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A ETHICS STATEMENT

This work demonstrates vulnerabilities in Federated Learning that could potentially allow malicious
actors to exploit gradients to recover private batch labels. If deployed irresponsibly, such analytical
attacks could seriously infringe on individuals’ privacy and undermine trust in Federated Learning.
However, we believe that with proper safeguards and oversight, the insights from this work can be
used to improve accountability and integrity.

We recommend developers adopt differential privacy, trusted execution environments, and multi-
party computation techniques to help cryptographically secure sensitive information like gradients
and batch labels. Rigorous auditing and red team testing should be conducted before deployment to
identify and patch vulnerabilities proactively. Policies and procedures governing the appropriate use
of model insights should be established, clearly documenting purposes and ensuring transparency.

Furthermore, while we have developed proof-of-concept attacks in a simulated environment, we
caution against reckless real-world testing which could cause serious harms. This work is meant
to spur improved security practices, not enable adversaries. We advocate for an ethical approach
centered on user empowerment and safeguarding rights. If deployed conscientiously with account-
ability checks, federated learning can offer privacy-preserving capabilities, but we must be vigilant
against misuse. With care, insight and wisdom, we can work towards equitable and trustworthy AI.

B RELATED LABEL RECOVERY ATTACKS

We introduce the related label recovery attacks in this section, including iDLG (Zhao et al., 2020),
GI (Yin et al., 2021), RLG (Dang et al., 2021), LLG (Wainakh et al., 2022), ZLG (Geng et al., 2021),
and iLRG (Ma et al., 2023), and compare them with our proposed label attack.

iDLG. iDLG (Zhao et al., 2020) mathematically derives the relationship between the gradient of
the cross-entropy loss w.r.t. the output logits ∇z ∈ RK and the ground-truth label y ∈ RK , which
satisfies ∇z = p− y. This relationship reveals that:

• ∇zj is negative (∇zj ∈ [−1, 0]) for the input samples belonging to class j,

• ∇zj is positive (∇zj ∈ [0, 1]) for the samples belonging to other classes k ̸= j.

Since ∇z is unavailable in FL, iDLG uses the gradient of the cross-entropy loss w.r.t. the weight
∇W in the last fully connected layer to estimate ∇z. If the non-negative activation function (e.g.,
ReLU or Sigmoid) is used in the model, ∇W has the same sign as ∇z. By summing up the rows
of ∇W , the negative row implies the ground-truth class of the target batch. However, iDLG is only
applicable to single-batch training and non-negative activation functions.

GI. GI (Yin et al., 2021) follows the main idea of iDLG and extends it to the mini-batch training
scenario. GI observes that for an untrained model, the negative values in gradient ∇z possess larger
magnitudes than the positive values, that is ∇z−j ≫ ∇z+j . This observation indicates that when

a training sample of class j is in the target batch,
∑B

n=1 ∇z
(n)
j is highly probable to be negative,

where B is the batch size. Therefore, instead of summing up the rows of ∇W , GI obtains the
minimum value in each row of ∇W and then selects the rows with the minimum B values as the
recovered classes of the target batch. However, GI is only applicable to non-repeating classes in the
target batch and non-negative activation functions.

RLG. According to iDLG, for a sample belonging to class j, ∇zj can be distinguished from
∇zk ̸=j by its sign. Since ∇z can be estimated by ∇W , RLG (Dang et al., 2021) proposes to recover
the ground-truth classes of the target batch by distinguishing each row of ∇W from the other rows.
RLG first decomposes ∇W⊤ into PΣQ, where P ∈ RM×S and Q ∈ RS×K are orthogonal
matrices, and Σ ∈ RS×S is a diagonal matrix. For each column qj of Q, j corresponds to the target
index c if a hyperplane can be found to separate qj from the other columns. They transform the
problem into finding a classifier to separate qj=c from qj ̸=c through linear programming. Although
RLG is suitable for all activation functions, it only applies to non-repeating classes in the batch.
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ZLG. The aforementioned attacks exploit the distinguishability of corresponding rows in ∇W ,
where the target class is located, to recover the ground-truth classes of the training batch. Since
∇W = ∇z · o⊤ = (p − y) · o⊤, ZLG (Geng et al., 2021) presents to restore batch labels by
estimating the posterior probabilities p ∈ RK and input features o ∈ RM of the last layer. ZLG
assumes that the summations of different features

