.24 45.26 40.85 48.45 34.98 38.39 46.17 32.15
COPATCH (Top-3) Mask2Former 61.09 63.61 63.03 52.92 60.79 47.27 55.46 63.32 48.06

Zero-shot methods (DFN ViT-H/14)
COPATCH (Top-1) Mask2Former 46.21 46.03 46.09 41.24 48.88 36.15 38.10 45.11 33.14
COPATCH (Top-3) Mask2Former 65.55 66.99 66.59 55.95 65.45 49.83 60.11 67.68 53.06

Table 7: Comparison of oIoU performances across zero-shot RIS methods on RefCOCOg,
RefCOCO, and RefCOCO+ datasets. We attain the overall best performances for CLIP (ViT-
B/32 and ViT-B/16) and DFN (ViT-H/14), outperforming the SoTA, TAS Suo et al. (2023), and
HybridGL Liu & Li (2025). Note that we † stands for the reproduced results.

the RefCOCOg validation (U) set (Mao et al., 2016). Compared to SAM, it is also highly efficient,
taking a fifth of the inference time (e.g., 150 min. vs. 30 min. using SAM and Mask2Former
on 2,573 data instances) while mostly achieving higher IoU performances across different methods
and similar upper bound scores (e.g., mIoU of 74.39 and 76.85 using SAM and Mask2Former,
respectively). We also report the results of our COPATCH using SAM in Table 6.

C.3 OIOU PERFORMANCE

Table 7 shows the oIoU performances of various zero-shot RIS methods, including ours, across
RefCOCO datasets. Similar to the mIoU results, COPATCH achieves the best overall results for all
the backbones. Notably, COPATCH (CLIP ViT-B/32) achieves oIoUs of 41.98, 44.63, and 43.14 in
RefCOCOg, RefCOCO, and RefCOCO+ test sets, which are +5.82p, +14.37p, and +4.37p higher
than the previous SoTA method, TAS (Suo et al., 2023).

C.4 QUALITATIVE COMPARISON

Additional qualitative results of comparing Global-Local (+CT) and COPATCH (top-1) are illustrated
in Figures 18 and 19. While Figure 18 shows several samples that our approach accurately segments
by predicting the top-1 candidate mask correctly, Figure 19 shows several challenging cases even
using our approach. For example, the first row sample in Figure 19 is segmented on the ‘the first
half of the sandwich to the ‘right’ instead of ‘left.’ for top-1 and top-3 predictions of COPATCH.
Despite this, the top candidate masks produced using our method are much diverse compared to
those produced using the Global-Local method Yu et al. (2023).

C.5 CONTEXT TOKEN EFFECT

We also show qualitative results of the effects of our context tokens on the segmented results in
Figure 20. We highlight the context tokens in red that are added as the local-level features of the
hybrid text features described in Section 3.1. As noted, the model could better predict the primary
object from the referring expression, given the context of colors. For instance, the fourth sample
in Figure 20 guides a model to locate the bike nearest to the ‘green’ helmet. The last sample also
corrects the model to focus on the ‘black’ property more than the woman wearing a dark navy jacket.
We leave as future work to discover which of the context tokens within the referring expression could
better guide the model for zero-shot RIS tasks.

C.6 SPATIAL SUBSET GENERATION

The prompt for instructing Qwen2.5-14B-Instruct (Yang et al., 2024) to classify each referring ex-
pression into ‘Spatial’ or ‘Non-Spatial’ depending on the presence of a spatial cue is in Table 8.
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Figure 18: Qualitative comparison of top candidate masks generated using original image-text
similarity from Global-Local (w/ CT) and averaged CoMap similarity score using our CO-
PATCH. The top candidate masks generated using our method are much more diverse and accurate.

We provide important clarifications for the model to distinguish words that have multiple definitions
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Figure 19: Qualitative comparison of top candidate masks generated using original image-
text similarity from Global-Local (w/ CT) and averaged CoMap similarity score using our
COPATCH. The top candidate masks generated using our method are much more diverse.

(e.g., right, in) and several examples for classification. The list of unique spatial cues (n = 950)
found using LLM for all the RefCOCOg, RefCOCO, RefCOCO+ validation datasets is as follows2:

2Due to the space limit, we provide the first 173 cues only.
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Figure 20: Qualitative comparison between COPATCH without and with context tokens (CT).
We observe an improved mask candidate using hybrid text features highlighted with proposed con-
text tokens in the local-level text features.

