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1. Introduction
Artificial-intelligence methods have expanded

the frontiers of materials discovery at an unprece-
dented pace: graph-network surrogates such as
DeepMind’s GNoME enumerated ∼380 000 previ-
ously unknown stable crystals in silico [1], while self-
driving laboratories are compressing years of iter-
ative synthesis into weeks [2]. Argonne’s Polybot,
for instance, tripled the discovery rate of conductive
polymer films comparedwithmanual workflows [3].
Despite this momentum, industrial programmes

rarely progress beyond TRL 4, where components
are proven in the lab but not integrated into pro-
duction [4]. Surveys highlight fragmented software
stacks, inconsistent data governance and volatile
economics as primary blockers; more than 40 % of
manufacturers cite data-integration costs as the rea-
son AI pilots stall [5]. These obstacles persist even a
decade after the Materials Genome Initiative (MGI)
called for a unified digital infrastructure to halve de-
velopment timelines [4].
DeepVerse, a startup specializing in AI-driven ma-

terials informatics, identifies critical yet overlooked
challenges at the AI-materials-industry nexus, lever-
aging insights fromover 120 industry pilots, and pro-
poses an actionable framework Industrial Materials
Intelligence (IMI) to align academic innovation with
manufacturing realities.

2. Motivation
The MGI envisioned a transition from trial–and–

error to simulation-guided design, yet industrial up-
take lags because of the structural bottlenecks (i)
Data chaos in addition to data sparsity: industrial ma-
terials data are scattered across fragmented schemas
(industrial LIMS, ad-hoc spreadsheets, hand-written
lab notebooks and IoT sensor logs), while metadata
are often undocumented, crippling AI/ML repro-
ducibility. Industry partners have to spend months
on data harmonisation before modelling can be-
gin. (ii) “Sim-to-real” safety gaps: in self-driving
labs, optimisation policies generated in silico can
breach equipment safety thresholds, causing rig
faults and costly stoppages. A pre-validation pro-
tocol is therefore needed to filter unsafe recipes.
(iii) Talent bifurcation: materials scientists rarely
master MLOps, whereas data engineers often lack
process-chemistry intuition, creating a “missing-
middle” skills gap[6, 7].
Beyond these hurdles lie industrial KPIs tied to

factory economics that academia rarely optimises.
A multi-objective active-learning agent embedding

commodity price forecastingmodel based on supply
network and structured market sentiment captures
hidden supply-chain risks can outperform pure-
performance models. Likewise, scale-up metrics—
such as time-to-first-kilogram, performance consistency
and yield stability—are absent from most academic
leaderboards, yet they are critical to pilot-plant fund-
ing decisions.
IMI addresses these barriers through auditable

data metrics, ontology-based semantic APIs and
low-code interfaces that inject cost and supply-risk
considerations directly into every learning loop,
thereby converting MGI’s simulation-guided vision
into factory-floor reality.

Domain Exemplar

AI discovery models GNoME large-scale graph
networks [1]

Autonomous labs Polybot [3]; A-Lab [2]
Alloy design MagNex rare-earth-free

magnet [8]
Semantic interoperability PMD-Core ontology [6]
Production MLOps Drift-observability stud-

ies [9, 7]

Table 1: Summary of related work.

3. Conceptual Framework
We propose the Industrial Materials Intelligence

(IMI) framework, that is a modular software-and-
workflow combines: (i) Data-Readiness Index, (ii)
Materials Ontology-driven Middleware, (iii) Multi-
Objective Active Learning, (iv) Shadow-Execution
Queue, (v) Human-in-the-Loop Dashboards, and (vi)
Self-Driving Laboratory Connectors.

3.1 Data-Readiness Index
A data evaluation tool assessing raw data us-

ing various metrics—volume, completeness, consis-
tency, correlation, constraints, domain knowledge,
label difficulty, signal-to-noise ratio, and hyper-
volume fill—to quantify dataset fitness, guiding data
cleaning process and model trust.

3.2 Semantic Middleware
A graph adaptor aligns heterogeneous LIMS/ELN

schemas to PMD-Core andMGI ontologies, exposing
lineage-aware REST and OPC-UA endpoints[10] and
cutting data-wrangling time from months to weeks
in pilot projects.
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3.3 Multi-Objective Active Learning
A Bayesian optimiser embeds live commodity

prices and supply-risk indices into optimization
loops. For our battery electrolyte design pilot with
Envision AESC, this reduces reliance on expensive
compounds by 17% while maintaining the perfor-
mance.

3.4 Shadow-Execution Queue
Each AI-proposed recipe is first validated in sim-

ulations before robotic execution, cutting labora-
tory cost by ≈20 % [11]. This “shadow-execution”
step filters hazardous or low-yield pathways, mir-
roring the validation philosophy adopted by Coley
et al.[12], where they integrating AI planning with
a reconfigurable flow-chemistry robot withminimal
human intervention—establishing the feasibility of
simulation-to-robot hand-offs in chemical synthesis
workflows.

3.5 Human-in-the-Loop Dashboards
IMI deploys pipelines for CI/CD and automatic re-

training triggered by DRI changes or drift alarms.
Engineers or Scientists receive a ranked queue of
AI-proposed recipes, but they can also override de-
cisions, and every action feeds back into the reg-
istry—closing the learning loop.

3.6 Self-Driving Laboratory Connectors
Accepted recipes are serialised in domain-

specific languages such as XDL [13, 14] or
ChemOS[15] formats and dispatched to autonomous
assets such as ChemOS-enabled benches or ESCA-
LATE workflows [16]. To mainstream this hand-off,
the OPC Foundation has launched the “OPC-UA for
AI” working group, standardising metadata and
control profiles so that SDLs can plug seamlessly
into existing plant automation networks[10, 17].

Together, these six elements close the loop from
data curation to physical execution and back, ensur-
ing every new data point is captured, validated and
re-fed into the IMI framework—without sacrificing
safety, traceability or human insight.

4. Results
We benchmark IMI on four industrial pilots. Key

performance indicators (KPIs)—search-space, number
of physical experiments, and time-to-spec—are sum-
marised in Table 2.
Across all pilots, the DRI and material ontology

middleware layer reduced data-wrangling lead-time
from 6 months to less than 7 weeks (−73%). The
shadow-execution queue protocol rejected 20 % of
unsafe candidate recipes. Taken together, these re-
sults confirm that IMI’s disciplined data governance,
cost-aware optimisation and closed-loop MLOps has
the potential to translate academic AI4M advances
into measurable value on the factory floor.

5. Future Directions
IMI demonstrates that rigorous data gover-

nance and modular software are critical for scaling
AI4Materials. Next steps include open bench-
marks for time-to-first-kilogram, pilot-as-a-service
sandboxes, cross-training programmes and formal
safety verification for autonomous synthesis. Deep-
Verse invites AI4X participants to establish a Open
Industrial Benchmark Consortium and co-define the
metrics that matter for industrial deployment.
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Pilot / Use-case Search-space Experiments ↓ Time-to-spec ↓

Thermo catalysts ≈ 108 ≈400 tests 10 yr→ 2 yr
Conductive-polymer films ≈ 1012 60→ 18 6 mo→ 7 wk
Battery electrolytes ≈ 1050 120→ 25 9-12 mo→ 3 mo
Bio-based cosmetics ≈ 1011 50→ 16 6 mo→ 5 wk

Table 2: Performance of IMI across different industrial pilot cases. “Experiments ↓” and “Time-to-spec ↓”
denote reductions versus historical baselines; time-to-spec is the calendar time from project kickoff to the
first sample that meets all pre-agreed performance specifications
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