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ABSTRACT

The recent advancements in large language models (LLMs) and pre-trained vi-
sion models have accelerated the development of vision-language large models
(VLLMs), enhancing the interaction between visual and linguistic modalities. De-
spite their notable success across various domains, VLLMs face challenges in
modality alignment, which can lead to issues like hallucinations and unsafe content
generation. Current alignment techniques often rely on coarse feedback and exter-
nal datasets, limiting scalability and performance. In this paper, we propose FiSAO
(Fine-Grained Self-Alignment Optimization), a novel self-alignment method that
utilizes the model’s own visual encoder as a fine-grained verifier to improve vision-
language alignment without the need for additional data. By leveraging token-level
feedback from the vision encoder, FiSAO significantly improves vision-language
alignment, even surpassing traditional preference tuning methods that require ad-
ditional data. Through both theoretical analysis and experimental validation, we
demonstrate that FiSAO effectively addresses the misalignment problem in VLLMs,
marking the first instance of token-level rewards being applied to such models. Our
code is avaliable at https://github.com/gzcch/FISAO_ICLR.

1 INTRODUCTION

The advent of large language models (LLMs) (Brown et al., 2020; Touvron et al., 2023; Yang et al.,
2024) and pre-trained vision models (Radford et al., 2021a; Liu et al., 2023c) has propelled vision-
language large models (VLLMs) by advancing connections between visual and linguistic modalities
through linear projection (Li et al., 2023b) or q-former (Dai et al., 2023b). These VLLMs have
demonstrated notable capabilities across diverse domains such as medical applications (Liu et al.,
2023b), autonomous driving (Zhou et al., 2023a), and embodied intelligence (Peng et al., 2023).
However, challenges remain in precisely aligning vision and language modalities for integrated
inference due to their independent pre-training (Jang et al., 2023; Liu et al., 2024a). This pre-training
process often results in incompatible modality-specific representations, hindering the formation of a
coherent aligned representation space during joint training (Jang et al., 2023). Misalignment between
modalities can lead to safety risks such as biased or inappropriate content generation (Gong et al.,
2023; Tu et al., 2023) and hallucinations, where outputs are not grounded in visual input (Wang et al.,
2023). These risks are particularly concerning in tasks like visual question answering (Cui et al.,
2023; Fan et al., 2024), OCR (Shi et al., 2023), and image captioning (Gunjal et al., 2024), where
precise alignment is critical.

To address these misalignment issues, recent works have explored strategies such as instruction tun-
ing (Liu et al., 2023a; Chen et al., 2024b), preference tuning (Yu et al., 2023a), and post-processing
methods (Zhou et al., 2023b; Yin et al., 2023). However, most prevalent alignment methods rely
heavily on external datasets (Zhou et al., 2024a), models (Yin et al., 2023), or costly human annota-
tions (Yu et al., 2023a). Preference tuning, for example, requires extensive manual labeling, either
from human experts (Sun et al., 2023; Yu et al., 2023a) or commercial models (Lee et al., 2023;
Li et al., 2023b), which imposes significant costs on building reward datasets and limits scalability.

∗An Zhang is the corresponding author.
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Table 1: Feature comparison of different preference tuning approaches.
Model Name Reward Model Additional Data GPT-Assisted

Vlfeedback (Li et al., 2023d) × ✓ ✓
Human-Preference (Sun et al., 2023) ✓ ✓ ×

POVID (Zhou et al., 2024a) × ✓ ✓

FiSAO × × ×

Worse still, these alignment methods often rely on coarse feedback, such as sentence-level (Zhou et al.,
2024b; Deng et al., 2024) or output-level rewards (Li et al., 2023d), framing the reward modeling task
as a simple classification problem that scores outputs as desirable or undesirable. Focusing solely
on assigning a numerical score for an entire output fails to leverage VLLMs’ token-level generation
capabilities, limiting their ability to perform detailed reasoning and precise objective identification.

To mitigate the abovementioned limitations, we propose Fine-Grained Self-Alignment Optimization
(FiSAO), a method for precisely self-aligning modalities in VLLMs using token-level fine-grained
feedback from the vision encoder. Our findings indicate that coarse feedback shows a weak correlation
with hallucination detection, while fine-grained reward more effectively differentiates between
hallucinated and correct outputs (see Section 3.1). In other words, when using hallucination detection
as a proxy for alignment measurement, token-level feedback from the vision encoder offers more
informative signals for preference tuning compared to coarse scores. Our theoretical analysis further
confirms that this fine-grained feedback improves modality alignment (see Section 3.2). Additionally,
FiSAO eliminates the need for external annotations or tools by leveraging its vision encoder as a
fine-grained verifier, rewarding each generated token based on its alignment with the visual input.
As a result, FiSAO effectively harnesses the model’s text generation capabilities and demonstrates
superior performance compared to preference tuning methods that rely on additional data. We
compare FiSAO with other preference tuning approaches in Table 1.

Our primary contributions can be summarized as follows: We first empirically analyze the dif-
ferences between coarse and fine-grained rewards in addressing misalignment issues, finding that
coarse feedback from pre-trained vision encoders, such as sentence-level rewards, shows a weak
correlation with hallucination detection, whereas token-level rewards offer more precise signals for
modality alignment. Building on these findings, we propose a novel self-training approach, FiSAO,
which leverages token-level feedback from the model’s own visual encoder, eliminating the need for
additional data or external tools. To the best of our knowledge, FiSAO is the first method to intro-
duce token-level rewards for VLLMs. We further demonstrate FiSAO’s effectiveness in mitigating
misalignment through both empirical results and theoretical analysis.

2 PRELIMINARIES

This section reviews the standard pipeline of preference tuning for VLLMs, as outlined in prior
works (Ziegler et al., 2019; Ouyang et al., 2022; Yu et al., 2023a). The process typically consists of
three phases: 1) Supervised Fine-Tuning (SFT), 2) Reward Modeling, and 3) Policy Optimization.

Supervised Fine-Tuning (SFT) Phase. Preference tuning for VLLMs usually begins by jointly
training a pre-trained language model and a pre-trained vision encoder on a high-quality instruction
dataset (Li et al., 2023b; Dai et al., 2023b), resulting in a SFT model denoted as πSFT.

Reward Modeling Phase. Given text x and visual input v as the prompt, the SFT model πSFT is
used to generate a pair of responses (y1, y2) ∼ πSFT(y|x, v). This pair is then evaluated by humans
or AI, with one response marked as preferred yw and the other as less preferred yl, denoted as
yw ≻ yl|x. This preference is assumed to follow a latent reward model r∗(y, x, v), which is not
directly observable. To model this underlying preference, the Bradley-Terry (BT) model is commonly
employed to define the preference distribution p∗:

p∗(yw ≻ yl|x) =
exp(r∗(x, v, yw))

exp(r∗(x, v, yw)) + exp(r∗(x, v, yl))
. (1)

Given a static dataset of comparisons D = {(x(i), v(i), y
(i)
w , y

(i)
l )}Ni=1 sampled from p∗, we can

parametrize a reward model rϕ(x, v, y) and estimate its parameters using maximum likelihood
estimation. By formulating the estimation of reward model rϕ(x, v, y) as a binary classification
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Figure 1: Comparison of token-level (1a) and sentence-level (1b) reward distributions for hallucinated
and correct objects in the LLaVA 1.5 model. Further comparisons can be found in Appendix A.2.2.

problem, we define the negative log-likelihood loss LR as follows:

LR(rϕ, D) = −E(x,v,yw,yl)∼D[log σ(rϕ(x, v, yw)− rϕ(x, v, yl))], (2)

where σ denotes the logistic function, and reward model rϕ(x, v, y) is typically initialized from
SFT model πSFT, with a linear layer added on top of the final transformer block to produce a scalar
output representing the reward prediction (Yu et al., 2023a). Due to the high costs associated with
constructing reward model rϕ, such as annotation and training, some preference tuning methods
employ external models or tools to directly provide rewards (Hessel et al., 2021).

