
A Regression Approach and Stochastic traps397

A well known vanilla uncertainty-based exploration method consists in predicting future targets zt+1398

from a history-representation bt of past observations-actions and future open-loop actions at via399

regression. This method is referred as a one-step prediction error method at the latent-level if zt+1 is400

a function of the observation or at the observation-level if zt+1 = ot+1. The representation bt can401

be learned via a representation learning method or simply be, in a toy scenario, bt = (ot, at−1). In402

any case, using a simple regression technique to compute the intrinsic rewards will lead towards403

trivial behaviors if the underlying dynamics zt+1 ∼ p(.|bt, at) is stochastic. Indeed, let gθ be404

a parameterized predictor that is trained to predict zt+1 with inputs (bt, at) with the following405

regression loss:406

LReg(θ, zt+1) = E
[
∥zt+1 − gθ(bt, at)∥22

]
.

Then, if gθ is expressive enough, we have:407

argmin
θ
LReg(θ, zt+1) = E[zt+1|(bt, at)],

min
θ
LReg(θ, zt+1) = E

[
∥zt+1 − E[zt+1|(bt, at)]∥22

]
= Var[zt+1|(bt, at)].

As the intrinsic rewards are derived from the prediction loss, we see that when the loss is minimized,408

we introduce the variance of the future-target distribution in the intrinsic rewards. This added variance409

is problematic because it encourages the agent to seek for states with uncertain future outcomes and410

stay there. Those states are known as stochastic traps.411

B General BYOL-Explore and BLaDE Architecture412

EMA Target
Encoder

Encoder

Open-loop
RNN cell

Open-loop
RNN cell

Open-loop
RNN cell

Closed-loop
RNN cell

EMA Target
Encoder

EMA Target
Encoder

Predictor Predictor Predictor

Figure 10: BYOL-Explore’s Neural Architecture.

The online network is composed of:413

• Encoder: fθ : O → RN414

• Close-loop RNN cell: hcθ : RM × RN ×A → RM415

• Open-loop RNN cell: hoθ : RM ×A → RM416

• In the case of BYOL-Explore, the predictor is: gθ : RM → RN417

• In the case of BLaDE the predictor is: gθ : RM+N+L → RN418

The target network is composed of:419

• EMA encoder: fϕ : O → RN420

13

Open-loop
RNN cell

EMA Target
Encoder

Predictor

Open-loop
RNN cell

EMA Target
Encoder

Predictor

Figure 11: BLaDE’s and BYOL-Explore’s predictor architectures.

B.1 Detailed BYOL-Explore and BLaDE architecture for Atari421

In Atari, the size of the observation-representation N = 512 and the size of the history-422

representation M = 256.423

• Encoder: fθ : O → RN : The encoder is instantiated as a Deep ResNet [12] stack. The424

greyscale image observation is passed through a stack of 3 units, each comprised of a 3× 3425

convolutional layer, a 3× 3 maxpool layer, and 2 residual blocks. The number of channels426

for the convolutional layer and the residual blocks are 16, 32, and 32 within each of the 3427

units respectively. We use GroupNorm normalization [31] with one group at the end of each428

of the 3 units, and use ReLU activations everywhere. The output of the final residual block429

is flattened and projected using a single linear layer to an embedding of dimension 512.430

• Close-loop RNN cell: hcθ : RM × RN × A → RM is a simple Gated Recurrent Unit431

(GRU) [5]. We provide the past-action to the close-loop RNN cell, embedded into a432

representation of size 32.433

• Open-loop RNN cell: hoθ : RM ×A → RM is a simple Gated Recurrent Unit. We provide434

the past-action to the open-loop RNN cell, embedded into a representation of size 32.435

• Policy head πψ : RN → R|A|, value head vψ : RN → R. The outputs of the policy head436

are passed through a softmax layer to form the probabilities for each action to be taken.437

• The predictor for BYOL-Explore gθ : RM → RN is a simple Multi-Layer Perceptron438

(MLP) with three hidden layer of size (512, 512, 512).439

• The predictor for BLaDE gθ : RM+N+L → RN is a simple Multi-Layer Perceptron (MLP)440

with three hidden layer of size (512, 512, 512).441

B.2 Details of Reward Normalization Mechanism442

We use a similar reward normalization scheme as in RND [4] and normalize the raw rewards443

((ℓ jt)
T−2
t=0)B−1

j=0 by an EMA estimate of their standard deviation.444

More precisely, we first set the EMA mean to r = 0, the EMA mean of squares to r2 = 0 and the445

counter to c = 1. Then, for the c-th batch of raw rewards ((ℓ jt)
T−2
t=0)B−1

j=0 , we compute the batch mean446

rc and the batch mean of squares r2c :447

rc =
1

B(T − 1)

B−1∑
j=0

T−2∑
t=0

ℓ it , r2c =
1

B(T − 1)

B−1∑
j=0

T−2∑
t=0

(ℓ it)
2.