‘12 o’clock’, ‘2nd from’, ‘2nd from bottom’, ‘3rd from bottom’, ‘3rd one from’, ‘None.’, ‘above’,
‘above left of’, ‘above right’, ‘above, left of’, ‘above, on, right’, ‘above, right’, ‘above, right of’,
‘across’, ‘adjacent to’, ‘after’, ‘against’, ‘against, on top of’, ‘ahead of’, ‘alongside’, ‘amongst’,
‘around’, ‘around it’, ‘at’, ‘at 4 o’clock’, ‘at 9 o clock’, ‘at the edge of’, ‘at the end of’, ‘at the end
of, on the left’, ‘atop’, ‘attached to’, ‘back’, ‘back behind’, ‘back end of’, ‘back end of, on, right edge
of’, ‘back end... front’, ‘back from the right’, ‘back left’, ‘back left of’, ‘back middle’, ‘back of’,
‘back of chair center top’, ‘back of the chair on the right’, ‘back of the pack’, ‘back of the room right
side’, ‘back of, closest to’, ‘back of, far right’, ‘back of, flanking it’, ‘back of, in front of’, ‘back of,
in the middle, behind’, ‘back of, left’, ‘back of, on, left’, ‘back on right’, ‘back on the right’, ‘back
right’, ‘back right top’, ‘back row 4th from left’, ‘back row on left’, ‘back side’, ‘back side position’,
‘back top almost middle’, ‘back up high’, ‘back, in the front of’, ‘back, on’, ‘back, right’, ‘back, to
the right’, ‘back... right’, ‘background’, ‘background center’, ‘background, far left’, ‘background,
on’, ‘background, top left’, ‘backleft’, ‘backside’, ‘behidn’, ‘behind’, ‘behind and right of’, ‘behind
middle’, ‘behind right of’, ‘behind right side’, ‘behind, front’, ‘behind, in, middle’, ‘behind, in,
near’, ‘behind, left’, ‘behind, left of’, ‘behind, left shoulder of’, ‘behind, next to’, ‘behind, next
to, on’, ‘behind, on the right’, ‘behind, on, left’, ‘behind, on, left side’, ‘behind, on, left, near’,
‘behind, right’, ‘behind, right side’, ‘behind, to the left of’, ‘below’, ‘below, above’, ‘below, in’,
‘below, left’, ‘below, on, left’, ‘beneath’, ‘beneath, on’, ‘beside’, ‘beside, closest to’, ‘beside, in
front of’, ‘between’, ‘between, on’, ‘between, on the right’, ‘between, on, bottom left of’, ‘between,
on, right’, ‘blocked by’, ‘blocking’, ‘bottom’, ‘bottom center’, ‘bottom from top’, ‘bottom front’,
‘bottom front left’, ‘bottom left’, ‘bottom left area’, ‘bottom left corner’, ‘bottom left corner of’,
‘bottom left of’, ‘bottom left portion of couch on left’, ‘bottom left side’, ‘bottom left, on’, ‘bottom
leftcorner’, ‘bottom middle’, ‘bottom most’, ‘bottom most left’, ‘bottom of’, ‘bottom portion of it’,
‘bottom right’, ‘bottom right corner’, ‘bottom right corner of pic’, ‘bottom right front’, ‘bottom right
next to’, ‘bottom right of’, ‘bottom right on’, ‘bottom right under’, ‘bottom rightcorner’, ‘bottom
rightmost’, ‘bottom row’, ‘bottom row 2nd from left’, ‘bottom row second from left’, ‘bottom row
second kid from left’, ‘bottom row, left’, ‘bottom to right’, ‘bottom, 2nd from top’, ‘bottom, first
row, closest to’, ‘bottom, left’, ‘bottom, on, top, left’, ‘bottom-left’, ‘bottom-right’, ‘bottom-right,
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System and User Prompts for Spatial Subset Generation

You are Qwen, created by Alibaba Cloud.
You are a helpful assistant.
Please carefully analyze user sentences to see if they contain spatial words or phrases.
Spatial expressions are any words or phrases indicating location, direction, orientation, or proximity.
These include (but are not limited to): ‘on’, ‘in’ (meaning ‘inside’), ‘under’, ‘front’, ‘behind’, ‘middle’,
‘center’, ‘left’, ‘right’ (direction), ‘closest to’, ‘near’, ‘beside’, ‘above’, ‘below’, ‘next to’, etc.