Policy Optimization Phase. The goal of the policy optimization phase is to refine the policy model
πθ using feedback from the reward model rϕ, formulated as:

max
πθ

Ex,v∼D,y∼πθ(y|x,v)[rϕ(x, v, y)]− βDKL[πθ(y|x, v)||πref(y|x, v)], (3)

where β controls the deviation from the reference policy πref which is initialized as πSFT. This
constraint is essential, as it prevents the model from deviating significantly from the original model
πref, maintains generation diversity, and prevents mode collapse to high-reward answers (). Due to the
discrete nature of language generation, Eqn. 3 is not differentiable. To solve this issue, the standard
approach (Ziegler et al., 2019; Ouyang et al., 2022) has been proposed to construct a modified reward
function r(x, v, y) = rϕ(x, v, y)− β(log πθ(y|x, v)− log πref(y|x, v)) and then maximize it using
Proximal Policy Optimization (PPO) (Schulman et al., 2017).

Although the above preference tuning pipeline enhances models with impressive capabilities (Rafailov
et al., 2023), it is considerably more complex than supervised learning, incurring significant computa-
tional costs. In light of this, recent alignment methods, such as DPO (Rafailov et al., 2023), have
been proposed to streamline the process by conducting preference tuning directly on human-preferred
responses without the need for a reward model.

3 FISAO

This section first presents empirical findings (Section 3.1), demonstrating that token-level rewards
tend to yield improved alignment in Vision-Language Learning Models (VLLMs) compared to
sentence-level rewards. A theoretical justification for the effectiveness of FiSAO is then provided
in Section 3.2. Following this, Sections 3.3 and 3.4 detail the two-step preference tuning process
employed by FiSAO, consisting of reward modeling and policy optimization. The overall framework
of FiSAO is illustrated in Figure 3, while Table 1 compares FiSAO with other preference tuning
approaches. Unlike other methods, FiSAO eliminates the need for reward model training, additional
data, or high-cost human annotators.

3.1 EMPIRICAL FINDINGS

Hallucinations in VLLMs occur when these models generate content that is not grounded in the input
image (Liu et al., 2024a), such as referencing non-existent objects, often indicating weak alignment
between the visual and linguistic modalities (Liu et al., 2024a). To investigate vision-language

3



40 50 60 70 80
Score

0.00

0.02

0.04

0.06

0.08

BL
EU

r = -0.01 Data Points
Regression Line

(a) Correlation with BLEU

40 50 60 70 80
Score

0.05

0.10

0.15

0.20

0.25

RO
U

G
E_

L

r = -0.01 Data Points
Regression Line

(b) Correlation with ROUGE

Figure 2: Correlation between the CLIP-based sentence rewards and conventional evaluation metrics:
BLEU (2a) and ROUGE (2b). A small Pearson correlation coefficient (r) indicates a weak correlation.
More comparison is detailed in Appendix A.2.2.

alignment in VLLMs, we examine its relationship to hallucinations. VLLMs commonly extract
features using pretrained vision encoders, such as CLIP (Radford et al., 2021a) and Grounding
DINO (Liu et al., 2023c). These pretrained vision encoders are trained jointly on vision and language
modalities, resulting in a more reliable object recognition (Kuo et al., 2022). Consequently, we
propose utilizing the vision encoder of the VLLM as a verifier to investigate two distinct types of
reward signals: the sentence-level signal, which is commonly employed in prior research (Hessel
et al., 2021; Zhou et al., 2024b), and the token-level signal, which has remained largely unexplored.

To facilitate this investigation, we conducted two experiments: (1) we plot the distribution of scores
across the sentence-level and token-level signals for both hallucinated and correctly identified objects,
and (2) we examine the relationship between sentence-level rewards and conventional evaluation
metrics for VLLMs, such as BLEU and ROUGE. The scores are obtained by calculating the dot
product of the text and image embeddings derived from the pretrained vision encoder within the
VLLM. We generate captions for 5,000 images randomly sampled from the COCO training dataset
and utilize the widely recognized CHAIR hallucination benchmark (Rohrbach et al., 2018) to identify
correctly identified and hallucinated objects. We present our observations as follows:

Token-level rewards differentiate objects better than sentence-level rewards. Figure 1 presents a
comparison of score distributions for hallucinated and correct objects generated by LLaVA-1.5 using
two types of rewards: token-level and sentence-level. In the token-level reward distribution (Figure
1a), we observe that hallucinated objects are generally associated with lower scores compared to
correct objects. In contrast, in the sentence-level reward distribution (Figure 1b), the two distributions
largely overlap, with both hallucinated and correct objects peaking around the same score range
(60-70). This indicates that, at the sentence level, the reward signal struggles to distinguish between
hallucinated and correct objects.

Sentence-level rewards show a weak correlation with conventional metrics. Figure 2 illustrates
the relationship between CLIP scores and conventional evaluation metrics BLEU and ROUGE for
the generated captions. The scatter plots for BLEU (left) and ROUGE (right) depict the distribution
of data points and their corresponding regression lines. From these figures, it is evident that there is a
very weak correlation between the scores and both BLEU and ROUGE, with correlation coefficients
of r = −0.01 for each. Specifically, a high sentence-level score does not necessarily indicate a
high-quality sentence. This observation suggests that sentences-level rewards may not be reliable
indicators of model performance.

3.2 THEORETICAL FRAMEWORK FOR INCORPORATING PRE-TRAINED VISION MODELS’
FEEDBACK INTO MODEL TRAINING

In this section, we present a theoretical framework demonstrating how integrating feedback from
pre-trained vision models can enhance the performance of VLLMs. Under certain assumptions, we
show that utilizing the vision feedback leads to improved quality of model outputs compared to
relying solely on supervised fine-tuning.