∑M
i=1 oi are approximately equal to each other,

that is Ô ≈
∑M

i=1 o
(n)
i for n ∈ [1, B]. By estimating Ô and p̂ from dummy data or auxiliary data,

ZLG can restore the number of samples in each class j as follows:

λj = B

(
p̂j −

1

Ô

M∑
i=1

∇Wj,i

)
.

LLG. Similar to ZLG, LLG (Wainakh et al., 2022) rewrites ∇W as ∇W = −y · o⊤ + p · o⊤.
For each class j, the restoration problem is formulated as

∑M
i=1 ∇Wj = λjm+ sj , where λj is the

number of labels, m is the impact factor related to the input features, and sj is a class-specific offset
caused by misclassification. Instead of directly estimating the posterior probabilities p and input
features o, LLG embeds this information into the gradient and indirectly estimates m and sj . By
fitting dummy data or auxiliary data into the model and producing multiple sets of gradients, LLG
then restores the class-wise labels in the target batch.

iLRG. iLRG (Ma et al., 2023) exploits both gradient ∇W and gradient ∇b of the bias terms in
the last layer to recover the batch labels. According to z = Wo + b, it is easy to derive that
∇b = ∇z. Hence, it only needs to estimate the post-softmax probabilities p to recover the batch
labels y through the conclusion ∇b = p − y. iLRG first restores the batch averaged features ō
from ∇W /∇b (Geiping et al., 2020) and then calculates the posterior probabilities p̂ from ō. For
each class j, iLRG regards (pj − 1) and pj as the coefficients and constructs these coefficients into
a matrix A. Then it can solve the label occurrence vector λ from the equation Aλ = ∇b.

Our Attack. In terms of implementation, our attack leverages the gradient ∇b and the estimated
posterior probabilities to recover the batch labels. At a finer granularity, we divide the probabilities
into positive and negative ones for each class j, which are denoted as p+

j and p−
j , respectively. The

samples belonging to class j output the p+
j , while the samples belonging to other classes k ̸= j

output the p−
j . Based on the observation that the positive (negative) samples of a class j have

approximate probability distributions, we can estimate the posterior probabilities of the target batch
from an auxiliary dataset. The estimated positive and negative probability of the jth class are denoted
as p̂+j and p̂−j , respectively. Combined with our theoretical deductions, we can directly restore the
number of labels λj for each class j as Equation (9).

C DEFINITION AND PROOFS

C.1 FOCAL LOSS IN MULTI-CLASS CLASSIFICATION

According to the derivation of the binary Focal Loss in (Lin et al., 2017), we extend it into the multi-
class scenarios. In a multi-class classification task using Cross-entropy (CE) Loss, the CE loss can
be written as follows:

LCE(p,y) = −
K∑
i=1

yi log(pi) =


− log(p1) if y1 = 1
− log(p2) if y2 = 1

...
− log(pK) if yK = 1,

where y is the one-hot embeded label.

For any class i, we use pt to represent the confidence degree of the model’s prediction as the follow-
ing:

pt =

{
pi if yi = 1

1− pi otherwise,
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where t = i. To be consistent with the original Focal Loss in (Lin et al., 2017), we use t to represent
the class index instead of i, and t is actually identical to i.

In order to solve class imbalance, Focal Loss assigns an auto-determined weight (1−pt)
γ and a pre-

determined weight αt to each class t. Finally, we define the Focal Loss for multi-class classification
tasks as:

LFL(pt) = −
K∑
t=1

αt(1− pt)
γ log(pt).

Some important points we would like to emphasize:

• Difference in probabilities: pi is the post-softmax probability, while pt represents the
automatic determined confidence of the input at class i, where t = i.

