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1 EXPERIMENTAL DATASETS

The detailed information of experimental datasets used in this paper is shown in Table 1. These
datasets are selected according to different criteria, such as scene complexity, acquisition technology,
and data quality. (i) Diverse application scenarios. Three typical application scenarios of point cloud
registration are covered, namely object models, indoor scenes, and outdoor scenes. (ii) Different data
modalities. Since sensors may vary with different applications, different sensor technologies will
produce point clouds of different qualities. For example, there is real noise in Kinect captured data.
Therefore, it is necessary to consider the performance differences of registration methods under
different data modalities. (iii) Rich overlap ratios. In point cloud registration, data scanned from
different angles usually have limited overlap. It naturally leads to many correspondences falling
outside the overlapping area. (iv) Different initial misalignment. The rich initial rotation errors and
translation errors put forward higher requirements on the convergence of the algorithms.

Table 1: Detailed information of experimental datasets.

Dataset Modality Challenge Scenario Rotation Translation
Stanford Kinect

Initial Misalignment,
Noise, Outlier, Limited Overlap

Object 78.62 149.04
3DMatch LiDAR Indoor Scenes 80.32 185.63

3DLoMatch LiDAR Indoor Scenes 83.49 197.08
KITTI LiDAR Outdoor Scenes 79.51 298.74

2 VISUALIZATION OF EXPERIMENTAL RESULTS

The visualization results of all methods in the Stanford repository are shown in Figure 1. Visually,
no obvious registration deviation is observed of our AGNC method on all models. The registered
point clouds are well matched and basically consistent with the ground-truth registration results.
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Figure 1: Visualization results of all methods with 50% outliers rate on the Stanford repository.
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Figure 2 shows the rotation error and translation error of our AGNC method under different outlier
levels. From the results, it can be seen that with the increase of outlier level, the registration error
gradually becomes larger. Even in the case of higher outliers, the error is still within an acceptable
range.
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Figure 2: Rotation and translation error of AGNC with various outlier rates on the 3DMatch dataset.

The visual results of point cloud registration by AGNC for indoor and outdoor scenes are shown
in Figures 3 and 4. The first and second rows show the state before registration and the ground
truth, respectively. The last row shows the registration results of the AGNC method. No significant
changes are observed in all the registration examples by our method. The registration results are
basically consistent with the ground-truth results.
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Figure 3: Visualization results of AGNC on the indoor scenes.
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Figure 4: Visualization results of AGNC on the outdoor scenes.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 COMPARE WITH OTHER SCALING SCHEMES

Our method is compared with two different scaling schemes, GradOpt (Hazan et al., 2016) and
ASKER(Le & Zach, 2020). Table 2 reports the results of convergence steps, runtime, and relative
accuracy on the Stanford dataset. The results show that our AGNC achieves the best results in both
speed and accuracy. Compared with the second-ranked ASKER, the convergence steps are increased
by 11 stages, the runtime is improved by 3.92 and with higher accuracy.

Table 2: Compare with different scaling schemes, time unit is in ms.

Method Stages Runtime Accuracy
GradOpt 40 18.46 Low
ASKER 17 10.65 Medium
AGNC 6 6.73 High

4 DISCUSSION OF SPECIFIC APPLICATIONS

Point cloud registration technology plays a vital role in the application fields of virtual reality and
self-driving cars. However, the requirements and tolerances for registration accuracy vary in differ-
ent application scenarios.

In virtual reality application scenarios, such as room-scale virtual reality, the goal is usually to build
an overall model of the space rather than precise positioning. In this case, large translation errors
after registration are usually acceptable and have little impact on the user experience. They will
not be noticed in large space scenes, so they do not affect the immersion. In the environmental
modeling of autonomous vehicles, errors within a tolerable range will not have a significant impact
on the vehicle’s path planning and decision-making. In urban environments, autonomous driving
systems rely on real-time data updates, multi-sensor registration and fusion technology to correct
positioning. They work together to provide continuous and high-precision position information.
Therefore, registration errors within a tolerable range will not affect the safe driving of the vehicle.
Of course, significant errors may result in critical positioning deviations, causing the vehicle to
deviate from the road, fail to follow the lane, or even collide with traffic lights.
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