We consider a VLLM and decompose the input prompt into x = (v, t) ∈ Rdv × Rdt , representing
the image and text prompts, respectively. A lthough text data generally consists of discrete tokens,
following previous work (Nakada et al., 2023; Chen et al., 2023; Liu et al., 2024d; Zhou et al.,
2024b), we model these tokens as continuous random vectors in this section. Specially, we assume
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the following data generative model for v and t:
v = Uvzv + ξv, and t = Utzt + ξt, (4)

where Uv ∈ Odv×r and Ut ∈ Odt×r are orthonormal matrices representing decoders that transform
the latent (low-dimensional) signals zv, zt ∈ Rr to images and text, respectively. Here, ξv and ξt are
noise vectors, and we assume they follow sub-gaussian distributions with well-conditioned covariance
matrices and sub-gaussian norms upper bounded by a universal constant. We consider the infinite
data setting, a common simplification to avoid the influence of sample randomness (Kim et al., 2019;
Ghorbani et al., 2021; Ye et al., 2023a). According to (Nakada et al., 2023), with an abundance
of image-text pairs, the learned visual CLIP embedding FI(v) and textual CLIP embedding FT (t)
converge to U⊤

v v and U⊤
t t, respectively. To simplify our analysis without loss of generality, we

consider a single score for each response y and define the feedback from pre-trained vision encoders as
RI(y) = ⟨U⊤

v v, U⊤
t y⟩. We assume the ground truth ytruth = V ∗

1 v+V ∗
2 t+ϵy , where V ∗

1 ∈ Rdt×dv and
V ∗
2 ∈ Rdt×dt are weight matrices, and ϵy is a noise term. In our method, we assume that πθt(y | x)

with θt = (V1, V2) follows a Gaussian distribution: πθt(y | x) ∝ exp
(
− 1

2σ2 ∥y − (V1v + V2t)∥2
)
,

where V1 ∈ Rdt×dv and V2 ∈ Rdt×dt are the weight matrices for the image and text inputs,
respectively, and σ > 0 is the standard deviation.

To better illustrate the contribution of using vision feedback compared to pure supervised fine-tuning
(SFT), we consider the supervised fine-tuning score as Rsft(y) = −∥y− (V ∗

1 v+V ∗
2 t)∥2. The merged

score then becomes
R(y) = (1− λ) ·Rsft(y) + λ ·RI(y), (5)

where λ ∈ [0, 1]. As R(y) depends on λ, we denote the solution θ by θ(λ). In the special case where
λ = 0, this corresponds to the setting where we do not use feedback from pre-trained vision encoders
at all. To assess the quality of the text output y, we approach it as a regression problem where there is
an associated outcome z linked to the ground-truth text output ytruth: z = β∗⊤ytruth, with β∗ ∈ Rdt .
The quality of y is evaluated using the loss function

L(y) = min
β∈Rdt

E[(z − β⊤y)2].

Note that in this context, a lower value of L(y) indicates better quality of the text output y. Conse-
quently, we derive the following theorem.
Theorem 3.1. Suppose that π∗

θt
(y | x) lies in the LLM space {πθ(y | x) : θ ∈ Θ}. Then, there exists

some λ > 0 , such that Eπθ(λ)(y|x)[L(y)] < Eπθ(0)(y|x)[L(y)].

The proof can be seen in Appendix A.3.1. Our theoretical analysis implies that integrating feedback
from pre-trained vision encoders (where λ > 0) can enhance VLLMs’ performance.

3.3 REWARD MODELING FOR FISAO

3.3.1 GENERATION FROM THE PERSPECTIVE OF SEQUENTIAL DECISION-MAKING

In this section, we introduce a novel perspective on preference tuning for VLLMs, conceptualizing
it as a decision-making process that takes next-token prediction. As discussed in Section 3.1, it
is more appropriate to utilize token-level feedback from the fine-grained verifier. Therefore, we
consider preference tuning as a decision-making process undertaken by an agent. In this context, after
observing the input text and image, a VLLM policy πθ takes actions by predicting the next token.
Here, we consider a standard finite state Markov decision process (MDP) for VLLMs (Puterman,
2014), represented as a tuple M = (S,A, P, γ,R). In this context, S is the set of states s, representing
the current context or history of generated tokens in the VLLM. The set A denotes the actions a,
which correspond to the possible next tokens that the VLLM can generate. The transition probabilities
P ∈ ∆(S)S×A indicate the probability of transitioning from one state to another given an action.
The discount factor γ ∈ (0, 1] is typically set to 1 in our case, focusing on the undiscounted scenario.
Lastly, R is a bounded reward function R : S ×A× S → R, providing feedback or reward for the
VLLM πθ taking action a in state s and transitioning to a new state.

Given an appropriate reward function in M , the optimal policy π∗
M ∈ Π is the solution to the

optimization problem of maximizing the expected discounted total future reward:

max
π∈Π

Eat∼π

[
T∑

t=0

γtR(st, at, st+1)

]
. (6)
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Figure 3: The overall framework of FiSAO. We employ two steps to achieve self-alignment from
fine-grained feedback: (1) calculate the fine-grained reward based on the baseline score obtained
from correct and hallucinated tokens. (2) optimize the preference policy using this reward to align
the model’s responses during training.

This perspective highlights how fine-grained rewards can be applied to enhance and guide VLLMs,
enhancing the vision-langauge alignment in VLLMs.

3.3.2 ESTIMATION OF BASELINE SCORES FOR GROUND TRUTH AND HALLUCINATED
DISTRIBUTIONS

To fairly evaluate the model’s performance using feedback from the fine-grained verifier, it is crucial
to establish a baseline score. In this section, we estimate the baseline reward for the reward calculation
process. Assume that the model generates a set of responses Y = {y1, y2, . . . , ys} in response to
visual inputs and queries (x1, v1), . . . , (xs, vs) from the training dataset. Object tokens of these
responses can be divided into two subsets: Ygt and Yhal. Here, Ygt represents the object tokens that are
correctly aligned with the corresponding visual input , determined by the ground truth labels, while
Yhal consists of the tokens that are identified as hallucinated or misaligned with the corresponding
visual input. For each correct object set Oi and hallucinated object set Õi in i-th response, we
calculate a score using the dot product between the features of object token and the visual input
vj , derived from the fine-grained verifier. Finally, the average scores for correct objects µgt and
hallucinated objects µhal are calculated as follows:

µgt =
1∑s

i=1 ||Oi||

s∑
i=1

∑
oj∈Oj

S(oji , v
i), µhal =

1∑s
i=1 ||Õi||

s∑
i=1

∑
oj∈Õi

S(oij , v
i), (7)

where || · || denotes cardinality of a set. Eqn. 7 can help define the boundary used to calculate the
final reward for fine-grained preference policy optimization.

3.3.3 FINE-GRAINED REWARD CALCULATION

In this section, we calculate fine-grained rewards for preference tuning. Formally, let the model’s
response to a query x with the visual input v from the original dataset be denoted as {y1, y2, . . . , yT }.
To better select tokens suitable for providing feedback, we choose common objects from the existing
dataset. First, we construct an entity set using the labels from Detic (Zhou et al., 2022) and COCO (Lin
et al., 2015). Then, we expand the original set to C by including similar words and plural forms.
Detailed information can be found in the Appendix A.1.1. To better incorporate the feedback from the
fine-grained verifier, we calculate the negative and positive reward boundaries based on the baseline
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scores of correct and hallucinated responses, as described in Section 3.3.2. We apply the following
formula to calculate the fine-grained reward R = {R(st, at, st+1)}Tt=1:

R(st, at, st+1) =



N (S(yt, v), (µhal − λ))− ξDKL[πref(x, y<t, v)∥πθ(x, y<t, v)],

if yt ∈ C&S(yt, v) < µhal − λ

N (S(yt, v), (µgt + λ))− ξDKL[πref(x, y<t, v)∥πθ(x, y<t, v)],

if yt ∈ C&S(yt, v) > µgt + λ

0, otherwise

(8)

where S(yt, v) is the dot product score of the yt and v of the pre-trained vision encoder, λ is the
margin, ξ is a scaling factor for the KL divergence penalty, N (·, ·) is normalization function, µgt and
µhal are the average scores of the correct and hallucinated tokens, respectively. More details can be
seen in Appendix A.1.5.

