
Responsibility Statement

The authors bear all responsibility in case of violation of rights in the proposed environments and the
included benchmark. All the proposed environments use an MIT license for their source code.

A New Multi-Agent Reinforcement Learning Environments

As part of this work, we developed and open-sourced two novel MARL environments focusing
on cooperation and sparse-rewards. In this supplementary section, we will provide details about
both added environments including our motivation for creating them, accessibility and licensing,
installation information, a description of their interface and code snippets to get started as well as
further details on their observations, reward functions and dynamics. For high-level descriptions,
see Sections 3.4 and 3.5 and see Appendix C for more information on the specific tasks used for the
benchmark.

A.1 Motivation

Environments for MARL evaluation are scattered and few environments have been estab-
lished as standard benchmarking problems. Most notably, the Starcraft Multi-Agent Challenge
(SMAC) [Samvelyan et al., 2019] and Multi-Agent Particle Environment (MPE) [Mordatch and
Abbeel, 2017] are prominent examples for MARL environments. While more environments exist,
they often represent different types of games such as turn-based board games [Bard et al., 2020]
or contain image frames as observations [Johnson et al., 2016, Beattie et al., 2016, Resnick et al.,
2018]. Environments with these properties often require further solutions not specific to MARL.
Additionally, we found that the core challenge of exploration, for which a multitude of environments
exist for single-agent RL research (e.g. Atari games such as Montezuma’s Revenge [Bellemare et al.,
2013]), is underrepresented in MARL environments. The Level-Based Foraging and Multi-Robot
Warehouse environments aim to represent sparse-reward hard exploration problems which require
significant cooperation across agents. Both environments are flexible in their configurations to enable
partial- or full-observability, fully-cooperative or mixed reward settings and allow faster training than
a multitude of other environments (see Appendix A.8 for a comparison of simulation speeds across
all environments used in the benchmark).

A.2 Accessibility and Licensing

Both environments are publicly available on GitHub under the following links.

Table 4: GitHub repositories for Level-Based Foraging and Multi-Robot Warehouse environments.

Level-Based Foraging https://github.com/uoe-agents/lb-foraging

Multi-Robot Warehouse https://github.com/uoe-agents/robotic-warehouse

The environments are licensed under the MIT license which can be found in the LICENSE file within
respective repositories. Both environments will be supported and maintained by the authors as
needed.

A.3 Installation

Our novel environments can be installed as Python packages. We recommend users to setup a
virtual environment to manage packages and dependencies for individual projects, e.g. using venv
or Anaconda. Then the code repository can be cloned using git and installed as a package using the
Python package manager pip as follows at the example of the Multi-Robot Warehouse environment:

$ git clone git@github.com:uoe-agents/robotic-warehouse.git
$ cd robotic-warehouse
$ pip install -e .

In order to install the Level-Based Foraging environment, execute the following, similar code:
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$ git clone git@github.com:uoe-agents/lb-foraging.git
$ cd lb-foraging
$ pip install -e .

A.4 Environment Interface

Both environments follow the interface framework of OpenAI’s Gym. Below, we will piece-by-piece
explain the interface and commands needed to interact with the installed environment within Python.

Package import First, the installed package and gym (installed above as dependency) need to be
imported (shown at the example of the Multi-Robot Warehouse):

import gym
import robotic_warehouse

Environment creation Following the import of the required packages, the environment can be
instantiated. A large selection of configurations for both environments are already registered to gym
upon importing the package. These can simply be created:

env = gym.make("rware-tiny-2ag-v1")

For an overview over the naming of these environment configuration names, see Appendix A.5.

Start an episode A new episode within the environment can be started with the following command:

obs = env.reset()

This function returns the initial state or observation of the environment, indicating s0.

Environment steps In order to interact with the environment, an action for each agent should
be provided. In the case of the "rware-tiny-2ag-v1", there are two agents in the environment.
Therefore, the environment expects to receive an action for all agents. In order to gain insight into the
shape of expected actions or received observations, the respective spaces of the environment can be
inspected:

env.action_space # Tuple(Discrete(5), Discrete(5))
env.observation_space # Tuple(Box(XX,), Box(XX,))

Using the action space of the environment, we can sample random valid actions and take a step in the
environment:

actions = env.action_space.sample() # the action space can be sampled
print(actions) # e.g. (1, 0)
next_obs, reward, done, info = env.step(actions)

print(done) # [False, False]
print(reward) # [0.0, 0.0]

Note, that for these multi-agent environments, actions are a list or tuple containing individual
actions for all agents. Similarly, the received values are also lists of observations at the next timestep
(next_obs), rewards for the completed transition (reward), flags indicating whether the episode has
terminated (done) and an additional dictionary (info) which may contain meta-information on the
transition or episode.

Rendering Both novel environments support rendering to visualise states and inspect agents’
behaviour. See Figure 4 for exemplary visualisations of these environments.

env.render()

15

https://gym.openai.com/


Single episode We can put all these steps together for a script which executes a single episode
using random actions and rendering the environment:

import gym
import robotic_warehouse

env = gym.make("rware-tiny-2ag-v1")

obs = env.reset()
done = [False] * env.n_agents

while not all(done):
actions = env.action_space.sample()
next_obs, reward, done, info = env.step(actions)
env.render()

env.close()

A.5 Environment Naming

In this section, we will briefly outline the configuration possibilities for Level-Based Foraging and
Multi-Robot Warehouse environments.

Level-Based Foraging For the Level-Based Foraging environment, we can create an environment
as follows

env = gym.make("Foraging<obs>-<x_size>x<y_size>-<n_agents>p-<food>f<force_c>-v1")

with the following options for each field:

• <obs>: This optional field can either be empty ("") or indicate a partially observable task
with visibility radius of two fields ("-2s).

• <x_size>: This field indicates the horizontal size of the environment map and can by
default take any values between 5 and 20.

• <y_size>: This field indicates the vertical size of the environment map and can by default
take any values between 5 and 20. It should be noted, that upon import only environments
with square dimensions (<x_size> = <y_size>) are registered and ready for creation.

• <n_agents>: This field indicates the number of agents within the environment. By default,
any values between 2 and 5 are automatically registered.

• <food>: This field indicates the number of food items scattered within the environment. It
can take any values between 1 and 10 by default.

• <force_c>: This optional field can either be empty ("") or indicate a task with only
"cooperative food" ("-coop". In the latter case, the environment will only contain food of a
level such that all agents have to cooperate in order to pick the food up. This mode should
only be used with up to four agents.

In order to register environments of more different configurations, see the current registration.

Multi-Robot Warehouse For the Multi-Robot Warehouse environment, we can create an environ-
ment as follows

env = gym.make("rware-<size>-<num_agents>ag<diff>-v1")

with the following options for each field:

• <size>: This field represents the size of the warehouse. By default the size can take on
four values: "tiny", "small", "medium" and "large". These size identifiers define the
number of rows and columns of groups of shelves within the warehouse and set these to be
(1, 3), (2, 3), (2, 5) and (3, 5) respectively. By default, each group of shelves consists of 16
shelves organised in a 8× 2 grid.
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(a) Foraging-8x8-2p-3f-v1 (b) rware-tiny-4ag-v1

Figure 4: Environment renderings matching observations for (a) Level-Based Foraging and (b)
Multi-Robot Warehouse.

• <num_agents>: This field indicates the number of agents and can by default take any values
between 1 and 20.

• <diff>: This optional field can indicate changes in the difficulty of the environment given
by the total number of requests at a time. Agents have to collect and deliver specific
requested shelves. By default, there are N requests at each point in time with N being the
number of agents. With this field, the number of requests can be set to half ("-hard") or
double ("-easy") the number of agents.