Important clarifications:
- If ‘right’ means ‘correct’, it is NOT spatial.
- If ‘in’ means ‘wearing’ (e.g., ‘in a costume’), it is NOT spatial.
- Action expressions like ‘facing’, ‘looking up’ is NOT spatial.
- ‘closest to’,’near’, or ‘middle’ should be treated as spatial. Respond with a specific format so it is easy to
parse.’

Below are examples of how to classify:

Example 1:
Sentence: “The chair with the stuffed animal owl sitting in it.”
Analysis: ‘in’ here is adverb.
Answer: IsSpatial: False, SpatialExpression: None

Example 2:
Sentence: “The apple is on the table.”
Analysis: ‘on’ indicates spatial.
Answer: IsSpatial: True, SpatialExpression: on

Example 3:
Sentence: “left side monitor”
Analysis: ‘left’ indicates spatial.
Answer: IsSpatial: True, SpatialExpression: left

Example 4:
Sentence: “A small lamb lying closest to the adult.”
Analysis: ‘closest to’ indicates a spatial relationship.
Answer: IsSpatial: True, SpatialExpression: closest to

Now, analyze this new sentence:
{sentence}

Instructions:
1) If the sentence contains any spatial relationship expression, output True and the exact expression (e.g.,
‘on’, ‘in’, ‘closest to’). Important: actions or wearing attributes are NOT spatial expression. (e.g. a girl
facing the camera. -¿ ‘facing’ is NOT means direction or spatial relationship)
2) If no spatial expression is found, output False and None.
3) Return your answer in the format exactly: ”IsSpatial: ¡True/False¿, SpatialExpression: ¡expression or
None¿”

Table 8: Prompts used for generating spatial subsets of RefCOCO, RefCOCO+, and Ref-
COCOg validation sets. We prompt Qwen2.5-14B-Instruct to divide the samples into Spatial and
Non-Spatial subsets.
closest to’, ‘bottom/center’, ‘bottomright’, ‘by’, ‘by the wall’, ‘by the, on, left’, ‘by, with, to’,
‘center’, ‘center directly in front of’, ‘center front’, ‘center left’, ‘center leftish’, ‘center of’, ‘center
of pic’, ‘center right’, ‘center row far right’, ‘center, behind’, ‘center/background’, ‘centermost’,
‘centernearest.’

C.7 HYPERPARAMETER TUNING

We show hyperparameter tuning results for COPATCH (CLIP ViT-B/32) and COPATCH (DFN ViT-
H/14) in Figures 21 and 22, respectively. Similar to COPATCH (CLIP ViT-B/16) results, the IoU
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Figure 21: Hyperparameter tuning results for COPATCH (ViT-B/32) using 10% of the Ref-
COCOg val set. The deep-blue and sky-blue lines depict top-1 and top-3 performances across
exit layers. The golden bars represent the number of clusters averaged across data instances for
each exit layer. We set the exit layer, initial threshold, and spatial coherence proportion to be 10,
0.5, and 0.5.
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Figure 22: Hyperparameter tuning results for COPATCH (ViT-B/32) using 10% of the Ref-
COCOg val set. The deep-blue and sky-blue lines depict top-1 and top-3 performances across
exit layers. The golden bars represent the number of clusters averaged across data instances for
each exit layer. We set the exit layer and spatial coherence proportion to be 22 and 0.5. Since
the performance does not change depending on the initial threshold, we set it to the default setting
(δ = 0.5).

performances are not particularly sensitive to certain hyperparameter values. We select the exit layer
(l) towards the last layer, yielding the best top-1 and top-3 performances. That means, for COPATCH
(CLIP ViT-B/32) and COPATCH (DFN ViT-H/14), we select the 10-th (> 6) and 22-th (> 18) exit
layer with the highest top-3 and top-1 performances. We select the initial threshold (δ) based on
the top-3 performance for all three models. Lastly, since CoMap is not affected by the proportion
of spatial coherence (α), α is selected based on the top-1 performance. We set the exit layer, initial
threshold, and spatial coherence proportion to be 8, 0.3, and 0.7 for COPATCH (CLIP ViT-B/16) for
all the performance results throughout the paper.

