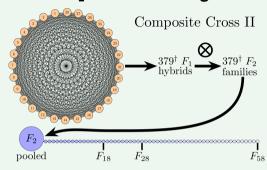

Using topology to analyze the shape of barley

Check the animated version of my poster!

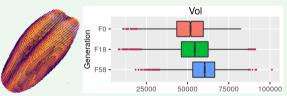
bit.ly/barley_tda

Euler meets plant science


Erik Amézquita ^{1, ©}

■ amezqui3@msu.edu

Michelle Quigley 2 Tim Ophelders 1 Elizabeth Munch 1 Daniel Chitwood 2 Jacob Landis 3,4 Daniel Koenig 3


- ¹ Computational Math, Science & Engineering, Michigan State University
- ² Horticulture, Michigan State University
- ³ Botany and Plant Sciences, University of California, Riverside
- Integrative Plant Science, Cornell University

Experimental Design

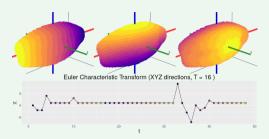
• 28 founders (land races). 58 generations.

Image processing to measure seeds

- 3D X-ray CT scan data: 875 barley spikes.
- 38,000 seeds: generations F0, F18, and F58.
- Distribution of length, height, width, volume, etc.

SVM Classification Results

Shape descriptors	No. descriptors	Classification accuracy
Traditional	11	51.9% — 54.2%
Topological (ECT + KPCA)	12	43.2% — 45.7%
Combined (Trad + Topo)	23	69.2% — 71.9%


Acknowledgements

This work is supported in part by Michigan State University and the National Science Foundation Research Traineeship Program (DGE-1828149).


Euler characteristic transform (ECT)

$$\chi = \#(\text{Vertices}) - \#(\text{Edges}) + \#(\text{Faces})$$

- ECT is the record of how the EC changes as we reconstruct a given object in all possible directions.
- The ECT summarizes all shape information [1].

SVM: Traditional + ECT + KPCA

- SVM to classify 3,000 seeds from the 28 founders
- (80% training vs 20% testing) \times 50 times
- 70% classification accuracy

Deference

[1] K. Turner, S. Mukherjee, and D. M. Boyer, "Persistent homology transform for modeling shapes and surfaces," *Information and Inference*, vol. 3, no. 4, pp. 310-344, Dec. 2014.