Additionally, by default agents observe only fields within immediate grids next to their location and
episodes terminate after 500 steps. For a more extensive set of configurations, including variations of
visibility, see the full registration.

A.6 Environment Details - Level-Based Foraging

Below, we will provide additional details to observations, actions and dynamics for the Level-Based
Foraging environment.

Observations As seen above, agents receive observations at each timestep which correspond to
the full state of the environment or a partial view in the case of partial observability. Below, we will
outline a realistic observation at the example of the Foraging-8x8-2p-3f-v1 task visualised in
Figure 4a:

(
array([1., 4., 2., 3., 2., 1., 3., 5., 1., 6., 6., 2., 4., 4., 1.],

dtype=float32),
array([1., 4., 2., 3., 2., 1., 3., 5., 1., 4., 4., 1., 6., 6., 2.],

dtype=float32)
)

The observation consists of two arrays, each corresponding to the observation of one of the two agents
within the environment. Within that vector, triplets of the form (x, y, level) are written. Specifically,
the first three (number of food items in the environment) triplets for a total of 9 elements contain the
x and y coordinates and level of each food item, and the following two (number of agents) triplets
have the respective values for each agent. The coordinates always start from the bottom left square in
the observability radius of the agent. When food items or agents are not visible, either because they
are outside of the observable radius or the food has been picked up, then the respective values are
replaced with (-1, -1, 0).

Actions In Level-Based Foraging environments, each agent has six possible discrete actions to
choose at each timestep:

Ai = {Noop, Move North, Move South, Move West, Move East, Pickup}
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While the first action corresponds to the action simply staying within its grid and the last action
being used to pickup nearby food, the remaining four actions encode discrete 2D navigation. Upon
choosing these actions, the agent moves a single cell in the chosen direction within the grid.

Rewards Agents only receive non-zero reward for picking up food within the Level-Based Foraging
environment. The reward for picking up food depends on the level of the collected food as well as the
level of each contributing agent. The reward of agent i for picking up food is defined as

ri =
FoodLevel ∗AgentLevel∑

FoodLevels
∑
LoadingAgentsLevel

with normalisation. Rewards are normalised to ensure that the sum of all agents’ returns on a solved
episode equals to one.

Dynamics The transition function of the Level-Based Foraging domain is fairly straightforward.
Agents transition to cells following their movement based on chosen actions. Furthermore, agents
successfully collect food as long as the sum of the levels of all loading agents is greater or equal to
the level of the food.

A.7 Environment Details - Multi-Robot Warehouse

Now, we will provide additional details to observations, actions and dynamics for the Multi-Robot
Warehouse environment.

Observations Agent observations for the Multi-Robot Warehouse environment are defined to be
partially observable and contain all information about cells in the immediate proximity of an agent.
By default, each agent observes information within a 3 × 3 square centred on the agent, but the
visibility range can be modified as an environment parameter. Agents observe their own location,
rotation and load, the location and rotation of other observed agents as well as nearby shelves with
information whether those are requested or not. For the precise details, see the example below
matching the state visualised in Figure 4b:

(
array([8., 3., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1.,

0., 0., 0., 1., 1., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
1., 0., 1., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 1.,
1., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0.,
0., 0., 0.], dtype=float32),

array([4., 9., 0., 0., 0., 1., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 1.,
0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
0., 0., 0.], dtype=float32),

...
)

Again, each element of the list is the observation that corresponds to each of the agents. The first
three values of the vectors correspond to the agent itself with the x and y coordinates, and a value
of “1” or “0” depending on whether the agent is currently carrying a shelf. The next four values are
a one-hot encoding of the direction the current agent is facing (up/down/left/right respectively for
each item in the one-hot encoding). Then, a single value of “1” or “0” represents whether the agent is
currently in a location that acts as a path and therefore not allowed to place shelves on that location.
The rest of the values can be split into 9 groups of 7 elements, each group corresponding to a square
in the observation radius (3x3 centred around the agent - can be increased from the default for more
visibility). In this group, the elements are only ones and zeros and correspond to: agent exists in the
square, one-hot encoding (4 elements) of direction of agent (if exists), shelf exists in the square, shelf
(if exists) is currently requested to be delivered to the goal location.

Actions The action space within the Multi-Robot Warehouse environment is very similar to the
Level-Based Foraging domain with four discrete actions to choose from:

Ai = {Turn Left, Turn Right, Move Forward, Load/ Unload Shelf}
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Figure 5: Mean simulation time per step for all environments. Bars indicate standard deviations of
simulation speed across all tasks within the environments.

Agents also have to navigate a 2D grid-world, but they are only able to move forward or rotate to
change their orientation in 90 ° steps in either direction. Agents are unable to move upon cells which
are already occupied. Besides movement, agents are only able to load and unload shelves. Loading
shelves is only possible when the agent is located at the location of an unloaded shelf. Similarly,
agents are only able to unload a currently loaded shelf on a location where no shelf is located but is
within a group where initially a shelf has been stored.

Rewards At each time, a set number of shelves R is requested. Agents are rewarded with a reward
of 1 for successfully delivering a requested shelf to a goal location at the bottom of the warehouse.
A significant challenge in this environment is for agents to successfully deliver requested shelves
but also finding an empty location to return the previously delivered shelf. Without unloading the
previously delivered shelf, the agent is unable to collect new requested shelves. Having multiple steps
between deliveries leads to a very sparse reward signal.

Dynamics Agents move through the grid-world as expected given their chosen actions. Whenever
multiple agents collide, i.e. they attempt to move to the same location, movement is resolved in a
way to maximise mobility. When two or more agents attempt to move to the same location, we
prioritise agents to move which also blocks other agents. Otherwise, the selection is done arbitrarily.
Additionally, it is worth noting that a shelf is uniformly sampled and added to the list of currently
requested shelves whenever a previously requested shelf is delivered to a goal location. Therefore, R
requested shelves are constantly ensured. Note thatR directly affects the difficulty of the environment.
A small R, especially on a larger grid, dramatically affects the sparsity of the reward and thus makes
exploration more difficult as randomly delivering a requested shelf becomes increasingly improbable.

A.8 Environments Simulation Speed Comparison

In order to demonstrate and compare simulation speed of all considered environments within the
conducted benchmark, we simulate 10,000 environments steps using random action selection. En-
vironments were simulated without rendering to represent conditions at training or evaluation time.
Total time and time per step are reported in Table 5. Additionally, mean simulation time per step with
standard deviations across for all environments are reported in Figure 5.
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Table 5: Simulation time for 10,000 steps and time per step in all 25 tasks.

Tasks Number of
agents

Total time
[in s]

Time per step
[in ms]

M
at

ri
x

G
am

es Climbing 2 0.079 0.008
Penalty k=0 2 0.079 0.008
Penalty k=-25 2 0.078 0.008
Penalty k=-50 2 0.080 0.008
Penalty k=-25 2 0.081 0.008
Penalty k=-25 2 0.078 0.008

M
PE

Speaker-Listener 2 0.852 0.085
Spread 3 4.395 0.439
Adversary 3 1.651 0.165
Tag 4 4.911 0.491

SM
A

C

2s_vs_1sc 2 7.798 0.780
3s5z 8 18.656 1.866
MMM2 10 22.480 2.248
corridor 6 24.890 2.489
3s_vs_5z 3 10.266 1.027

L
B

F

15x15-4p-3f 4 2.516 0.252
8x8-2p-2f-2s-c 2 1.210 0.121
10x10-3p-3f-2s 3 1.662 0.166
8x8-2p-2f-c 2 1.253 0.125
15x15-4p-5f 4 2.559 0.256
15x15-3p-5f 3 1.939 0.194
10x10-3p-3f 3 1.849 0.185

R
W

A
R

E Tiny 2p 2 4.469 0.447
Tiny 4p 4 7.976 0.798
Small 4p 4 7.974 0.797

While matrix games are unsurprisingly the fastest environments to simulate due to their simplicity,
Level-Based Foraging tasks are faster to simulate compared to all other environments aside simplest
Multi-Agent Particle environment tasks. Despite their arguably more complex environments, the
Multi-Robot Warehouse environment is only marginally more expensive to simulate compared to the
Multi-Agent Particle environment. It is also worth noting that the cost of simulation of Level-Based
Foraging and Multi-Robot Warehouse tasks mostly depends on the number of agents. This allows
to simulate large warehouses without additional cost. Unsurprisingly, the Starcraft Multi-Agent
Challenge is by far the most expensive environment to simulate as it requires to run the complex
game of StarCraft II.