• Mechanism of weight: For an easy-to-learn sample, pt might be close to the target label.
So, Focal Loss assigns a small coefficient (1− pt)

γ as the weight. However, for a hard-to-
learn sample, pt may be close to 0. Then (1− pt)

γ a relatively large weight to enhance the
ratio of these samples in the total loss.

• Summation sign: Since the binary Focal Loss (Lin et al., 2017) just has one output, the
summation is not necessary. In the multi-class case, we use the summation to cover all the
classes t ∈ [1,K], and aim to derive a general conclusion in Theorem 1.

• Why Focal Loss: To the best of our knowledge, Focal Loss has the general form in the
cross-entropy loss variants and it can be converted to CE loss or BCE loss by setting differ-
ent α and γ. We aim to derive a general form of label leakage from gradients, so we choose
the Focal Loss.

C.2 SUPPLEMENTARY DEFINITIONS

In a multi-class classification problem, each instance in the dataset belongs to one of several classes.
Let’s denote the set of classes as K and a particular class of interest as k ∈ K. In this context, we
can define positive and negative samples for class k.

• Positive Samples (X+
k ): The positive samples of class k satisfy that: X+

k = {xi : yi = k},
where xi is the input and yi is the corresponding label.

• Negative Samples (X−
k ): Similarly, the negative samples of class k satisfy that: X−

k =
{xi : yi ̸= k}

According to the positive and negative samples, we can then get the positive and negative probability
for class k.

• Positive Probability (p+k ): When a positive instance is fed into the model, the predicted
probability of class k is termed the positive probability. Since the Softmax activation func-
tion is used in the output layer, the output posterior probability p+ is a vector of length k.
Therefore, the positive probability for class k can be expressed as p+k .

• Negative Probability (p−k ): Similarly, when a negative sample is input into the model, the
kth element of the output probability vector represents the negative probability, denoted as
p−k . It’s essential to note that any negative sample associated with the other (K−1) classes
contributes to p−k .

When using an auxiliary dataset to estimate the probabilities of the target training batch in FL, we
denote the estimated positive and negative probabilities as p̂+k and p̂−k , respectively.

In a batch size of B, we aim to recover the labels of each instance within the batch, i.e., y =
[y(1), y(2), · · · , y(B)]. As this is a multi-class classification problem, the ground-truth labels y can
also be represented by the occurrences of each class: y = [n1, n2, · · · , nK ], where nk is the number
of samples belonging to class k and K is the number of total classes.

• Class-wise Labels: The class-wise labels can be defined as: nk =
∑B

i=1 δ(y
(i) = k).

Here, nk is the number of samples belonging to class k, B is the batch size, y(i) is the true
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class label of the ith instance in the batch, and δ(·) is the Kronecker delta function, which
equals 1 if the condition inside is true and 0 otherwise.

C.3 PROOF OF THEOREM 1

Theorem 3 (Gradient of Focal Loss). For a K-class classification task using the focal loss function
and Softmax activation, we can derive that the gradient of logit zj as follows:

∇zjLFL =

K∑
t=1

Φ(αt, pt, γ) · (pj − δtj),

where Φ(αt, pt, γ) = αt(1− pt)
γ
(
1− γ pt log pt

1−pt

)
and ∀t ∈ K, we have Φ(αt, pt, γ) ≥ 0. Besides,

δtj is the Kronecker delta, which equals 1 if t = j and 0 otherwise.

Proof. According to Equation (1), we substitute the last pt with its Softmax formula pt = ezt∑K
k=1 ezk

,
and obtain the transformed focal loss function:

LFL = −
K∑
t=1

αt(1− pt)
γ log

ezt∑K
k=1 e

zk

=

K∑
t=1

αt(1− pt)
γ log

K∑
k=1

ezk −
K∑
t=1

αt(1− pt)
γzt.

