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A. Supplementary Video

To offer a more comprehensive demonstration of our
visual results, we have included a supplementary video
showcasing three editing cases (scene stylization, instance
segmentation, and texture editing) on diverse 3D scenes.
Please check “demo.mp4” for details.

B. Failure Cases and Limitation

Recall that in this paper, we come up with an editing-
friendly representation, AGAP, which permits explicit 3D
editing with the help of a natural 2D canonical image. In
this section, we present some failure cases and discuss the
limitation.

Our method supports texture editing by directly painting
onto the canonical image. However, such painting might
be distorted when the novel viewpoint exhibits occlusions
on the edited regions. As shown in Fig. S1, we can easily
paint an “AGAP” logo onto the marble pedestal of the fern
plant in the canonical image, allowing us to directly obtain
the edited NVS from different novel viewpoints through
neural rendering. However, the logo appears distorted in
the regions that are occluded by the fern plant.

Our pipeline includes a projection offset Po to handle
moderate levels of occlusion, which implicitly projects and
clusters the 3D points to nearby pixels. However, we
acknowledge that our method has limitations in handling
extensive occlusions in the 3D scenes. Suppose a 3D scene
is extremely complex and contains numerously extensive
occlusions. Projecting such a scene onto a 2D plane (like
a UV map) is possible, but creating a 2D projection that
naturally and fully displays the scene for easy interactivity
is very challenging and nearly impossible. Hence, such
cases are beyond the scope of our current study, and
we mainly focus on 3D scenes with moderate levels of
occlusion.

Table S1. Hyperparameters for training various scenes in
different datasets.

Data Types Image Size
Weight Factor
λuv λtv

Forward-facing [3, 7] (768, *) 10−5 10−5

Object-centric [4, 6, 8] (768, *) / (*, 768) 10−1 10−4

Panorama [1–3, 11] (768, 1536) 10−1 10−4

C. Training Details

Our 3D editing pipeline involves a two-step process: (1)
we first train a per-scene reconstruction model using the
proposed AGAP representation, which includes an explicit
density grid ϕG, an explicit canonical image ϕI , and an
associated projection field ϕP ; (2) we can then perform
explicit 2D edits on the canonical image ϕI for 3D scene
editing, including scene stylization, instance segmentation,
and texture editing. All experiments, including training
on various scenes from different datasets, are conducted
and tested on a single RTX A6000 GPU, with specific
hyperparameter details outlined in Tab. S1.

Optimization. In the first stage, we employ the Adam
optimizer [5] to optimize a per-scene model for 60k steps
with an initial learning rate of 0.1 for both the explicit
3D density grid ϕG and 2D canonical image ϕI , and a
learning rate of 0.001 for the implicit projection field P
with learnable parameter ϕP . The optimization of the entire
model involves an objective function comprising three main
components: (1) an average L2 photometric loss Lcolor

between the rendered pixel color Ĉ(r) and the ground-
truth color C(r); (2) a projection regularization Luv aimed
at minimizing the projection offset ∆puv; and (3) a total
variation regularization applied to the density grid ϕG.

Weight factor. As stated in the main paper, the final
optimization process of our method to model the scene for
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Figure S1. Limitation of texture editing on occluded regions.

efficient editing can be formulated as follows:

ϕ∗
G, ϕ

∗
I , ϕ

∗
P = argmin

ϕG,ϕI ,ϕP

Lcolor + Luv + Ltv, (S1)

where the second and the third terms are controlled by their
corresponding weight factors λuv and λtv , respectively. To
be specific, the weight factor λuv is set as 10−5 for forward-
facing scene and larger value of 10−1 or 10−2 for panorama
and inward-facing 360◦ scenes; the weight factor λtv is set
as 10−4 for panorama scene and 10−5 for other scenes.
Note that for panorama and inward-facing 360◦ data, the
total variation term is disabled after 20000 steps to learn
depths in detail.
Progressive training. Similar to [1, 8, 12], we apply
progressive scaling for our voxel grid ϕG and canonical
image ϕI for a coarse-to-fine learning process. By gradually
refining the resolution of both representations, we enable a
more detailed and comprehensive learning process.