Speed comparisons are conducted on a personal computer running Ubuntu 20.04.2 with a Intel Core
i7-10750H CPU (six cores at 2.60GHz) and 16GB of RAM. Simulation was executed on a single
CPU thread.

B The EPyMARL Codebase

As part of this work we extended the well-known PyMARL codebase [Samvelyan et al., 2019] to
include more algorithms, support more environments as well as allow for more flexible tuning of the
implementation details.
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B.1 Motivation

Implementation details in Deep RL algorithms significantly affect their achieved returns [Engstrom
et al., 2019]. This problem becomes even more apparent in deep MARL research, where the
existence of multiple agents significantly increases the amount of implementation details that affect
the performance. Therefore, it is often difficult to measure the benefits of newly proposed algorithms
compared to existing ones. We believe that a unified codebase, which implements the majority of
MARL algorithms used as building blocks in research, would significantly benefit the community.
Finally, EPyMARL allows for tuning of additional implementation details compared to PyMARL,
including parameter sharing, reward standardisation and entropy regularisation.

B.2 Accessibility and Licensing

All code for EPyMARL is publicly available open-source on GitHub under the following link:
https://github.com/uoe-agents/epymarl.

All source code that has been taken from the PyMARL repository was licensed (and remains so)
under the Apache License v2.0 (included in LICENSE file). Any new code is also licensed under the
Apache License v2.0. The NOTICE file in the GitHub repository contains information about the files
that have been added or modified compared to the original PyMARL codebase.

B.3 Installation

In the GitHub repository of EPyMARL, the file requirements.txt contains all Python packages that
have to be install as dependencies in order to use the codebase. We recommend using a Python virtual
environment for training MARL algorithm using EPyMARL. After activating the virtual environment,
the following commands will install the required packages

$ git clone git@github.com:uoe-agents/epymarl.git
$ cd epymarl
$ pip install -r requirements.txt

B.4 Execution

EPyMARL is written in Python 3. The neural networks and their operations are implemented using
the Pytorch framework [Paszke et al., 2019]. To train an algorithm (QMIX in this example) in a
Gym-based environment, execute the following command from the home folder of EPyMARL:

$ python3 src/main.py --config=qmix --env-config=gymma with
env_args.time_limit=50 env_args.key="lbforaging:Foraging-8x8-2p-3f-v0"↪→

where config is the configuration of the algorithm, gymma is a Gym compatible wrapper,
env_args.time_limit is the time limit of the task (number of steps before the episode ends),
and env_args.key is the name of the task. Default configuration for all algorithms can be found in
the src/config/algs folder of the codebase.

C Task Specifications

Below, we provide details and descriptions of the environments and tasks used for the evaluation.

C.1 Multi-Agent Particle Environment [Mordatch and Abbeel, 2017]

This environment consists of multiple tasks involving the cooperation and competition between
agents. All tasks involve particles and landmarks in a continuous two-dimensional environment.
Observations consist of high-level feature vectors and agents are receiving dense reward signals.
The action space among all tasks and agents is discrete and usually includes five possible actions
corresponding to no movement, move right, move left, move up or move down. All experiments in
this environment are executed with a maximum episode length of 25, i.e. episodes are terminated
after 25 steps and a new episode is started. All considered tasks are visualised in Figure 6.
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(a) (b) (c) (d)

Figure 6: Illustration of MPE tasks (a) Speaker-Listener, (b) Spread, (c) Adversary and (d) Predator-
Prey.

MPE Speaker-Listener: In this task, one static speaker agent has to communicate a goal landmark
to a listening agent capable of moving. There are a total of three landmarks in the environment
and both agents are rewarded with the negative Euclidean distance of the listener agent towards the
goal landmark. The speaker agent only observes the colour of the goal landmark. Meanwhile, the
listener agent receives its velocity, relative position to each landmark and the communication of the
speaker agent as its observation. As actions, the speaker agent has three possible options which have
to be trained to encode the goal landmark while the listener agent follows the typical five discrete
movement actions of MPE tasks.

MPE Spread: In this task, three agents are trained to move to three landmarks while avoiding
collisions with each other. All agents receive their velocity, position, relative position to all other
agents and landmarks. The action space of each agent contains five discrete movement actions.
Agents are rewarded with the sum of negative minimum distances from each landmark to any agent
and a additional term is added to punish collisions among agents.

MPE Adversary: In this task, two cooperating agents compete with a third adversary agent. There
are two landmarks out of which one is randomly selected to be the goal landmark. Cooperative
agents receive their relative position to the goal as well as relative position to all other agents and
landmarks as observations. However, the adversary agent observes all relative positions without
receiving information about the goal landmark. All agents have five discrete movement actions.
Agents are rewarded with the negative minimum distance to the goal while the cooperative agents are
additionally rewarded for the distance of the adversary agent to the goal landmark. Therefore, the
cooperative agents have to move to both landmarks to avoid the adversary from identifying which
landmark is the goal and reaching it as well. For this competitive scenario, we use a fully cooperative
version where the adversary agent is controlled by a pretrained model obtained by training all agents
using the MADDPG algorithm for 25,000 episodes.

MPE Predator-Prey: In this task, three cooperating predators hunt a forth agent controlling a faster
prey. Two landmarks are placed in the environment as obstacles. All agents receive their own velocity
and position as well as relative positions to all other landmarks and agents as observations. Predator
agents also observe the velocity of the prey. All agents choose among five movement actions. The
agent controlling the prey is punished for any collisions with predators as well as for leaving the
observable environment area (to prevent it from simply running away without needing to learn to
evade). Predator agents are collectively rewarded for collisions with the prey. We employ a fully
cooperative version of this task with a pretrained prey agent. Just as for the Adversary task, the model
for the prey is obtained by training all agents using the MADDPG algorithm for 25,000 episodes.

C.2 StarCraft Multi-Agent Challenge [Samvelyan et al., 2019]

The StarCraft Multi-Agent Challenge is a set of fully cooperative, partially observable multi-agent
tasks. This environment implements a variety of micromanagement tasks based on the popular real-
time strategy game StarCraft II5 and makes use of the StarCraft II Learning Environment (SC2LE)
[Vinyals et al., 2017]. Each task is a specific combat scenario in which a team of agents, each agent
controlling an individual unit, battles against an army controlled by the centralised built-in AI of

5StarCraft II is a trademark of Blizzard EntertainmentTM.
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Figure 7: Examples of SMAC tasks with various team configurations and unit types.

the StarCraft game. These tasks require agents to learn precise sequences of actions to enable skills
like kiting as well as coordinate their actions to focus their attention on specific opposing units. All
considered tasks are symmetric in their structure, i.e. both armies consist of the same units. Figure 7
visualises each considered task in this environment.