3.4 FINE-GRAINED PREFERENCE POLICY OPTIMIZATION FOR FISAO

Following (Ouyang et al., 2022; Yu et al., 2023a), our approach employs a clipped-PPO method to
train the model. This method involves cutting the probability ratios to mitigate large updates, ensuring
stable and reliable training. Unlike standard PPO, our approach learns from fine-grained feedback at
the token level for each state. By incorporating fine-grained preference signals, FiSAO ensures better
vision-language alignment in VLLMs. The objective function is defined as:

L(θ) = Eat∼π

[
T∑

t=1

min {rt(θ), clip(rt(θ), 1− ϵ, 1 + ϵ)}R(st, at, st+1)

]
, (9)

where rt(θ) is the probability ratio, Rt is the advantage estimate and ϵ is a hyperparameter that
determines the clipping range, and clip(·) is a clipping function that constrains the value of rt(θ).
The probability ratio rt(θ) is calculated as:

rt(θ) =
πθ(yt|x, y<t, v)

πref(yt|x, y<t, v)
, (10)

where πref and πθ are the policies before and after the update, respectively. We show the detailed
process of FiSAO in Algorithm 1.

Algorithm 1 FiSAO

Require: Dataset: D = {(xi, vi)}Ni=1; Reference model: πref ; Policy model: πθ; PPO training
epochs e

Ensure: Updated policy model πθ

1: for each (x, v) ∈ D do
2: Generate the response from query and image {y1, y2, . . . , yT } = πθ(x, v)
3: for each state yt in {y0, y1, . . . , yT } do
4: Compute the score R(st, at, st+1) from Eqn. 8
5: for each epoch in e do
6: Calculate probability ratio rt(θ) from Eqn. 10
7: Update πθ using Eqn. 9
8: return πθ

4 EXPERIMENT

In this section, we evaluate FiSAO on the modality alignment of Vision-Language Large Models
(VLLMs), showcasing its effectiveness in enhancing models’ performance. Our investigation aims
to answer the following questions: (1) Does FiSAO enhance the visual understanding capabilities
of VLLMs compared to previous approaches? (2) How does the primary component of FiSAO
contribute to performance across different benchmarks? (3) Does our method modify the reward
distribution of objects in the model’s output before and after training?
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Table 2: The performance of FiSAO across all benchmarks. Bold indicates the best result and
underline indicates the second-best result within each model group (LLaVA vs. InstructBlip). For
CHAIRS and CHAIRI, smaller is better.

Comprehensive Benchmark VQA COCO Benchmark

Method MMEP MMEC SEED MM-Vet SQAI POPE GQA Cap_val CHAIRS CHAIRI

LLaVA-1.5 1510.7 348.2 58.6 30.5 66.8 85.9 62.0 56.6 54.3 11.3
+ Vlfeedback 1432.7 321.8 59.3 31.2 66.2 83.7 63.2 54.8 40.3 13.2
+ Human-Prefer 1490.6 335.0 58.1 31.1 65.8 81.5 61.3 50.4 38.7 11.3
+ POVID 1452.8 325.3 60.2 31.8 68.8 86.9 61.7 57.3 35.2 8.3
+ FiSAO 1522.6 349.0 60.6 30.5 69.3 85.7 62.0 61.2 39.9 9.9

InstructBlip 1237.5 292.1 38.5 26.0 43.5 84.8 48.0 65.5 60.3 11.9
+ Vlfeedback 1241.3 298.9 40.4 26.6 44.6 78.5 47.7 64.0 56.5 9.7
+ Human-Prefer 1250.9 304.2 39.3 26.6 44.1 79.0 47.5 64.8 51.2 10.8
+ POVID 1255.1 301.8 38.3 26.3 43.4 84.6 48.3 66.5 51.5 10.5
+ FiSAO 1305.3 308.9 40.0 26.9 45.4 83.7 48.2 66.7 42.2 8.8

Table 3: Comparison of FiSAO and other open-sourced state-of-the-art VLLMs.

Method MMEP MMEC SEED MMB MM-Vet SQAI GQA

BLIP-2 1293.8 290.0 46.4 38.1 22.4 61.0 41.0
InstructBlip 1237.5 292.1 38.5 36.0 26.0 43.5 48.0
Qwen-VL-Chat 1487.6 360.7 58.2 60.6 47.3 68.2 57.5
mPLUG-Owl2 1450.2 313.2 57.8 64.5 36.2 68.7 56.1
LLaVA-1.5 1510.7 348.2 58.6 64.3 30.5 66.8 62.0

FiSAO (LLaVA-1.5) 1522.6 349.0 60.6 64.8 30.5 69.3 62.0

4.1 EXPERIMENTAL SETUP

Implementation Details. We employ LLaVA-1.5 7B (Liu et al., 2024b) and InstructBLIP (Dai
et al., 2023b) as the backbone models. During the preference tuning process, we adapt Low-Rank
Adaptation (LoRA) (Hu et al., 2021) fine-tuning. We select the first 8k data from the LLaVA-Instruct
150k dataset (Li et al., 2023b). As both InstructBLIP and LLaVA are trained using the LLaVA-Instruct
150k dataset, no additional data is introduced into our model training. Training is conducted over
one epoch, with Proximal Policy Optimization (PPO) being applied for four epochs per sample,
utilizing four A100 80GB GPUs. Fine-tuning LLaVA-1.5 7B takes approximately six hours, while
fine-tuning InstructBLIP 13B requires around ten hours. For more detailed information on training
hyperparameters and training data, please refer to Appendix A.1.5.

Evaluation Benchmarks. We conduct evaluations on three types of benchmarks: comprehensive
benchmarks, general VQA benchmarks and COCO benchmarks. Specifically, these include: (1)
Comprehensive benchmarks (MME (Fu et al., 2024), SEEDbench (Li et al., 2023a), MMbench (Liu
et al., 2024c), MM-Vet (Yu et al., 2023b)); (2)VQA (ScienceQA (SQA) (Lu et al., 2022), POPE (Li
et al., 2023e), GQA (Hudson & Manning, 2019)); (3) Caption benchmark (Li et al., 2024) (Average
score of BLEU, ROUGE-L and CIDER), CHAIR (Rohrbach et al., 2019) ). The detailed information
is in Appendix A.1.3.

Baselines. We compare FiSAO with previous preference tuning approaches, including Silkie (Vlfeed-
back) (Li et al., 2023d), LLaVA-RLHF (Human-preference) (Sun et al., 2023), and POVID (Zhou
et al., 2024a). Furthermore, we compare FiSAO with other state-of-the-art open-source VLLMs,
including BLIP-2 (Li et al., 2023c), InstructBLIP (Dai et al., 2023a), Qwen-VL-Chat (Bai et al.,
2023), mPLUG-Owl2 (Ye et al., 2023c). More details can be seen in Appendix A.1.4.