14

We then update r, r2 and c:448

r ← αrr + (1− αr)rc, r2 ← αrr2 + (1− αr)r2c , c← c+ 1,

where αr = 0.99. We compute the adjusted EMA mean µr, the adjusted EMA mean of squares µr2 :449

µr =
r

1− αcr
, µr2 =

r2

1− αcr
·

Finally the EMA estimation of the standard deviation is σr =
√
max(µr2 − µ2

r, 0) + ϵ, where450

ε = 10−8 is a small numerical regularization. The normalized rewards are rji,t = ℓ jt /σr.451

C Baselines452

Random Network Distillation (RND) [4] is a simple exploration method that consists in training453

an encoder such that its outputs fit the outputs of another fixed and randomly initialized encoder and454

using the training loss as an intrinsic reward to be optimized by an RL algorithm. More precisely,455

let N ∈ N∗ be the embedding size and let us note fθ : O → RN the encoder, also called predictor456

network, with trainable weights θ and fϕ : O → RN the fixed and randomly initialized encoder,457

also called target network, with fixed weights ϕ. In addition, let us suppose that we have a batch of458

trajectories
(
(ojt , a

j
t)
T−1
t=0

)B−1

j=0
collected by our RL agent, then the loss LRND(θ) to minimize w.r.t.459

the online network parameters is defined as:460

LRND(θ, j, t) = ∥fθ(ojt)− sg(fϕ(o
j
t))∥22, LRND(θ) =

1

BT

B−1∑
j=0

T−1∑
t=0

LRND(θ, j, t),

and the unnormalized reward associated to the transition (ojt , a
j
t , o

j
t+1) is defined as ℓ jt = LRND(θ, j, t+461

1) where 0 ≤ t ≤ T − 2. To obtained the final intrinsic rewards, we just normalize them to be as462

close as possible to the original RND implementation:rji,t =
ℓ i
t

σr
.463

Fixed Target
Encoder

Predictor
Encoder

Figure 12: RND’s Neural Architecture.

Intrinsic Curiosity Module (ICM) [24] is a one-step prediction error method at the latent level.464

It consists in training an encoder fθ : O → RN that outputs a representation that is robust to465

uncontrollable aspects of the environment and then use this representation as inputs of a one-step466

prediction error model gϕ : RN ×A → RN which error is used as an intrinsic reward to be optimized467

by an RL algorithm. To build a representation robust to uncontrollable dynamics, the idea used in ICM468

is to train an inverse dynamics model pθ : RN ×RN → A that predicts the distribution of actions469

that led to the transition between two consecutive representations fθ(ot), fθ(ot+1). More precisely,470

15

let us suppose that we have a batch of trajectories
(
(ojt , a

j
t)
T−1
t=0

)B−1

j=0
collected by our RL agent, then471

the loss LINV(θ) to minimize in order to train our encoder and inverse dynamcis model is:472

LINV(θ, j, t) = − ln
(
pθ(a

j
t |fθ(o

j
t), fθ(o

j
t+1))

)
, LINV(θ) =

1

B(T − 1)

B−1∑
j=0

T−2∑
t=0

LINV(θ, j, t),

which is a simple cross-entropy loss. Simultaneously, ICM also trains the one step prediction error473

model by minimizing the following one-step prediction loss:474

LICM(ϕ, j, t) = ∥gϕ(fθ(ojt), a
j
t)− sg(fθ(o

j
t+1))∥22, LICM(ϕ) =

1

B(T − 1)

B−1∑
j=0

T−2∑
t=0

LICM(θ, j, t),

and the unnormalized reward associated to the transition (ojt , a
j
t , o

j
t+1) is defined as ℓ jt = LICM(θ, j, t)475

where 0 ≤ t ≤ T − 2. To obtained the final intrinsic rewards, we just normalize them :rji,t =
ℓ j
t

σr
.476

Action
Predictor

Embedding
Predictor

Encoder EncoderEncoder

Encoder

Figure 13: ICM’s Neural Architecture.

16

D Hyperparameter Settings477

After normalizing the rewards, we rescale them by 1− γ. We similarly use PopArt normalization478

on the output of the value network. We choose an horizon K = 8. We use a discount factor of479

γ = 0.999. To train the value function, we use VTrace [8] without offpolicy corrections to define480

TD targets for MSE loss with a loss weight of 0.5. We add an entropy loss with a loss weight of481

0.001. The VMPO parameters ηinit and αinit are initialized to 0.5. ϵη and ϵα are set to 0.01 and482

0.005 respectively. We scale the BYOL loss by a factor of 5.0 when combining losses. The VMPO483

top-k parameter is set to 0.5. We use the Adam optimizer with learning rate 10−4 and b1 = 0.9. The484

target network for VMPO is updated every 10 learner steps.485

We use a batch size of 32 and a sequence length of 128; and a distributed learning setup using 4486

TPUv2 for learning and 400 CPU actors for generating data via another inference server using 4487

TPUv2 to evaluate the policy, similar to Agent57 [1].488

17