SMAC 2s_vs_1sc: In this scenario, agents control two stalker units and defeat the enemy team
consisting of a single, game-controlled spine crawler.

SMAC 3s5z: In this symmetric scenario, each team controls three stalkers and five zerglings for a
total of eight agents.

SMAC MMM2: In this symmetric scenario, each team controls seven marines, two marauders, and
one medivac unit. The medivac unit assists other team members by healing them instead of inflicting
damage to the enemy team.

SMAC corridor: In this asymmetric scenario, agents control six zealots fighting an enemy team
of 24 zerglings controlled by the game. This tasks requires agents to make effective use of terrain
features and employ certain game-specific tricks to win.

SMAC 3s_vs_5z: Finally, in this scenario a team of three stalkers is controlled by agents to fight
against a team of five game-controlled zerglings.

C.3 Level-Based Foraging [Albrecht and Ramamoorthy, 2013]

The Level-Based Foraging environment consists of tasks focusing on the coordination of involved
agents. The task for each agent is to navigate the grid-world map and collect items. Each agent and
item is assigned a level and items are randomly scattered in the environment. In order to collect
an item, agents have to choose a certain action next to the item. However, such collection is only
successful if the sum of involved agents’ levels is equal or greater than the item level. Agents receive
reward equal to the level of the collected item. Figure 8 shows the tasks used for our experiments.
Unless otherwise specified, every agent can observe the whole map, including the positions and levels
of all the entities and can choose to act by moving in one of four directions or attempt to pick up an
item.

The tasks that were selected are denoted first by the grid-world size (e.g. 15× 15 means a 15 by 15
grid-world). Then, the number of agents is shown (e.g. “4p” means four agents/players), and the
number of items scattered in the grid (e.g. “3f” means three food items). We also have some special
flags, the “2s” which denotes partial observability with a range of two squares. In those tasks, agents
can only observe items or other agents as long as they are located in a square of size 5x5 centred
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Figure 8: Examples of LBF tasks with variable agents, grid-sizes and food items.

around them. Finally, the flag “c” means a cooperative-only variant were all items can only be picked
up if all agents in the level attempt to load it simultaneously.

There are many aspects of LBF that are interesting. An increased number of agents and grid-world
size naturally makes the problem harder, requiring agents to coordinate to cover a larger area. In
addition, partial observability tasks could benefit from agents modelling other agents since it can
improve coordination. A tasks that we were unable to get any algorithm to learn is the cooperative-
only variant with three or more agents. In that case, many agents are required to coordinate to be
able to gather any reward, making the task very hard to solve given the sparsity of the rewards.
This last task could on its own provide an interesting challenge for research on multi-agent intrinsic
exploration.

Notably, LBF is not only designed for a cooperative reward. In other settings, it can work as a mixed
competitive/cooperative environment, where agents must switch between cooperating (for gathering
items that they can only pick with others) and competing for items that they can load on their own
(without sharing the item reward).

C.4 Multi-Robot Warehouse

The multi-robot warehouse environment is a set of collaborative, partially observable multi-agent
tasks simulating a warehouse operated by robots. Each agent controls a single robot aiming to collect
requested shelves. At all times, N shelves are requested and each timestep a request is delivered to
the goal location, a new (currently unrequested) shelf is uniformly sampled and added to the list of
requests. Agents observe a 3× 3 grid including information about potentially close agents, given by
their location and rotation, as well as information on surrounding shelves and a list of requests. The
action space is discrete and contains of four actions corresponding to turning left or right, moving
forward and loading or unloading a shelf. Agents are only rewarded whenever an agent is delivering a
requested shelf to a goal position. Therefore, a very specific and long sequence of actions is required
to receive any non-zero rewards, making this environment very sparsely rewarded. We use multi-robot
warehouse tasks with warehouses of varying size and number of agents N (which is also equal to the
number of requested shelves). Figure 9 illustrates the tiny and small warehouses with 2 agents.

For this environment, we have defined three tasks. The “tiny” map is a grid-world of 11 by 11
squares and the “’small” is 11 by 20 squares. The “2p” and “4p” signify two and four robots (agents)
respectively. The larger map is considerably harder given the increased sparsity of the rewards.

There are many challenges in the multi-robot warehouse domain as well. The tasks we test in
the benchmark paper are limited because of the algorithms’ inability to learn and decompose the
reward under such sparse reward settings. However, if this challenge is surpassed, either by using a
non-cooperative setting or a new algorithm, then the domain offers additional challenges by requiring
algorithms to scale to a large number of agents, communicate intentions to increase efficiency and
more. This environment is based on a real-world problem, and scaling to scenarios with large maps
and hundreds of agents still requires a considerable research effort.

D Computational Cost

Approximately 138,916 CPU hours were spent for executing the experiments presented in the paper
without considering the CPU hours required for the hyperparameter search. Figure 10 presents the

24



(a) (b)

Figure 9: Illustrations of (a) Tiny 2p and (b) Small 4p.

cumulative CPU hours required to train each algorithm in each environments (summed over the
different tasks and seeds) with and without parameter sharing using the best identified hyperparameter
configurations reported in Appendix I. We observe that the computational cost of running experiments
in SMAC is significantly higher compared to any other environment. Finally, the CPU hours required
for training the algorithms without sharing is slightly higher compared to training with parameter
sharing.

IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
0

5

10

15

20

25

CP
U 

Ho
ur

s

Matrix

IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
0

50

100

150

200

250

CP
U 

Ho
ur

s

MPE

IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
0

2000

4000

6000

8000

10000

CP
U 

Ho
ur

s

SMAC

IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
0

50

100

150

200

250

300

350

CP
U 

Ho
ur

s

LBF

IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
0

100

200

300

400

500

600

700

CP
U 

Ho
ur

s

RWARE

IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
0

5

10

15

20

25

30

CP
U 

Ho
ur

s

Matrix

IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
0

50

100

150

200

250

300

CP
U 

Ho
ur

s

MPE

IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
0

2000

4000

6000

8000

10000

CP
U 

Ho
ur

s

SMAC

IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
0

100

200

300

400

500

600

700

CP
U 

Ho
ur

s

LBF

IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
0

100

200

300

400

500

600

CP
U 

Ho
ur

s

RWARE

Figure 10: CPU hours required to execute the experiments for each algorithm and environment with
(top row) and without (bottom row) parameter sharing.
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E Additional Results

Table 6 presents the average returns over training of the nine algorithms in the 25 different tasks with
parameter sharing. Tables 7 and 8 present the maximum and the average returns respectively of the
nine algorithms in the 25 different tasks without parameter sharing.

Table 6: Average returns and 95% confidence interval over five seeds for all nine algorithms with
parameter sharing in all 25 tasks.