Note that the average number of clusters is not affected by the exit layer. However, it intuitively
decreases as the initial threshold increases, only for COPATCH (CLIP ViT-B/16) and COPATCH
(CLIP ViT-B/32). COPATCH (DFN ViT-H/14) is possibly less influenced due to the increased patch
number (16) (see visualizations in Figure 13).

C.8 ALTERNATIVE TEXT FEATURE FUSION METHODS

We construct hybrid text features based on a weighted sum of global- and local-level text features,
following previous works Yu et al. (2023); Liu & Li (2025). Here, we show results using an alterna-
tive fusion strategy of combining the features at an attention-level. Specifically, instead of merging
the text features at the final layer, we encode the sentence-level (global) and primary noun and con-
text token-level (local) text features separately until the fusion layer and merge the attention outputs
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Method Fusion RefCOCOg RefCOCO RefCOCO+
Layer (oIoU / mIoU) (oIoU / mIoU) (oIoU / mIoU)

ATTN 1 31.65 / 42.07 34.57 / 41.05 36.32 / 41.89
ATTN 2 33.33 / 43.73 36.11 / 43.96 36.69 / 42.77
ATTN 3 24.80 / 35.20 30.03 / 37.37 30.29 / 35.33
ATTN 4 31.36 / 43.89 34.29 / 41.39 34.01 / 39.71
ATTN 5 33.13 / 45.45 34.92 / 42.64 33.80 / 38.52
ATTN 6 35.47 / 49.12 36.24 / 44.01 35.82 / 41.65
ATTN 7 38.70 / 51.22 36.99 / 44.67 33.80 / 39.57
ATTN 8 38.65 / 51.05 35.62 / 45.15 36.09 / 44.65
ATTN 9 31.94 / 48.17 39.56 / 48.36 35.42 / 42.77
ATTN 10 35.37 / 50.52 35.35 / 44.05 35.56 / 43.32
ATTN 11 35.85 / 51.09 31.09 / 41.53 34.50 / 42.07
WS – 39.07 / 51.22 36.46 / 45.35 35.63 / 43.73

Table 9: Performance comparison between attention-based (ATTN) and weighted-sum-based
(WS) fusion strategies across RefCOCOg, RefCOCO, and RefCOCO+ (10%) validation
datasets. We observe that the best performance is achieved using exit layers from the middle layers
that are closer to the final layers for both fusion methods.

Exit
Layer

Entire RefCOCOg (val)
oIoU / mIoU

10% RefCOCOg (val)
oIoU / mIoU

10% RefCOCO (val)
oIoU / mIoU

10% RefCOCO (testB)
oIoU / mIoU

1 36.00 / 47.20 37.60 / 51.59 35.64 / 43.97 28.46 / 36.89
2 36.75 / 47.59 38.07 / 52.51 36.04 / 44.41 28.94 / 37.17
3 37.02 / 47.95 38.20 / 52.94 34.01 / 42.96 29.48 / 38.45
4 36.59 / 48.18 37.64 / 52.20 33.47 / 41.93 30.53 / 40.36
5 37.17 / 48.60 37.84 / 52.50 32.64 / 40.57 31.15 / 41.00
6 37.52 / 49.21 38.83 / 52.90 34.75 / 42.69 31.56 / 43.35
7 38.45 / 50.62 38.90 / 52.97 37.02 / 45.39 31.37 / 42.47
8 39.09 / 51.14 38.65 / 52.81 38.41 / 48.90 30.99 / 41.66
9 38.77 / 51.02 37.85 / 52.62 38.96 / 48.05 30.45 / 40.63

10 39.07 / 51.22 38.46 / 52.98 36.46 / 45.35 29.28 / 40.21
11 39.63 / 50.61 37.81 / 52.09 34.89 / 44.30 31.09 / 41.53

Table 10: Layer-wise performance trends on different types of datasets. We observe that using
middle-to-late layers near the final layer generally provides the most generalizable spatial and se-
mantic information.