At specific scaling-up milestone steps, we increase the
ϕG voxel count by a factor of 2 and the ϕI pixel count
by a factor of 4. For the forward-facing and object-
centric data scenes, the voxel grid ϕG is scaled up at
{2000, 4000, 6000, 8000} training steps and the canonical
image ϕI is scaled up at {8000, 16000} training steps. For
the panorama data types, the voxel grid ϕG is scaled up
at {2000, 4000, 6000, 8000, 10000, 12000, 14000, 16000}
training steps, and the canonical image ϕI is scaled up at
{4000, 8000, 12000, 16000} training steps.
Size of voxel grid ϕG and canonical image ϕI . After the
progressive scaling up, The final resolution of the voxel grid
ϕG is set as 384× 384× 256 for forward-facing scenes and
320× 320× 320 for other scenes.

For the NDC canonical camera of forward-facing scenes,
we set the height HI of the learnable explicit canonical
image ϕI as 768, and the canonical image width WI is
adaptively calculated according to the width-height aspect
ratio of the training images and the computed bounding
box of the scene in NDC space. Denoting the bounding
box in NDC space as (x′

min, x
′
max) in x′ dimension,

(y′min, y
′
max) in y′ dimension, and (z′min, z

′
max) = (−1, 1)

in z′ dimension and the aspect ratio as rI , we can then

calculate the canonical image width as:

WI = HI × rI ×
x′
max − x′

min

y′max − y′min

. (S2)

For the canonical camera of panorama scenes, the canon-
ical image height is set to be 768 and the width WI is
set to be 2 × 768 = 1536 according to the definition of
Equirectangular projection.

For the canonical camera of object-centric scenes, the
canonical image width and height are adaptive, where the
canonical image width-height aspect ratio rI = WI

HI
is

calculated according to the uv range:

rI =
umax − umin

vmax − vmin
, (S3)

where u ∈ [−π, π] and v ∈ [−π
2 ,

π
2 ]. The shorter

dimension, whether width or height, is set to 768.
Annealed positional and hash encoding. The projection
offset employs Fourier positional encoding [13] or multi-
resolution hash encoding [9] to capture high-frequency
information. Given an input vector x ∈ R3, the correspond-
ing encoding can be defined as follows:
• The positional encoding is defined as γpe(·) : R3 →
R3×(1+2K) to encode 3-dimensional vector x up to K
frequencies as γpe(x) = [x, F1(x), ..., FK(x)]. For
the k-th frequency of positional encoding, we have the
encoding function Fk(x) = [sin(2kx), cos(2kx)] ∈
R2×3.

• The hash encoding is defined as γh(·) : R3 →
R3+DK to encode the vector x by a K-resolution hash
grid with D-dimensional feature per layer as γh(x) =
[x, H1(x), ...,HK(x)]. For the k-th resolution hash grid
with D-dimensional feature at each layer, we have the
encoding function Hk(x) ∈ RD.

Motivated by Nerfies [10], the positional or hash encoding
can incorporate an optional annealing learning strategy.
Specifically, we introduce a weight factor wn

k = 1
2 (1 −

cos(αn
kπ)) for some encoded frequency Fn

k or Hn
k at some

training step n, such that we have Fn
k (·) = wn

kFk(·) or
Hn

k (·) = wn
kHk(·) and

αn
k = min(max(

n−Ns

Ne −Ns
K − k, 0.0), 1.0), (S4)



where Ns and Ne denote the start and end steps for anneal
encoding, respectively. The strategy aims to facilitate the
learning of low-frequency details and gradually incorporate
high-frequency bands as the training progresses.

For all the experiments, the encoding γd of direction d
specifically employs positional encoding γpe, where we set
K = 4 with the optional annealing learning strategy off.
Concerning the encoding γp of position pxyz , we choose
to use positional encoding γpe for PE models and hash
encoding γh for hash models, where we set K = 8 with
the annealed learning starting at training step Ns = 4000
and ending at Ne = 8000 for PE models, and we set D = 2
and K = 16 without the optional annealed learning strategy
for hash models.
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