Tasks \Algs. IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX

M
at

ri
x

G
am

es Climbing 134.65± 0.63 169.34± 1.09 170.70± 1.77 156.45± 8.09 177.31± 49.52 167.89± 4.36 170.76± 1.79 125.50± 0.54 125.50± 0.54
Penalty k=0 245.64± 1.70 244.27± 1.13 247.44± 0.59 246.39± 0.45 245.63± 0.64 244.78± 0.87 247.69± 0.09 239.80± 2.93 243.76± 2.36
Penalty k=-25 44.65± 2.67 48.29± 0.30 48.44± 0.21 48.59± 0.05 48.33± 0.20 48.45± 0.12 48.46± 0.22 43.32± 5.98 45.99± 3.27
Penalty k=-50 39.70± 5.15 46.56± 0.57 46.79± 0.48 47.22± 0.17 46.61± 0.44 46.81± 0.28 46.82± 0.49 39.70± 9.63 42.28± 6.31
Penalty k=-75 34.75± 7.62 44.82± 0.84 45.15± 0.75 45.83± 0.28 44.88± 0.68 45.16± 0.43 45.19± 0.76 34.75± 14.26 38.56± 9.34
Penalty k=-100 29.80± 10.10 43.08± 1.13 43.50± 1.02 44.42± 0.36 43.15± 0.93 43.51± 0.59 43.55± 1.04 29.80± 18.89 34.85± 12.37

M
PE

Speaker-Listener −27.64± 3.90 −17.61± 2.99 −17.42± 3.23 −18.46± 0.68 −38.20± 6.29 −15.17± 0.44 −15.01± 0.64 −27.41± 3.11 −21.29± 2.79
Spread −155.81± 1.50 −152.72± 0.96 −149.89± 2.91 −157.10± 2.30 −245.22± 84.46 −144.73± 4.09 −149.26± 0.94 −148.57± 1.67 −154.70± 4.90
Adversary 7.58± 0.14 10.18± 0.05 10.21± 0.16 7.80± 1.43 6.12± 0.35 10.11± 0.14 9.61± 0.07 7.64± 0.21 8.11± 0.37
Tag 13.70± 1.97 12.43± 1.05 13.60± 2.95 6.65± 3.90 5.11± 0.58 11.93± 2.09 13.78± 4.40 15.24± 1.59 15.00± 2.73

SM
A

C

2s_vs_1sc 14.76± 0.45 19.74± 0.02 19.44± 0.29 10.15± 1.32 9.04± 0.83 17.89± 0.85 19.67± 0.09 16.11± 0.23 15.98± 0.77
3s5z 14.09± 0.28 14.84± 1.29 11.80± 1.51 8.60± 2.35 15.51± 0.98 18.82± 0.14 19.09± 0.38 17.85± 0.25 18.36± 0.07
corridor 10.91± 0.82 13.14± 1.24 14.60± 3.43 5.15± 0.25 7.00± 0.15 7.89± 0.28 13.20± 2.98 11.14± 1.66 11.67± 1.88
MMM2 10.11± 0.32 7.31± 1.89 9.97± 1.33 3.42± 0.05 6.50± 0.17 9.07± 1.35 15.39± 0.16 15.93± 0.23 15.63± 0.32
3s_vs_5z 17.35± 0.23 4.32± 0.04 13.38± 4.36 5.34± 0.47 1.15± 1.35 6.17± 0.39 13.09± 2.63 14.72± 4.01 9.68± 1.87

L
B

F

8x8-2p-2f-c 0.75± 0.04 0.97± 0.00 0.94± 0.02 0.32± 0.02 0.32± 0.12 0.97± 0.00 0.95± 0.01 0.64± 0.09 0.39± 0.10
8x8-2p-2f-2s-c 0.86± 0.01 0.97± 0.00 0.50± 0.01 0.54± 0.05 0.24± 0.08 0.97± 0.00 0.77± 0.02 0.83± 0.01 0.77± 0.03
10x10-3p-3f 0.54± 0.02 0.95± 0.01 0.90± 0.02 0.20± 0.06 0.15± 0.05 0.95± 0.01 0.91± 0.01 0.40± 0.05 0.32± 0.07
10x10-3p-3f-2s 0.69± 0.02 0.84± 0.01 0.62± 0.01 0.27± 0.02 0.23± 0.06 0.85± 0.02 0.66± 0.01 0.64± 0.02 0.67± 0.01
15x15-3p-5f 0.09± 0.02 0.61± 0.06 0.41± 0.09 0.08± 0.00 0.06± 0.03 0.59± 0.09 0.43± 0.09 0.08± 0.01 0.04± 0.01
15x15-4p-3f 0.24± 0.05 0.89± 0.03 0.82± 0.06 0.13± 0.01 0.12± 0.03 0.92± 0.01 0.79± 0.03 0.16± 0.03 0.08± 0.01
15x15-4p-5f 0.15± 0.03 0.59± 0.06 0.40± 0.13 0.13± 0.01 0.07± 0.02 0.73± 0.02 0.39± 0.14 0.15± 0.02 0.09± 0.02

R
W

A
R

E Tiny 2p 0.04± 0.03 2.91± 0.45 12.63± 1.38 0.11± 0.07 0.13± 0.05 3.20± 0.41 15.42± 1.20 0.03± 0.01 0.03± 0.03
Tiny 4p 0.33± 0.13 10.30± 0.93 22.68± 7.40 0.28± 0.03 0.39± 0.06 14.39± 4.01 40.17± 1.42 0.29± 0.13 0.10± 0.09
Small 4p 0.03± 0.04 2.45± 0.18 9.19± 2.36 0.06± 0.02 0.08± 0.01 3.48± 0.42 18.12± 1.11 0.02± 0.03 0.01± 0.01

Table 7: Maximum returns and 95% confidence interval over five seeds for all nine algorithms
without parameter sharing in all 25 tasks.

Tasks \Algs. IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX

M
at

ri
x

G
am

es Climbing 150.00± 0.00 175.00± 0.00 175.00± 0.00 170.00± 10.00 195.00± 40.00 175.00± 0.00 175.00± 0.00 150.00± 0.00 155.00± 10.00
Penalty k=0 250.00± 0.00 250.00± 0.00 250.00± 0.00 249.94± 0.08 250.00± 0.00 250.00± 0.00 250.00± 0.00 250.00± 0.00 250.00± 0.00
Penalty k=-25 50.00± 0.00 50.00± 0.00 90.00± 80.00 89.99± 80.01 50.00± 0.00 130.00± 97.98 90.00± 80.00 50.00± 100.00 50.00± 100.00
Penalty k=-50 50.00± 0.00 50.00± 0.00 50.00± 0.00 49.98± 0.01 50.00± 0.00 50.00± 0.00 50.00± 0.00 50.00± 100.00 50.00± 100.00
Penalty k=-75 50.00± 0.00 50.00± 0.00 50.00± 0.00 49.98± 0.01 50.00± 0.00 50.00± 0.00 50.00± 0.00 50.00± 100.00 50.00± 100.00
Penalty k=-100 50.00± 0.00 50.00± 0.00 50.00± 0.00 49.98± 0.01 50.00± 0.00 50.00± 0.00 50.00± 0.00 50.00± 100.00 50.00± 100.00

M
PE

Speaker-Listener −18.61± 5.65 −17.08± 3.45 −15.56± 4.40 * −12.73± 0.73 * −26.50± 0.50 −13.66± 3.67 * −14.35± 3.56 * −15.47± 1.26 −11.59 ± 0.67
Spread −141.87± 1.68 −131.74± 4.33 * −132.46± 3.54 * −136.73± 0.83 −169.04± 2.72 −130.88± 2.44 * −128.64 ± 2.83 −142.13± 1.86 −130.97± 2.51 *
Adversary 9.09± 0.52 10.80± 1.97 * 11.17± 0.85 * 8.81± 0.61 9.18± 0.43 10.88± 2.43 * 12.04 ± 0.53 9.34± 0.57 11.32± 0.78 *
Tag 19.18± 2.30 16.04± 8.08 * 18.46± 5.19 * 2.82± 3.56 19.14± 7.50 * 26.50± 1.42 * 17.96± 8.82 * 18.44± 2.51 26.88 ± 5.61