Let ℏ = (1− pt)
γ , then we can deduce the gradient of logit zj as follows:

∇zjLFL =

K∑
t=1

αt
∂ℏ
∂zj

log

K∑
k=1

ezk +

K∑
t=1

αt(1− pt)
γpj −

K∑
t=1

αt
∂ℏ
∂zj

zt − αj(1− pj)
γ

=

K∑
t=1

αt
∂ℏ
∂zj

(
log

K∑
k=1

ezk − zt

)
+

K∑
t=1

αt(1− pt)
γ(pj − δtj)

=

K∑
t=1

αt(1− pt)
γ

(
1− γ

pt log pt
1− pt

)
(pj − δtj)

=

K∑
t=1

Φ(αt, pt, γ) · (pj − δtj).

C.4 PROOF OF THEOREM 2

Theorem 4 (Label Recovery Attack). For the attacker with an auxiliary dataset, he can recover the
class-wise labels λj of the target batch according to the averaged gradient ∇bj and the estimated
posterior probabilities p̂+j and p̂−j as follows:

λj = B ·
(p̂−j − y−j )−∇bj/φ̂j

(p̂−j − y−j )− (p̂+j − y+j )
,

where y+j and y−j are the pre-set label embeddings of class j, φ̂j =
1
τΦ(αj , p̂

+
j , γ) is an coefficient

related to the jth class, and B is the batch size.

Proof. Since z = Wx+b, we can deduce that ∇b = ∇z and ∇bj = ∇zj . We expand the averaged
gradient ∇zj as a summation of B terms and replace the posterior probability p

(n)
j of each sample
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n with its estimated probabilities p̂+j and p̂−j . Because Φ(αj , p
(n)
j , γ) is only related to the positive

samples of the jth class, we can replace p
(n)
j with p̂+j . So we have:

φ̂j =
1

τ
Φ(αj , p̂

+
j , γ) =

1

τ
αj(1− p̂+j )

γ

(
1− γ

p̂+j log p̂+j

1− p̂+j

)
.

Assume that the first λj samples belong to the jth class, and the rest (B − λj) samples belong to
other classes. Then from the first row of Table 1, we can derive that:

∇bj =
1

B

B∑
n=1

∇b
(n)
j =

1

B


λj∑
n=1

φ
(n)
j

[
p
(n)
j − y

(n)
j

]
+

B∑
n=λj+1

φ
(n)
j

[
p
(n)
j − y

(n)
j

]
≈ 1

B

{
λj φ̂j

(
p̂+j − y+j

)
+ (B − λj)φ̂j

(
p̂−j − y−j

)}
.

Therefore, we can finally derive that:

λj = B ·
φ̂j

(
p̂−j − y−j

)
−∇bj

φ̂j

(
p̂−j − y−j

)
− φ̂j

(
p̂+j − y+j

) = B ·
(p̂−j − y−j )−∇bj/φ̂j

(p̂−j − y−j )− (p̂+j − y+j )
.

C.5 INTERPRETATION OF THEORETICAL ANALYSIS FROM EXPONENTIAL FAMILY

The standard form of exponential family distribution is:

fx(x|θ) = exp [η(θ) · T (x)−A(θ) +B(x) ] .

We know that the likelihood is the joint probability of all samples occurring:

L(θ;x) = f(x1, . . . ,xN |θ)

=

N∏
i=1

f(xi|θ)

=

N∏
i=1

exp [η(θ) · T (xi)−A(θ) +B(xi) ]

= exp

[
η(θ) ·

N∑
i=1

T (xi)−NA(θ) +

N∑
i=1

B(xi)

]
.

Now let’s add logarithms to the likelihood function to get the log-likelihood function:

ℓ(θ;x) = logL(θ;x)

= η(θ) ·
N∑
i=1

T (xi)−NA(θ) +

N∑
i=1

B(xi).

For the exponential family, parameter η and θ are reversible. Hence, the derivative of canonical
parameter η is denote as:

∇ηℓ(θ;x) =

N∑
i=1

T (xi)−N∇ηA(θ).
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For the categorical distribution, we know that ∇ηA(θ) = θ, T (x) = x and LCE(θ,x) = −ℓ(θ;x).
Then we can derive the final expression in the following:

∇ηLCE(θ,x) = −∇ηℓ(θ;x)

= N∇ηA(θ)−
N∑
i=1

T (xi)

= Nθ −
N∑
i=1

xi.