Model Type (BLIP) RefCOCOg RefCOCO RefCOCO+
val (U) test (U) val (G) val testA testB val testA testB

Global-Local (+CT) 15.26 12.52 13.28 18.79 11.35 8.97 18.67 11.33 10.32
CoPatch (Top-1) 30.80 25.37 31.34 39.64 28.15 30.08 39.57 26.55 22.74
CoPatch (Top-3) 47.25 45.14 47.45 57.30 42.38 42.84 59.08 44.38 41.83

Table 11: Performance of BLIP-based models on RefCOCOg, RefCOCO, and RefCOCO+
datasets. We show our method can be applicable to non-CLIP-based VLM, achieving superior
performance than the baseline - Globa-Local (+CT).

(i.e., fusedattn + γglobalattn + (1 − γ)localattn) before encoding them to construct the hybrid text
features. Note that we use the fused features for the remaining layers after going through the fusion
layer. As shown in Table 9 (γ = 0.5, we find that merging the text features as a weighted sum yields
better performance in RefCOCOg.

C.9 EXIT LAYERS

Since the choice of exit layer is important, as it directly affects the overall quality of our spatial map,
COPATCH, we show a performance change across different layers using the entire vs. 10% of the
RefCOCOg (val) dataset, containing long, complex referring expressions, and 10% of the RefCOCO
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(val), and RefCOCO (testB) datasets, which contain various objects of the same category per image
in relatively shorter referring expressions (Yang et al., 2022). Although the most optimal exit layer
slightly differs across the datasets, the selected exit layers per dataset/domain are mostly the middle
layers near the final layers (6–11), as can be shown in Table 10.

C.10 GENERALIZABILITY TO NON-CLIP-BASED VLMS

We use CLIP variants for a fair comparison with previous zero-shot RIS methods. However, to
demonstrate the applicability of our method to other types of VLM, we show the results of applying
our method to the BLIP model Li et al. (2022b) using Mask2Former. Whereas the final mask is
selected based on the similarity between the original image and text embeddings for the Global-
Local Yu et al. (2023) (+CT; Context Token) method, our method selects the best mask from top
candidates (TC), reranked using our CoMap. As can be observed in Table 11, using our method
consistently shows performance improvement compared to the Global-Local method.

D DISCUSSION

D.1 LIMITATIONS AND FUTURE WORK

We provide limitations of our framework and suggest future research directions for zero-shot RIS.

Spatial Guidance. The current spatial guider does not always select the correct candidate among
different top candidate masks, leading to a gap in top-1 and top-k IoU performances. Here, our
goal is not to use any other additional models except for the pretrained CLIP backbone and mask
generator. However, future work could explore an external spatial guide that can better select the
final mask among the top candidate masks provided by our CoMap.

Spatial Map. The primary goal of this paper is to provide spatial cues for RIS tasks using the
proposed spatial map, CoMap, using image embeddings extracted from intermediate layers. The
current spatial map could serve as a baseline for top candidate mask augmentation to disperse the
model’s attention to look into multiple target objects located in different positions. We leave as a
future work to extend the application of the presented spatial map into segmentation tasks that often
require more refined segmentation, possibly with additional postprocessing methods (Shao et al.,
2024; Bai et al., 2024).

D.2 SOCIETAL IMPACT

The current study investigates zero-shot RIS, a task that requires a model to segment image regions
based on free-form natural language descriptions–even for categories or concepts unseen during
training. Without a need for additional training on explicit annotations, our method provides a
flexible, adaptable approach to be applicable to many tasks related to spatial understanding. This
zero-shot RIS system has the potential to significantly reduce reliance on costly human workers,
paving the way for broader, scalable deployment An et al. (2023); Lee et al. (2023b); An et al.
(2024; 2025b). For instance, in healthcare, zero-shot RIS could aid radiologists to highlight specific
regions of interest in medical scans (e.g., “the slightly darkened area near the lower part of the left
lung”) for detailed examination. Applying zero-shot RIS to recent advanced fields could enhance
the effectiveness and accessibility of vision-language systems involving precise interpretation of
free-form user input of referring expressions.

D.3 ETHICAL AND REPRODUCIBILITY STATEMENT

Our work aims to leverage pretrained CLIP to improve general-purpose zero-shot RIS performance.
The unintended bias may occur from the pretrained model itself; however, a comprehensive analysis
and mitigation of such biases are beyond the scope of this work, which focuses on the core segmen-
tation task. We provide data and code in the supplementary materials to ensure the reproducibility
of our research.
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