SM
A

C

2s_vs_1sc 15.73± 1.08 20.23± 0.01 20.15± 0.10 * 10.35± 2.20 18.48± 3.28 * 19.88± 0.38 * 20.25 ± 0.01 17.22± 0.90 18.83± 0.47
3s5z 16.85± 1.43 14.44± 2.08 14.77± 2.51 15.05± 0.81 19.55± 0.45 * 19.38± 0.30 19.77 ± 0.11 19.08± 0.29 18.40± 0.70
MMM2 10.86± 1.04 8.38± 2.90 7.35± 0.48 4.92± 0.10 4.98± 0.42 10.79± 0.34 10.02± 0.19 16.20 ± 0.44 12.27± 2.28
corridor 11.06± 1.36 13.11± 4.27 * 10.29± 4.60 6.57± 0.53 8.34± 0.81 9.26± 3.08 8.51± 0.76 11.42± 2.18 * 15.12 ± 3.42
3s_vs_5z 11.80± 1.05 * 4.41± 0.02 4.26± 0.24 6.21± 1.97 4.13± 0.05 5.39± 0.74 4.62± 0.11 14.42± 2.22 * 15.13 ± 3.86

L
B

F

8x8-2p-2f-c 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.43± 0.02 0.95± 0.07 * 1.00 ± 0.00 1.00 ± 0.00 0.99± 0.01 * 0.57± 0.15
8x8-2p-2f-2s-c 0.99± 0.01 * 1.00 ± 0.00 0.83± 0.03 0.66± 0.04 0.92± 0.02 1.00 ± 0.00 0.92± 0.05 0.99± 0.01 * 0.98± 0.01
10x10-3p-3f 0.54± 0.12 1.00 ± 0.01 0.96± 0.01 0.20± 0.03 0.31± 0.08 0.99± 0.01 * 0.98± 0.01 0.39± 0.06 0.22± 0.03
10x10-3p-3f-2s 0.77± 0.06 0.89± 0.02 0.72± 0.02 0.29± 0.02 0.27± 0.09 0.96 ± 0.01 0.70± 0.04 0.76± 0.04 0.78± 0.05
15x15-3p-5f 0.11± 0.02 0.74 ± 0.12 0.62± 0.12 * 0.10± 0.01 0.09± 0.02 0.72± 0.05 * 0.49± 0.19 * 0.11± 0.01 0.06± 0.01
15x15-4p-3f 0.16± 0.03 0.99 ± 0.00 0.90± 0.01 0.17± 0.01 0.21± 0.07 0.94± 0.05 * 0.89± 0.02 0.13± 0.02 0.10± 0.01
15x15-4p-5f 0.17± 0.00 0.77 ± 0.10 0.69± 0.05 * 0.15± 0.01 0.14± 0.03 0.76± 0.04 * 0.45± 0.17 0.14± 0.01 0.08± 0.01

R
W

A
R

E Tiny 2p 0.06± 0.08 5.56± 1.68 8.70± 4.04 0.24± 0.21 1.46± 0.34 6.16± 1.94 17.48 ± 4.52 0.06± 0.08 0.06± 0.08
Tiny 4p 0.44± 0.10 18.02± 5.87 14.10± 5.20 0.44± 0.24 1.48± 0.48 31.56± 4.29 38.74 ± 2.99 0.34± 0.17 0.16± 0.15
Small 4p 0.04± 0.05 3.10± 0.68 5.78± 0.42 0.16± 0.12 0.16± 0.10 5.00± 0.68 13.78 ± 1.63 0.04± 0.05 0.06± 0.08
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Table 8: Average returns and 95% confidence interval over five seeds for all nine algorithms without
parameter sharing in all 25 tasks.

Tasks \Algs. IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
M

at
ri

x
G

am
es Climbing 130.20± 4.37 164.72± 0.69 171.68± 0.41 150.05± 3.75 187.50± 41.19 169.43± 1.01 171.62± 0.39 132.52± 3.20 132.43± 3.37

Penalty k=0 246.73± 1.39 243.65± 0.93 247.72± 0.04 247.88± 0.05 247.10± 0.38 246.61± 0.52 247.73± 0.03 247.03± 1.85 247.03± 0.99
Penalty k=-25 49.70± 0.24 46.95± 0.16 88.05± 79.01 86.14± 75.19 48.32± 0.10 125.90± 95.14 88.06± 79.03 50.00± 0.99 50.00± 0.99
Penalty k=-50 49.70± 0.24 44.31± 0.34 46.99± 0.23 47.12± 0.07 46.54± 0.20 46.56± 0.33 46.99± 0.24 50.00± 0.99 50.00± 0.99
Penalty k=-76 49.70± 0.24 41.64± 0.50 45.44± 0.36 45.74± 0.12 44.77± 0.31 44.88± 0.47 45.44± 0.37 50.00± 0.99 50.00± 0.99
Penalty k=-100 49.70± 0.24 38.94± 0.66 43.89± 0.48 44.33± 0.16 42.99± 0.41 43.21± 0.62 43.90± 0.52 50.00± 0.99 50.00± 0.99

M
PE

Speaker-Listener −30.49± 4.67 −23.33± 2.67 −22.78± 3.10 −17.79± 0.97 −33.88± 3.38 −19.48± 2.92 −20.51± 2.85 −29.49± 2.36 −20.31± 1.84
Spread −160.10± 1.59 −141.31± 3.86 −142.86± 4.49 −149.53± 2.41 −184.72± 2.99 −139.54± 4.78 −139.20± 4.58 −158.60± 2.06 −157.04± 1.38
Adversary 7.82± 0.19 9.18± 1.52 9.46± 1.02 7.24± 2.13 7.28± 0.76 9.43± 1.93 10.20± 0.24 8.06± 0.27 8.81± 0.52
Tag 12.59± 1.60 9.59± 4.30 11.90± 3.31 1.91± 2.09 14.28± 5.43 11.79± 5.40 10.90± 5.47 10.71± 0.69 14.27± 2.81

SM
A

C

2s_vs_1sc 13.37± 0.35 19.69± 0.05 8.59± 1.90 7.91± 0.16 15.32± 3.21 16.22± 3.75 19.68± 0.08 15.12± 0.46 15.66± 0.82
3s5z 14.23± 0.84 12.65± 1.00 12.26± 0.98 7.65± 0.54 17.13± 1.11 17.94± 0.28 19.03± 0.19 17.06± 0.28 15.46± 0.59
MMM2 8.27± 0.64 6.98± 1.72 6.23± 0.88 3.11± 0.12 3.82± 0.36 9.85± 0.19 9.41± 0.19 12.72± 0.56 8.05± 2.05
corridor 8.38± 0.82 9.81± 1.98 7.80± 0.68 4.99± 0.17 7.85± 0.46 7.78± 0.73 8.18± 0.43 9.25± 0.85 10.76± 1.79
3s_vs_5z 9.15± 0.46 4.26± 0.02 4.20± 0.22 3.53± 0.39 3.20± 0.89 4.91± 0.41 4.55± 0.02 10.85± 1.61 10.09± 1.10

L
B

F

8x8-2p-2f-c 0.95± 0.02 0.96± 0.01 0.91± 0.02 0.40± 0.05 0.63± 0.13 0.97± 0.00 0.93± 0.02 0.93± 0.00 0.90± 0.00
8x8-2p-2f-2s-c 0.97± 0.00 0.96± 0.00 0.50± 0.00 0.52± 0.02 0.63± 0.08 0.97± 0.00 0.79± 0.03 0.96± 0.00 0.96± 0.00
10x10-3p-3f 0.77± 0.05 0.92± 0.01 0.85± 0.01 0.15± 0.00 0.24± 0.03 0.92± 0.01 0.85± 0.02 0.80± 0.03 0.81± 0.04
10x10-3p-3f-2s 0.78± 0.02 0.76± 0.01 0.61± 0.01 0.22± 0.03 0.23± 0.05 0.80± 0.00 0.62± 0.00 0.86± 0.02 0.86± 0.02
15x15-3p-5f 0.11± 0.02 0.39± 0.09 0.33± 0.13 0.07± 0.00 0.06± 0.00 0.40± 0.03 0.24± 0.09 0.18± 0.01 0.08± 0.03
15x15-4p-3f 0.29± 0.04 0.81± 0.01 0.60± 0.01 0.10± 0.01 0.16± 0.03 0.74± 0.03 0.65± 0.06 0.55± 0.06 0.12± 0.04
15x15-4p-5f 0.17± 0.03 0.49± 0.10 0.40± 0.11 0.11± 0.00 0.09± 0.01 0.44± 0.03 0.25± 0.04 0.25± 0.01 0.11± 0.02