From this formula, we can observe that the characteristic of the Exponential Family gives an efficient
way for CE loss to calculate the loss of canonical parameter η by just doing a subtraction rather than
complex calculations. In the multi-class scenario, after substituting θ with post-softmax probability
p, η with logits z, and xi with target label yi, we can derive ∇zLCE (reduction in summation) as
follows:

∇zLCE(p,y) = Np−
N∑
i=1

yi.

This is what we mean that from an exponential family perspective, the combination of the softmax
and cross-entropy would have reduced computation, but opened a back door to leaking labels from
shared gradients.

D ABLATION STUDIES

D.1 ATTACK ON FOCAL LOSS

In this section, we present additional experiments conducted on the Focal Loss. We mainly test
the parameters of τ , γ and ε on an untrained model, and average the experiments over 10 trials.
Focusing on temperature τ , we present several cases where the accuracy is not 100%. In addition,
by varying γ and ε on these settings, the accuracies are not affected. The following table shows the
ClsAcc and InsAcc of our attack on the Focal Loss with different temperatures τ (batch size=64,
activation=ReLU).

Table 4: Label recovery accuracies on Focal Loss (γ = 2, ϵ = 0).

τ
MNIST (LeNet) CIFAR-10 (ResNet-18) CIFAR-100 (ResNet-50)

Our ClsAcc Our InsAcc Our ClsAcc Our InsAcc Our ClsAcc Our InsAcc

0.5 0.980 0.906 0.990 0.960 1.000 1.000

0.75 0.980 0.945 1.000 0.994 1.000 1.000

0.9 0.990 0.954 1.000 1.000 1.000 1.000

1.25 0.990 0.983 1.000 1.000 1.000 1.000

1.5 1.000 0.998 1.000 1.000 1.000 1.000

We have observed that the temperature parameter, τ , significantly impacts smaller datasets. When τ
is smaller, the space of logits expands, complicating the estimation of batch posterior probabilities.
Consequently, as τ decreases, label accuracy deteriorates. For the large datasets with more classes,
such as CIFAR-10, the logit space is hardly influenced by changing different τ .

D.2 AUXILIARY DATASET WITH DIFFERENT ATTACKS

In this section, we compare the label recovery accuracies of ZLG, LLG and our attack on different
settings. We use the training dataset to sample the target batch for label recovery and the validation
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dataset to simulate the auxiliary dataset. This ensures that the auxiliary dataset has the same data
distribution as the training dataset. We compare the label recovery accuracies (ClsAcc and InsAcc)
of different attacks on three groups of experiments, averaging results over 10 trials.

The first group of experiments set the batch size to 64 and the activation function to ReLU. The
second group of experiments set the batch size to 256 and the activation function to ReLU. Finally,
the third group of experiments set the batch size to 64 and the activation function to ELU. The results
are presented in the following tables.

Table 5: Label recovery accuracies (batch size=64, activation=ReLU).

Dataset Model
ZLG LLG Our

ClsAcc InsAcc ClsAcc InsAcc ClsAcc InsAcc

MNIST LeNet 1.000 0.996 1.000 1.000 0.995 0.955

CIFAR-10 LeNet 1.000 0.986 1.000 0.988 1.000 0.969

CIFAR-10 ResNet-18 1.000 0.916 1.000 0.914 1.000 1.000
CIFAR-100 ResNet-50 0.985 0.893 0.816 0.633 1.000 1.000

Table 6: Label recovery accuracies (batch size=256, activation=ReLU).

Dataset Model
ZLG LLG Our

ClsAcc InsAcc ClsAcc InsAcc ClsAcc InsAcc

MNIST LeNet 1.000 0.977 1.000 0.982 1.000 0.951

CIFAR-10 LeNet 1.000 0.961 1.000 0.970 1.000 0.956

CIFAR-10 ResNet-18 1.000 0.905 1.000 0.919 1.000 0.977
CIFAR-100 ResNet-50 0.998 0.881 1.000 0.868 1.000 1.000

Table 7: Label recovery accuracies (batch size=64, activation=ELU).