4.2 EXPERIMENTAL RESULTS ON BENCKMARKS (RQ1)

Comparison with Other Preference Tuning Approaches. As shown in Table ??, our method
demonstrates clear advantages over other preference tuning approaches, which often require training
reward models or incur high data costs. The superiority of FiSAO lies in its use of fine-grained
verifier, which more effectively captures the intrinsic preferences of VLLMs and achieves stronger
modality alignment between the pre-trained vison models and LLMs. Additionally, on the LLaVA
backbone, FiSAO surpasses existing approaches, delivering an average performance improvement of
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8.7%. This underscores FiSAO’s effectiveness in leveraging fine-grained token-level rewards to align
visual and textual modalities seamlessly.

Comparison with Other Open-Sourced VLLMs. Table 3 compares FiSAO with other state-of-the-
art VLLMs. Our method, implemented on the LLaVA-1.5 architecture, achieves competitive results
across multiple benchmarks, demonstrating its effectiveness in various tasks such as vision question
answering and image captioning. This highlights FiSAO’s capability in integrating fine-grained
token-level rewards to enhance modality alignment in VLLMs.

4.3 ANALYSIS (RQ2&RQ3)

Ablation Study. Table 4 summarizes the results of the ablation study conducted on FiSAO. Each row
represents a different configuration: the presence (✓) or absence (×) of fine-grained rewards and PPO
training. When fine-grained rewards are not used regardless of PPO training, performance metrics
are notably lower across all benchmarks compared to configurations where fine-grained rewards are
employed. Introducing PPO training alone shows an improvement, but the most significant gains are
observed when both fine-grained rewards and PPO training are utilized. This combination achieves
the highest scores, demonstrating the effectiveness of integrating both strategies in enhancing model
performance and alignment across various evaluation tasks. These findings underscore the importance
of fine-grained token-level rewards in optimizing VLLMs such as FiSAO for multimodal tasks.

How does Reward Margin Effect Model’s Performance? We present how different reward
margins impact the model’s performance across various benchmarks in Table 5. The table highlights
how varying the reward margin λ affects the performance of LLaVA-1.5 + FiSAO across multiple
benchmarks. The results indicate notable variations in performance metrics based on the choice of
reward margin. Specifically, when the margin is either too small or too large, a decline is observed in
metrics such as CHAIRI, suggesting diminishing returns with extreme reward margins. Although
overall performance remains relatively stable, these findings underscore the importance of optimizing
the reward margin to balance precision and generalization in FiSAO for enhancing the performance
of VLLMs.

Figure 4: Comparison of reward distributions for
generated objects on LLaVA-1.5 before and after
Training.

How does FiSAO Alter the Reward Distribu-
tion of Objects in the Model’s Output before
and after Training? To better demonstrate how
our method enhances vision-language alignment
and ensures the generation of high-scoring ob-
jects, we visualize the reward distribution of
generated objects on the CHAIR benchmark,
as depicted in Figure 4. The figure illustrates
that VLLMs tend to generate objects with lower
scores before training. This result indicates that
the reward distribution before training is more
dispersed and misaligned with the preferences of
the visual encoder. After applying our method,
the reward distribution shifts to the right, reflect-
ing improved vision-language alignment. This
shift signifies that fine-grained feedback leads
to enhanced overall performance in VLLMs.

Case Study on Sentence-Level Reward and
Token-Level Reward. In this section, we conduct a case study where two sentences from an image
are selected for evaluation using both token-level and sentence-level scoring. From Figure 5, we can
observe that the sentence-level score is not sensitive to hallucinatory sentences, as it assigns similar
scores to both sentences. In contrast, token-level scoring more effectively identifies hallucinatory
objects.

5 RELATED WORK

Recent advancements in large language models (Brown et al., 2020; Liu et al., 2022; Touvron et al.,
2023) and pre-trained vision models (Radford et al., 2021a) have enabled the creation of Vision-Large
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Figure 5: Case study on sentence-level reward and token-level reward.

Table 4: Ablation study results. Each row illustrates a different configuration, indicating the presence
(✓) or absence (×) of fine-grained rewards and PPO training.

Comprehensive Benchmark VQA COCO-cap Benchmark

Fine-grained PPO MMEP MMEC SEED MMB MM-Vet SQAI POPE GQA Cap_val CHAIRS CHAIRI

× × 1431.9 340.0 59.6 64.0 30.6 67.7 85.7 61.4 54.5 54.0 11.0
× ✓ 1509.3 350.4 59.5 64.1 30.5 67.5 85.9 60.9 56.6 55.3 11.4
✓ ✓ 1522.6 349.0 60.6 64.8 30.7 69.3 85.7 62.0 61.2 39.9 9.9

Table 5: Performance of FiSAO with varying margins
Comprehensive Benchmark VQA COCO-cap Benchmark

λ MMEP MMEC SEED MMB MM-Vet SQAI POPE GQA Cap_val CHAIRS CHAIRI

5 1509.3 350.4 60.4 64.1 30.6 67.5 84.4 61.7 57.1 53.3 10.8
10 1522.6 349.0 60.6 64.8 30.7 69.3 85.7 62.0 61.2 39.9 9.9
20 1501.4 348.6 59.2 64.5 31.0 67.9 85.1 61.6 59.7 56.5 13.6

Language Models (VLLMs), which effectively integrate language and vision capabilities. These
models have significantly improved automation in various fields, including medical applications (Liu
et al., 2023b), recommendation (Sheng et al., 2024), autonomous driving (Zhou et al., 2023a),
agent-based evaluation (Zheng et al., 2024),and embodied agents (Peng et al., 2023). The typical
architecture of VLLMs involves aligning the embedding spaces of both modalities using techniques
such as Qformer or fully connected layers (Zhu et al., 2023; Ye et al., 2023b; Li et al., 2023b).
However, VLLMs face challenges in precise alignment due to independent pre-training of language
and vision models, leading to safety concerns (Gong et al., 2023; Tu et al., 2023), hallucinations (Wang
et al., 2023), and reasoning deficiencies (Ghosh et al., 2024). Traditional vision-language models
(VLMs) have focused on image-text alignment through methods like co-attention frameworks (Lu
et al., 2019), anchor points (Li et al., 2020), and contrastive learning (Radford et al., 2021b). Recently,
alignment strategies can be classified into alignment from training data, which leverages high-quality
datasets for supervised fine-tuning (SFT), and alignment from feedback, which involves fine-tuning
based on human or AI feedback (Sun et al., 2023; Yu et al., 2023a; Zhou et al., 2024a; Li et al., 2023d;
Zhao et al., 2023). Feedback-based methods often use Proximal Policy Optimization (PPO) (Sun
et al., 2023) and Direct Preference Optimization (DPO) (Zhao et al., 2023; Li et al., 2023d; Chen
et al., 2024a). Despite their potential, these methods face challenges such as high costs in dataset
construction and need for external tools. Additionally, some approaches use sentence-level rewards,
which do not fully leverage the text-generation capabilities that large language models (LLMs) are
fundamentally designed for. By concentrating on assigning a numerical score to the entire instance,
these methods overlook the VLLMs’ inherent capability to generate responses, including detailed
reasoning steps. The detailed version is shown in Appendix A.4.