R
W

A
R

E Tiny 2p 0.01± 0.01 2.02± 0.68 5.36± 3.05 0.07± 0.05 0.37± 0.04 2.23± 0.45 10.39± 3.04 0.01± 0.01 0.01± 0.01
Tiny 4p 0.13± 0.04 6.10± 1.38 9.24± 4.20 0.25± 0.04 0.50± 0.12 10.73± 1.31 25.14± 1.44 0.10± 0.02 0.05± 0.02
Small 4p 0.01± 0.00 1.02± 0.10 3.64± 0.38 0.03± 0.02 0.07± 0.02 1.27± 0.09 7.06± 0.63 0.01± 0.01 0.01± 0.01

F Visualisation of the Evaluation Returns During Training

Figure 11 presents the evaluation returns that are achieved during training by the nine algorithms with
parameter sharing in the 25 different tasks.
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Figure 11: Episodic returns of all algorithms with parameter sharing in all environments showing the
mean and the 95% confidence interval over five different seeds.
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G SMAC Win-Rates

Table 9: Maximum win-rate and 95% confidence interval over five seeds for all nine algorithms with
parameter sharing in all SMAC tasks.

Tasks \Algs. IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX

2s_vs_1sc 0.61± 0.04 1.00± 0.00 1.00± 0.00 0.21± 0.20 0.34± 0.41 1.00± 0.00 1.00± 0.00 0.74± 0.04 0.85± 0.03
3s5z 0.39± 0.04 0.72± 0.23 0.17± 0.13 0.15± 0.30 0.81± 0.19 0.99± 0.01 0.96± 0.01 0.92± 0.05 0.94± 0.01
corridor 0.44± 0.20 0.80± 0.08 0.82± 0.25 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.68± 0.34 0.44± 0.37 0.53± 0.29
MMM2 0.27± 0.08 0.14± 0.17 0.15± 0.15 0.00± 0.00 0.00± 0.00 0.01± 0.01 0.73± 0.07 0.89± 0.04 0.89± 0.04
3s_vs_5z 0.67± 0.17 0.00± 0.00 0.72± 0.43 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.41± 0.43 0.62± 0.31 0.43± 0.37

Table 10: Maximum win-rate and 95% confidence interval over five seeds for all nine algorithms
without parameter sharing in all SMAC tasks.

Tasks \Algs. IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX

2s_vs_1sc 0.49± 0.12 1.00± 0.00 0.99± 0.01 0.06± 0.10 0.79± 0.40 0.96± 0.04 1.00± 0.00 0.64± 0.11 0.84± 0.02
3s5z 0.48± 0.23 0.27± 0.25 0.27± 0.25 0.13± 0.09 0.91± 0.08 0.87± 0.07 0.94± 0.03 0.81± 0.06 0.70± 0.11
corridor 0.05± 0.06 0.31± 0.39 0.17± 0.30 0.00± 0.00 0.01± 0.02 0.06± 0.12 0.01± 0.01 0.08± 0.11 0.40± 0.32
MMM2 0.04± 0.08 0.06± 0.13 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.58± 0.04 0.23± 0.16
3s_vs_5z 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.11± 0.22 0.23± 0.24

H Hyperparameter Optimisation

Table 11: Range of hyperparameters that was evaluated in each environment. N/A means that this
hyperparameter was not optimised, and that we used one that was either proposed in the original
paper or was found to be the best in the rest of the environments. If only one value is presented it
means that this hyperparameter was used for all algorithms in this task.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64/128 64/128 64/128 64/128 64/128
learning rate 0.0001/0.0003/0.0005 0.0001/0.0003/0.0005 0.0005 0.0001/0.0003/0.0005 0001/0.0003/0.0005
reward standardisation True/False True/False True/False True/False True/False
network type FC FC/GRU FC/GRU FC/GRU FC/GRU
evaluation epsilon 0.0/0.05 0.0/0.05 0.0/0.05 0.0/0.05 0.0/0.05
epsilon anneal 50,000/200,000 50,000/200,000 50,000 50,000/200,000 50,000/200,000
target update 200(hard)/0.01(soft) 200(hard)/0.01(soft) N/A 200(hard)/0.01(soft) 200(hard)/0.01(soft)
entropy coefficient 0.01/0.001 0.01/0.001 N/A 0.01/0.001 0.01/0.001
n-step 5/10 5/10 N/A 5/10 5/10

The parameters of each algorithms are optimised for each environment in one of its tasks and
are kept constant for the rest of the tasks within the same environment. Each combination of
hyperparameters is evaluated for three different seeds. The combination of hyperparameters that
achieved the maximum evaluation, averaged over the three seeds, is used for producing the results
presented in this work. Table 11 presents the range of hyperparameters we evaluated in each
environment, on the respective applicable algorithms. In general, all algorithms were evaluated in
approximately the same number of hyperparameter combination for each environment to ensure
consistency. To reduce the computational cost, the hyperparameter search was limited in SMAC
compared to the other environments. However, several of the evaluated algorithms have been
previously evaluated in SMAC and their best hyperparameters are publicly available in their respective
papers.

I Selected Hyperparameters

In this section we present the hyperparameters used in each task. In the off-policy algorithms we use
an experience replay to break the correlation between consecutive samples [Lin, 1992, Mnih et al.,
2015]. In the on-policy algorithms we use parallel synchronous workers to break the correlation
between consecutive samples [Mnih et al., 2015]. The size of the experience replay is either 5K
episodes or 1M samples, depending on which is smaller in terms of used memory. Exploration
in Q-based algorithms is done with epsilon-greedy, starting with ε = 1 and linearly reducing it to
0.05. Additionally, in Q-based algorithms we select action with epsilon-greedy (with a small epsilon
value) to ensure that the agents are not stuck. The evaluation epsilon is the hyperparameter that is
optimised during the hyperparameter optimisation, with possible values between 0 and 0.05. In the
stochastic policy algorithms, we perform exploration by sampling their categorical policy. During
execution, in the stochastic policy algorithms, we sample their policy instead of computing the action
that maximises the policy. The computation of the temporal difference targets is done using the
Double Q-learning [Hasselt, 2010] update rule. In IPPO and MAPPO the number of update epochs
per training batch is 4 and the clipping value of the surrogate objective is 0.2.
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Tables 12 and 13 present the hyperparameters in all environments for the IQL algorithm with and
without parameter sharing respectively.

Table 12: Hyperparameters for IQL with parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 128 128 128 128 64
learning rate 0.0003 0.0005 0.0005 0.0003 0.0005
reward standardisation True True False True True
network type FC FC GRU GRU FC
evaluation epsilon 0.0 0.0 0.05 0.05 0.05
epsilon anneal 50,000 200,000 50,000 200,000 50,000
target update 200 (hard) 0.01 (soft) 200 (hard) 200 (hard) 0.01 (soft)

Table 13: Hyperparameters for IQL without parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64 128 64 64 64
learning rate 0.0001 0.0005 0.0005 0.0003 0.0005
reward standardisation True True True True True
network type FC FC GRU GRU FC
evaluation epsilon 0.0 0.0 0.05 0.05 0.05
epsilon anneal 50,000 200,000 50,000 50,000 50,000
target update 0.01 (soft) 0.01 (soft) 200 (hard) 200 (hard) 0.01 (soft)

Tables 14 and 15 present the hyperparameters in all environments for the IA2C algorithm with and
without parameter sharing respectively.