Dataset Model
ZLG LLG Our

ClsAcc InsAcc ClsAcc InsAcc ClsAcc InsAcc

MNIST LeNet 1.000 0.948 0.580 0.283 0.990 0.969
CIFAR-10 LeNet 1.000 0.923 0.990 0.743 1.000 0.939
CIFAR-10 ResNet-18 1.000 0.902 0.980 0.697 1.000 0.972
CIFAR-100 ResNet-50 0.985 0.897 0.845 0.603 1.000 1.000

From these tables, we can observe that our attack is more robust than ZLG and LLG on complex
datasets like CIFAR-10 or CIFAR-100 trained with ResNet-18 or ResNet-50.

• For the LeNet model with ReLU activation, when the batch size increases from 64 to 256,
all the attacks have a slight decrease in InsAcc. It is straightforward to understand that a
larger batch size is much more difficult to attack than a smaller batch size.

• For the CIFAR-10 dataset trained on LeNet or ResNet-18, we can observe that the InsAcc
of ZLG and LLG is lower than our attack. When changing the shallow LeNet model to the
deep ResNet-18 model, the InsAcc of ZLG and LLG decreases significantly. However, the
InsAcc of our attack is improved, which indicates that our attack is more robust than ZLG
and LLG on deep neural networks.
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• For the CIFAR-100 dataset, it is shown that our attack reaches 100% InsAcc on all the
settings. We conclude that a dataset with more classes makes it easy for our attack to
recover the labels. This is because the more classes there are, the estimated probabilities
are more accurate and concentrated around the ground-truth value.

• Finally, when changing the activation function from ReLU to ELU, the InsAcc of LLG
drops dramatically. This is because LLG is based on the assumption that the activation
function is non-negative. When the activation function is changed to ELU, the assumption
is violated, and the InsAcc of LLG drops significantly.

D.3 AUXILIARY DATASET WITH DISTRIBUTION SHIFT

To address concerns about significant distribution shifts, we conducted supplementary experiments,
averaging results over 10 trials.

In the first set of experiments, we alternately used CIFAR-10 and CINIC-10 (Darlow et al., 2018)
as the training and auxiliary datasets. CINIC-10 extends CIFAR-10 by incorporating downsampled
ImageNet images. While there is some overlap in the distributions due to similar object categories,
there is a notable bias in the data features. We employed an untrained VGG model with a batch size
of 64.

Similarly, the second set of experiments involves alternating between MNIST and Fashion-MNIST
as the training and auxiliary datasets. Despite both datasets having 10 classes, the objects they
represent are entirely different. MNIST dataset contains a lot of handwritten digits, while Fashion-
MNIST represents the article of clothing. Employing an untrained LeNet model with a batch size of
64, the results are presented in the table below.

Table 8: Distribution shift between training dataset and auxiliary dataset.

Training Dataset Auxiliary Dataset Model Our ClsAcc Our InsAcc

CIFAR-10 CINIC-10 VGG 1.000 1.000

CINIC-10 CIFAR-10 VGG 1.000 1.000

MNIST FMNIST LeNet 1.000 0.969

FMNIST MNIST LeNet 1.000 0.948

This phenomenon can be explained as follows: In the initial phase of model training, the model lacks
the ability to differentiate between samples from each class, assigning similar output probabilities
to all fitted samples (i.e., 1/K). For different training datasets like Fashion-MNIST and MNIST, the
model projects input figures to similar output probabilities with slight variations. This benefits our
label recovery attack as it becomes easier to estimate the posterior probabilities of the target batch.

Given that Fashion-MNIST is more intricate than MNIST, utilizing MNIST as the auxiliary dataset
poses challenges in accurately estimating the probability distribution of batch training samples. This
difficulty accounts for the marginal decrease in InsAcc. However, since CIFAR-10 and CINIC-10
exhibit similarities, there is no difference in InsAcc. The outcomes of these experiments illustrate
that if an attacker initiates an attack during the early training stages, having an auxiliary dataset with
an identical distribution to the training dataset may not be essential.
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