6 CONCLUSION
In this study, we addressed the alignment issues prevalent in Vision-Language Large Models (VLLMs)
by investigating the integration of pre-trained vision encoders with large language models. Through
comprehensive analysis, we introduced a novel self-training method using fine-grained Proximal
Policy Optimization (PPO) that does not rely on additional data. This method leverages the model’s
visual encoder as a reward model to enhance alignment at the token level, demonstrating superior
performance compared to existing preference tuning approaches.
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A APPENDIX

A.1 EXPERIMENTAL SETTINGS

A.1.1 DETAILS OF ENTITY SET

First, we construct an entity set using the labels from Detic (Zhou et al., 2022) and COCO (Lin et al.,
2015). We present the case of these datasets’ labels in Table 6 Then, we expand the original set to C
by including similar words and plural forms using the inflect library and the wordnet module
from the nltk library. The expanded set C contains 5678 words compared to the original set, which
contains 1204 words. The inflect library is used to generate plural and singular forms of the
original labels, while the wordnet module from nltk is employed to find synonyms. This method
allows us to create a comprehensive entity set by considering various linguistic forms, thus enhancing
the robustness of our dataset.

Original Word Expanded Words
apple apples

handbag bag, handbags, pocketbook, purse
suitcase grip, suitcases

bagel bagels
boat boats, sauceboat, boat
bob dock, cork, bobs

bread breads, lucre, lolly, staff of life
cat purge, chuck, cats

chair moderate, chairs, chairperson, lead, chairman
duck ducks, duck, dip, douse
jar jars, clash, shock

person someone, person, individual, somebody, people, soul
shirt shirts
taco tacos, greaser, wetback, taco

wheel cycle, wheels, roll

Table 6: Cases of original Words and their expanded forms.

A.1.2 OVERVIEW OF THE BACKBONE MODELS

LLaVA-1.5 is a multimodal model designed for general-purpose visual and language understanding.
It integrates a vision encoder with the Vicuna language model, making it capable of processing images
and generating text-based responses. The model is an open-source chatbot that has been fine-tuned on
multimodal instruction-following data generated by GPT. It is built upon the transformer architecture,
specifically leveraging the LLaMA/Vicuna foundation models.

InstructBLIP is a sophisticated vision-language model designed to follow detailed instructions. It is
built upon the BLIP-2 architecture, incorporating a vision encoder, a language model, and a Query
Transformer (Q-Former) that bridges the two components. The Q-Former module is specifically
enhanced to handle instruction text tokens, allowing it to extract task-relevant features from images
effectively.

A.1.3 DETAILS OF EVALUATION BENCHMARK

• MME (Fu et al., 2024) is a comprehensive benchmark for evaluating the performance of LVLMs in
multimodal tasks. It measures models’ capabilities across two key areas: perception and cognition,
using 14 specially designed subtasks that test interpretative and analytical skills.

• SEED-Bench (Li et al., 2023a) focuses on evaluating the generative comprehension abilities of
LVLMs. It includes a dataset of 19K multiple-choice questions with detailed human annotations,
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spanning 12 evaluation dimensions that cover both spatial and temporal understanding in image
and video modalities.

• MMBench (Liu et al., 2024c) employs a dual approach: it provides an extensive dataset that
broadens the range and variety of evaluation questions, and introduces the innovative CircularEval
strategy, which uses ChatGPT to convert free-form predictions into structured choices.

• MM-Vet (Yu et al., 2023b) is a benchmark created to evaluate the diverse competencies of LVLMs.
It organizes complex multimodal tasks into 16 unique integrations based on six core vision-language
capabilities, offering a detailed analysis of model performance across various question types and
answer styles.

• ScienceQA (Lu et al., 2022) is a multimodal benchmark aimed at assessing and diagnosing AI
systems’ multi-hop reasoning and interpretability in the science domain. It includes a dataset
of around 21K multiple-choice questions across various scientific topics, complete with detailed
answer annotations, related lectures, and explanations.

• GQA (Hudson & Manning, 2019) is a dataset designed for advanced visual reasoning in real-
world scenarios, using scene graph-based structures to generate 22 million diverse, semantically-
programmed questions. It features a novel set of evaluation metrics focused on consistency,
grounding, and plausibility, setting a high standard for vision-language task assessment.

• POPE (Li et al., 2023e) is an evaluation method for examining object hallucination in LVLMs.
It transforms the evaluation into a binary classification task, asking LVLMs simple Yes-or-No
questions to identify hallucinated objects. POPE employs various object sampling strategies to
reveal model tendencies towards hallucination.

• The COCO-caption benchmark assesses image captioning models using BLEU, ROUGE, and
CIDEr scores, providing a comprehensive measure of caption quality. We calculate the average
of these scores and multiply by 100 to obtain the final score. This benchmark utilizes the COCO
dataset, emphasizing the accuracy and relevance of generated captions. Detailed evaluation
methodology and task specifics can be found in the lmms_eval repository, specifically under the
tasks/coco2017_cap_val directory.1

• CHAIR (Rohrbach et al., 2019) is a well-known tool for evaluating object hallucination in image
captioning tasks. It includes two variants: CHAIRI and CHAIRS, which assess object hallucination
at the instance and sentence levels, respectively. Specifically, we randomly sampled 500 images
from the COCO (Lin et al., 2015) validation set and evaluated object hallucination using the CHAIR
metric.

A.1.4 DETAILS OF BASELINES

• Silkie (Vlfeed- back) (Li et al., 2023d) focuses on improving large vision language models
(LVLMs) by using preference distillation. The authors created a vision-language feedback
(VLFeedback) dataset, consisting of multi-modal instructions and responses generated by
12 different LVLMs. The model pool includes prominent models like GPT-4V and LLaVA-
series. By applying direct preference optimization (DPO) on this dataset, they developed the
Silkie model, which shows significant improvements in perception and cognition capabilities.

• LLaVA-RLHF (Human-preference) (Sun et al., 2023) explores the integration of reinforce-
ment learning with human feedback (RLHF) to enhance vision-language models. The
LLaVA series, built on Vicuna models and fine-tuned with GPT-4 generated multi-modal
data, is further improved by aligning visual faithfulness and human preferences. This
approach aims to ensure that the generated responses are more aligned with human expec-
tations and the visual content they describe, providing a more reliable and contextually
accurate output

1https://github.com/EvolvingLMMs-Lab/lmms-eval/tree/main/lmms_eval/
tasks
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Backbone Model LLaVA-1.5 InstructBLIP
Parameter 7B 13B
Reward Model CLIP-ViT-L-334 CLIP-ViT-L
Dataset LLaVA-Instruct LLaVA-Instruct
Fine-Tuning Method LoRA LoRA
Number of Epochs 1 1
PPO Training Epochs 4 4
GPUs Used 4 A100 80GB GPUs 4 A100 80GB GPUs
Training Time ~6 hours ~10 hours
LoRA r 128 128
LoRA Alpha 256 256
Learning Rate 5e-7 4e-6
LoRA Parameter all linear all linear
ξ 0.2 0.2
λ 10 10

Table 7: Training parameters for LLaVA-1.5 7B and InstructBLIP 13B models.