Table 14: Hyperparameters for IA2C with parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64 64 128 128 64
learning rate 0.0005 0.0005 0.0005 0.0005 0.0005
reward standardisation True True True True True
network type FC GRU FC GRU FC
entropy coefficient 0.01 0.01 0.01 0.001 0.01
target update 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft)
n-step 5 5 5 5 5

Table 15: Hyperparameters for IA2C without parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 128 128 64 64 64
learning rate 0.0001 0.0005 0.0005 0.0005 0.0005
reward standardisation True True True True True
network type FC FC FC GRU FC
entropy coefficient 0.01 0.01 0.01 0.01 0.01
target update 200 (hard) 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft)
n-step 5 10 5 5 5
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Tables 16 and 17 present the hyperparameters in all environments for the IPPO algorithm with and
without parameter sharing respectively.

Table 16: Hyperparameters for IPPO with parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64 64 128 128 128
learning rate 0.0005 0.0003 0.0005 0.0003 0.0005
reward standardisation True True False False False
network type FC GRU GRU FC GRU
entropy coefficient 0.001 0.01 0.001 0.001 0.001
target update 0.01 (soft) 0.01 (soft) 0.01 (soft) 200 (hard) 0.01 (soft)
n-step 5 5 10 5 10

Table 17: Hyperparameters for IPPO without parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64 128 64 128 128
learning rate 0.0005 0.0001 0.0005 0.0001 0.0005
reward standardisation True True True False False
network type FC FC FC GRU FC
entropy coefficient 0.001 0.01 0.001 0.001 0.001
target update 0.01 (soft) 0.01 (soft) 0.01 (soft) 200 (hard) 0.01 (soft)
n-step 5 10 10 5 10

Tables 18 and 19 present the hyperparameters in all environments for the MADDPG algorithm with
and without parameter sharing respectively.

Table 18: Hyperparameters for MADDPG with parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 128 128 128 64 64
learning rate 0.0003 0.0005 0.0005 0.0003 0.0005
reward standardisation True True False True False
network type FC GRU GRU FC FC
actor regularisation 0.001 0.001 0.01 0.001 0.001
target update 200 (hard) 200 (hard) 0.01 (soft) 200 (hard) 0.01 (soft)

Table 19: Hyperparameters for MADDPG without parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 128 128 128 64 64
learning rate 0.0005 0.0005 0.0005 0.0003 0.0005
reward standardisation True True True True False
network type FC GRU FC FC FC
actor regularisation 0.001 0.01 0.001 0.001 0.001
target update 200 (hard) 0.01 (soft) 0.01 (soft) 200 (hard) 0.01 (soft)
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Tables 20 and 21 present the hyperparameters in all environments for the COMA algorithm with and
without parameter sharing respectively.

Table 20: Hyperparameters for COMA with parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64 64 128 128 64
learning rate 0.0005 0.0003 0.0005 0.0001 0.0005
reward standardisation True True True True True
network type FC GRU FC GRU FC
entropy coefficient 0.01 0.001 0.01 0.001 0.01
target update 0.01 (soft) 200 (hard) 0.01 (soft) 200 (hard) 0.01 (soft)
n-step 5 10 5 10 5

Table 21: Hyperparameters for COMA without parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 128 128 128 128 64
learning rate 0.0003 0.0005 0.0005 0.0001 0.0005
reward standardisation True True True True False
network type FC GRU GRU GRU FC
entropy coefficient 0.01 0.01 0.01 0.001 0.01
target update 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft)
n-step 10 10 5 5 5

Tables 22 and 23 present the hyperparameters in all environments for the MAA2C algorithm with
and without parameter sharing respectively.

Table 22: Hyperparameters for MAA2C with parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 128 128 128 128 64
learning rate 0.003 0.0005 0.0005 0.0005 0.0005
reward standardisation True True True True True
network type FC GRU FC GRU FC
entropy coefficient 0.001 0.01 0.01 0.01 0.01
target update 0.01 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft)
n-step 10 5 5 10 5

Table 23: Hyperparameters for MAA2C without parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64 128 128 128 64
learning rate 0.0005 0.0003 0.0005 0.0005 0.0005
reward standardisation True True True True True
network type FC GRU FC GRU FC
entropy coefficient 0.001 0.01 0.01 0.01 0.01
target update 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft)
n-step 10 5 5 5 5
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Tables 24 and 25 present the hyperparameters in all environments for the MAPPO algorithm with
and without parameter sharing respectively.

Table 24: Hyperparameters for MAPPO with parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64 64 64 128 128
learning rate 0.0005 0.0005 0.0005 0.0003 0.0005
reward standardisation True True False False False
network type FC FC GRU FC FC
entropy coefficient 0.001 0.01 0.001 0.001 0.001
target update 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft)
n-step 5 5 10 5 10

Table 25: Hyperparameters for MAPPO without parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64 128 64 128 128
learning rate 0.0005 0.0001 0.0005 0.0001 0.0005
reward standardisation True True True False False
network type FC FC GRU FC FC
entropy coefficient 0.001 0.01 0.001 0.001 0.001
target update 0.01 (soft) 0.01 (soft) 0.01 (soft) 200 (hard) 0.01 (soft)
n-step 5 5 10 10 10

Tables 26 and 27 present the hyperparameters in all environments for the VDN algorithm with and
without parameter sharing respectively.

Table 26: Hyperparameters for VDN with parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64 128 128 128 64
learning rate 0.0001 0.0005 0.0005 0.0003 0.0005
reward standardisation True True True True True
network type FC FC GRU GRU FC
evaluation epsilon 0.0 0.0 0.05 0.0 0.05
epsilon anneal 200,000 50,000 50,000 200,000 50,000
target update 0.01 (soft) 200 (hard) 200 (hard) 0.01 (soft) 0.01 (soft)

Table 27: Hyperparameters for VDN without parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 128 128 64 64 64
learning rate 0.0005 0.0005 0.0005 0.0001 0.0005
reward standardisation True True True True True
network type FC FC GRU GRU FC
evaluation epsilon 0.0 0.0 0.05 0.05 0.05
epsilon anneal 50,000 50,000 50,000 50,000 50,000
target update 0.01 (soft) 200 (hard) 200 (hard) 200 (hard) 0.01 (soft)
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Tables 28 and 29 present the hyperparameters in all environments for the QMIX algorithm with and
without parameter sharing respectively.

Table 28: Hyperparameters for QMIX with parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64 64 128 64 64
learning rate 0.0003 0.0005 0.005 0.0003 0.0005
reward standardisation True True True True True
network type FC GRU GRU GRU FC
evaluation epsilon 0.0 0.0 0.05 0.05 0.05
epsilon anneal 200,000 200,000 50,000 200,000 50,000
target update 0.01 (soft) 0.01 (soft) 200 (hard) 0.01 (soft) 0.01 (soft)

Table 29: Hyperparameters for QMIX without parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 128 128 64 64 64
learning rate 0.0005 0.0003 0.0005 0.0001 0.0003
reward standardisation True True True True True
network type FC GRU GRU GRU FC
evaluation epsilon 0.0 0.0 0.05 0.05 0.05
epsilon anneal 50,000 200,000 50,000 50,000 50,000
target update 0.01 (soft) 0.01 (soft) 200 (hard) 0.01 (soft) 0.01 (soft)
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