• POVID (Zhou et al., 2024a) is a framework for generating non-preferred responses in
Vision-Language Large Models (VLLMs) aimed at preference optimization. The framework
employs two strategies: hallucination text responses and noisy image responses at token
and instance levels. This approach helps in understanding and optimizing VLLMs by inten-
tionally producing outputs that are less preferred, thus identifying areas for improvement in
model performance and user interaction.

A.1.5 HYPERPARAMETER DETAILS

In this section, we show the detailed information on training hyperparameters and training data in
Table 7. Specifically, for the normalized function N (·, ·), we calculate the score for correct objects
as S(yt,v)−(µgt+λ)

Smax−(µgt+λ) , and for hallucinated objects as S(yt,v)−(µhal−λ)
(µgt−λ)−Smin

. Smin and Smax represent the
minimum and maximum possible scores, respectively. In this way, we constrain the reward within
the range of −1 to 1.

A.2 ADDITIONAL ANALYSIS

A.2.1 DETAILED ANALYSIS ON COCO-CAPTION BENCHMARK

Table 8 provides a comprehensive comparison of various methods evaluated on COCO-caption
benchmark. Our method, denoted as FiSAO, demonstrates significant improvements across multiple
metrics, highlighting its efficacy in enhancing caption generation quality. On the LLaVA backbone,
FiSAOconsistently outperforms the baseline and other preference-tuning methods across all BLEU
metrics, as well as METEOR, ROUGE L, and CIDEr scores. These results underscore the robustness
of FiSAOin capturing nuanced textual and visual features, achieving superior alignment and coherence
in the generated captions. Similarly, for the InstructBLIP backbone, FiSAOmaintains a competitive
edge, achieving high scores across the evaluation metrics and outperforming other preference-tuning
approaches. The improvements observed with FiSAOhighlight its effectiveness in leveraging fine-
grained token-level rewards to enhance the alignment between visual and textual modalities.

A.2.2 ADDITIONAL ANALYSIS ON SENTENCE-LEVEL REWARD

We present the sentence-level rewards of the generated captions on InstructBLIP in Figure 6. We can
observe the low distinction between correct and hallucinated captions. We also show comparison of
Fine-Grained and sentence-level reward distribution in Figure 7 and Figure 8, where the sentence-level
reward shows no explicit correlation with traditional evaluation scores. This comparison highlights
that the Fine-Grained reward distribution tends to be more useful, offering a detailed view of the

18



Table 8: Evaluation results on COCO-caption benchmark.

Method Bleu 1 Bleu 2 Bleu 3 Bleu 4 METEOR ROUGE L CIDEr
LLaVA 0.7312 0.5641 0.4150 0.2976 0.2929 0.5559 1.1038
+ Vlfeedback 0.7149 0.5487 0.3734 0.2788 0.2835 0.5398 1.0969
+ Human-Prefer 0.6741 0.5047 0.3613 0.2519 0.2864 0.5329 0.9142
+ POVID 0.7360 0.5680 0.4197 0.3030 0.2954 0.5601 1.1305
+ FiSAO 0.7925 0.6259 0.4681 0.3407 0.2811 0.5774 1.1970
InstructBLIP 0.8220 0.6682 0.5199 0.3973 0.2982 0.5984 1.3498
+ Vlfeedback 0.7919 0.6346 0.4886 0.3689 0.3000 0.5874 1.3055
+ Human-Prefer 0.8034 0.6431 0.5068 0.3759 0.3104 0.6012 1.2902
+ POVID 0.8204 0.6671 0.5198 0.3977 0.3009 0.6002 1.3619
+ FiSAO 0.8239 0.6707 0.5231 0.4008 0.2985 0.5994 1.3526
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Figure 6: Comparison of fine-grained and sentence-level reward distributions in InstructBLIP.

model’s performance. These analyses further demonstrate that using Fine-Grained rewards is more
effective than sentence-level rewards.

A.2.3 ADDITIONAL ANALYSIS ON REWARD DISTRIBUTION OF OBJECTS

To further illustrate how our method enhances the alignment between visual encoders and VLLMs,
we present the reward distribution of hallucinated objects in Figure Figure 9. The figure shows that,
before training, the reward distribution for hallucinated objects in both LLaVA and InstructBLIP is
more scattered and less aligned with the visual encoder’s preferences. After applying our method, the
reward distribution shifts to the right, indicating improved alignment and consistency with the visual
encoder. This shift demonstrates that the model’s rewards now more accurately reflect the visual
encoder’s evaluations, thereby enhancing the overall performance of vision-language alignment.

A.2.4 CASE STUDIES

In this section, we present detailed case studies comparing the outputs of our model with LLaVA 1.5.
The case studies highlight the strengths of FiSAOin generating detailed image descriptions. As shown
in Figure 10, FiSAOfocuses on providing a comprehensive overview, including contextual details
such as the environment and the placement of objects (e.g., handbag, table settings). This approach
ensures that the description covers all relevant aspects of the scene. LLaVA 1.5 includes specific
interactions and objects that enhance the vividness of the scene. However, it sometimes generates
objects that are not actually present in the images.
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Figure 7: Correlation between sentence reward and conventional evaluation metrics on InstructBLIP.
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Figure 8: Correlation between sentence reward and conventional evaluation metrics on LLaVA
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(a) LLaVA (b) InstructBLIP

Figure 9: Reward distribution comparison before and after training.

The image features a group of people standing near a 

large elephant. There are at least five people in the scene, 

with some standing closer to the elephant and others 

further away. The elephant is positioned towards the 

right side of the image, taking up a significant portion of 

the frame.

In addition to the people and the elephant, there is a 

handbag located near the left side of the image, possibly 

belonging to one of the people in the group. The scene 

appears to be set in a dirt area, which is a common 

environment for elephants. 

The image features a group of people standing near a large 

elephant in a dirt area. The elephant is positioned in the 

center of the scene, with its trunk extended towards the 

people. There are at least five people in the scene, with 

some standing closer to the elephant and others further away.

The people are interacting with the elephant, with one 

person feeding it a carrot. The carrot is visible in the 

elephant's mouth, and the person is holding it in their hand. 

The other people are observing the interaction, likely 

enjoying the unique experience of being so close to such a 

majestic creature.

Ours LLaVA 1.5Prompt: Describe this image in detail.

The image features a delicious pizza with a variety of 

toppings, including olives, cheese, and spinach, placed 

on a dining table. The pizza is cut into slices and is 

ready to be eaten. The table is set with a fork and a 

knife, indicating that the pizza is meant to be enjoyed 

with utensils.

In addition to the pizza, there are two cups on the table, 

one near the top left corner and the other near the top 

right corner. A bowl is also present on the table, 

located towards the top right corner. The dining table 

occupies most of the image, with the pizza taking up a 

significant portion of the table's surface.

Prompt: Describe this image in detail.

The image features a delicious pizza sitting on a dining 

table. The pizza is topped with a variety of ingredients, 

including cheese, olives, and spinach. There are several 

olives scattered across the pizza, with some located near 

the center and others towards the edges. The spinach is 

also evenly distributed across the pizza, adding a vibrant 

green color to the dish.

In addition to the pizza, there are two cups on the table, 

one near the top left corner and the other near the top right 

corner. A fork is also present on the table, positioned 

towards the right side. The table occupies most of the 

image, with the pizza being the main focus.

Figure 10: Case studies on LLaVA 1.5.

A.3 WHY DOES FEEDBACK FROM PRETRAINED VISION ENCODERS CONTRIBUTE TO THE

MODEL’S PERFORMANCE - THEORETICAL ANALYSIS

A.3.1 PROOF OF THEOREM 3.1

We begin by considering the distribution of the generated response yp given by π∗
θt
(y | x). Since

yp = argmaxy R(y), this distribution is a point mass. The global minimizer will converge to
π∗
θt
(y | x).

By our method, we have

yp = argmax
y

[
(1− λ)

(
−∥y − (V ∗

1 v + V ∗
2 t)∥2

)
+ λ⟨U⊤

v v, U⊤
t y⟩

]
. (11)

Simplifying, we rewrite the optimization problem as

yp = argmin
y

[
∥y − (V ∗

1 v + V ∗
2 t)∥2 − γ⟨U⊤

v v, U⊤
t y⟩

]
,
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where γ = λ
1−λ . Taking the derivative with respect to y and setting it to zero yields

2 (y − (V ∗
1 v + V ∗

2 t))− γUtU
⊤
v v = 0.

Solving for yp, we obtain
yp = (V ∗

1 v + V ∗
2 t) +

γ

2
UtU

⊤
v v.

This shows that integrating vision feedback effectively increases the weight on the visual input.

Next, we consider the loss function

L(y) = min
β∈Rdt

E
[(
z − β⊤y

)2]
, (12)

where z = β∗⊤ytruth and ytruth = V ∗
1 v + V ∗

2 t+ ϵy .

Substituting the expressions for yp and ytruth, we have

L(yp) = min
β

E
[(
β∗⊤ytruth − β⊤yp

)2]
. (13)

Expanding, we get

L(yp) = min
β

E
[(

(β∗⊤ − β⊤)(V ∗
1 v + V ∗

2 t)− β⊤
(γ
2
UtU

⊤
v v

)
+ β∗⊤ϵy

)2
]
. (14)

We introduce an assumption that ϵy contains a component that can be estimated via vision feedback.
Suppose

ϵy = κUtU
⊤
v v + ϵ̃, (15)

where ϵ̃ is noise independent of v, and κ is a scalar.

Therefore,
ytruth = V ∗

1 v + V ∗
2 t+ κUtU

⊤
v v + ϵ̃. (16)

Now, since
y(λ)p = V ∗

1 v + V ∗
2 t+

γ

2
UtU

⊤
v v, (17)

the vision feedback term helps to estimate part of ϵy .

We define the mean squared error:

MSEλ = E
[∥∥∥y(λ)p − ytruth

∥∥∥2] . (18)

Substituting,

MSEλ = E
[∥∥∥(γ

2
− κ

)
UtU

⊤
v v − ϵ̃

∥∥∥2] . (19)

For λ = 0,
MSE0 = E

[∥∥−κUtU
⊤
v v − ϵ̃

∥∥2] . (20)

The difference is

∆MSE = MSEλ − MSE0 =

[(γ
2
− κ

)2

− κ2

]
E
[∥∥UtU

⊤
v v

∥∥2] . (21)

Setting γ = 2κ (which implies λ = 2κ
2κ+1 > 0), we have

∆MSE = −κ2E
[∥∥UtU

⊤
v v

∥∥2] < 0. (22)
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Thus, there exists λ > 0 such that

Eπθ(λ)(y|x)[L(y)] < Eπθ(0)(y|x)[L(y)]. (23)

This proves the theorem.

By selecting a suitable λ > 0, we have demonstrated that integrating vision feedback can reduce the
expected loss. Therefore, incorporating vision feedback helps the model to predict the output more
accurately, which proves Theorem 3.1.

A.4 RELATED WORK

A.4.1 VISION-LARGE LANGUAGE MODEL

Recently, the development of large language models (Brown et al., 2020; Touvron et al., 2023)and
pre-trained vision models (Radford et al., 2021a), has paved the way for Vision-Large Language
Model(VLLMs). These advanced models, which can comprehend both text and images, have
greatly enhanced our capacity to automate complex tasks accross various areas such as medical
application (Liu et al., 2023b), autonomous driving (Zhou et al., 2023a) and embodied agent (Peng
et al., 2023). The fundamental architecture of VLLMs typically integrates both language and vision
models. This integration involves aligning the embedding spaces of both modalities using Qformer
or a simple fully connected layer (Zhu et al., 2023; Ye et al., 2023b; Li et al., 2023b). However,
Vision-Language Large Models (VLLMs) still face the problem of misalignment, as both models
are typically pre-trained independently before being aligned through vision-language joint training.
This misalignment can lead to several issues, such as safety concerns, where the model may produce
inappropriate or biased content (Gong et al., 2023; Tu et al., 2023), hallucinations in VLLMs,
where the model generates information not grounded in the images, thus deviating from observable
reality (Wang et al., 2023), and deficiencies in logical reasoning (Ghosh et al., 2024), where the
model fails to coherently integrate visual and textual information, resulting in inaccurate outputs.

A.4.2 VISION-LANGUAGE ALIGNMENT

Traditional vision-language models (VLMs) have primarily aimed to enhance image-text alignment
using methods such as the co-attention framework (Lu et al., 2019), anchor points (Li et al., 2020),
and contrastive learning (Radford et al., 2021b). With the significant advancements in large language
models (LLMs), recent approaches have explored novel directions to integrate visual encoders with
LLMs, enabling better comprehension of vision-language multi-modal tasks. Aligning visual and
linguistic modalities can primarily be categorized into two approaches: alignment from training data
and alignment from feedback. Alignment from training data involves using high-quality datasets for
SFT (Supervised Fine-Tuning) training, including diverse instructions and dataset compression. This
method relies on the diversity and quality of the training data to improve the model’s performance.
Alignment from feedback focuses on fine-tuning the model using feedback of human (Sun et al.,
2023; Yu et al., 2023a) or other models like CLIP (Zhou et al., 2024a) and large models (Li et al.,
2023d; Zhao et al., 2023). Two primary methods for learning from feedback in VLLMs are Proximal
Policy Optimization (PPO) (Sun et al., 2023) and Direct Preference Optimization (DPO) (Zhao et al.,
2023; Li et al., 2023d; Chen et al., 2024a). However, these methods encounter challenges. They
may generate out-of-distribution data that fails to significantly enhance the model’s performance and
entail significant expenses in dataset construction.

A.5 LIMITATIONS

One limitation of FiSAO is its dependency on the quality and robustness of the pre-trained vision
models. If the visual encoder contains inherent biases or inaccuracies, these issues can be propagated
through the reward model, potentially affecting the overall alignment process.
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A.6 BROADER IMPACTS

The proposed enhancement in Vision-Language Large Models (VLLMs) through fine-grained policy
optimization presents several significant broader impacts across various fields and societal dimensions.
FiSAOcontributes to the field of AI by providing a novel approach to self-training without the need
for additional data. This can inspire further research into data-efficient training methods, fostering
innovation and reducing the environmental impact associated with large-scale data collection and
processing. Besides, enhanced vision-language alignment can significantly improve the performance
of assistive technologies, such as screen readers and automated transcription services, making digital
content more accessible to people with disabilities. This aligns with global efforts to promote
inclusivity and equal access to information and technology.
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