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1 PROOFS
Theorem 1. Let us choose 𝑆 such that the optimization of 𝐺 in
Eq.(15) (main paper) can be written as

min
𝐺

KLD((𝑃𝐺 + 𝑃𝐺 ∗ 𝑃𝜀 ) | | (𝑃𝑅 + 𝑃𝑅 ∗ 𝑃𝜀 ))

− JSD( 1
2
(𝑃𝑅 + 𝑃𝑅 ∗ 𝑃𝜀 ) | |

1
2
(𝑃𝐺 + 𝑃𝐺 ∗ 𝑃𝜀 )),

(S1)

where 𝑃𝜀 is a zero-mean Gaussian function produced by DANI with
a positive definite covariance Σ. Let us also assume that the domain
of 𝑃𝐺 is restricted to Ω (and thus 𝑃𝐺 ∈ 𝐿2 (Ω)). Then, the global
optimum of Eq.(S1) is 𝑃𝐺 (𝑥) = 𝑃𝑅 (𝑥),∀𝑥 ∈ Ω.
Proof. According to [1, 3, 4], the global minimum of the KL-2JS
divergence is achieved if and only if

𝑃𝑅 + 𝑃𝑅 ∗ 𝑃𝜀 = 𝑃𝐺 + 𝑃𝐺 ∗ 𝑃𝜀 . (S2)

Following the proofs of Theorem 1 as in [4], let 𝑃𝐺 = 𝑃𝑅 + Δ.
Then, we can obtain the

∫
|Δ(𝑥) |2 d𝑥 < ∞. By substituting the

𝑃𝐺 with 𝑃𝑅 + Δ in Eq.(S2), we have that Δ ∗ 𝑃𝜀 = −Δ. Based on
our definition in the §3.2 in the main paper, both Δ and 𝑃𝜀 are in
𝐿2 (Ω). Then, we take the Fourier transform of both sides in the
reformulated Eq.(S2) above, compute the absolute value and obtain

|Δ̂(𝜔) | |𝑝𝜖 (𝜔) | =
��Δ̂(𝜔)�� , ∀𝜔 ∈ Ω̂. (S3)

Because 𝑃𝐺 and 𝑃𝑅 integrate to 1,
∫
Δ(𝑥)d𝑥 = 0 and Δ̂(0) = 0.

Suppose ∃𝜔 ≠ 0 such that Δ̂(𝜔) ≠ 0. Since 𝑃𝜀 is under the Gaussian
distribution, then |𝑝𝜖 (𝜔) | =

���𝑒− 1
2𝜔

⊤Σ−1𝜔
��� < 1, which contradicts

the optimality condition in Eq.(S3). Thus Δ̂(𝑥) = 0,∀𝑥 ∈ Ω and we
can conclude that 𝑃𝐺 (𝑥) = 𝑃𝑅 (𝑥),∀𝑥 ∈ Ω.
Theorem 2. Let us choose 𝑆 such that the optimization of 𝐺 in
Eq.(18) (main paper) can be written as

min
𝐺

KLD((𝑃𝐺 + 𝑃𝐺 ∗ 𝑃𝜀 ) | | (𝑃𝑅 + 𝑃𝑅 ∗ 𝑃𝜀 )), (S4)

where 𝑃𝜀 is a zero-mean Gaussian function produced by DANI with
a positive definite covariance Σ. Let us also assume that the domain
of 𝑃𝐺 is restricted to Ω (and thus 𝑃𝐺 ∈ 𝐿2 (Ω)). Then, the global
optimum of Eq.(S4) is 𝑃𝐺 (𝑥) = 𝑃𝑅 (𝑥),∀𝑥 ∈ Ω.
Proof. Based on the [4–6, 9] and the proofs in Theorem 1 above, the
global minimum of the KL divergence is achieved if and only if

𝑃𝑅 + 𝑃𝑅 ∗ 𝑃𝜀 = 𝑃𝐺 + 𝑃𝐺 ∗ 𝑃𝜀 , (S5)

where formulation of Eq.(S5) is the same as the formulation of
Eq.(S2). Then, based on the detailed proofs in Theorem 1 above,
we can obtain the same conclusion in Theorem 1 that 𝑃𝐺 (𝑥) =

𝑃𝑅 (𝑥),∀𝑥 ∈ Ω.

2 MORE DETAILS ABOUT EXPERIMENTS
2.1 More Experiments requirements and

Pre-trained model with test code
Experiments requirements: The results in the main paper are
trained by a workstation with CPU i9-10980XE, 128G ECC mem-
ory and four TITAN RTX GPUs (4 × 24G). The operating system
is Ubuntu 18.04. To replicate our experimental environment, we
recommend referring to the official open-source codes of InsGen 1

and Projected GAN 2 for instructions on obtaining the necessary
software and Python libraries.
Pre-trained models with test codes: The pre-trained model with
test code can be found in the anonymous Google drive link 3. We
will release all training codes once the paper is accepted.

2.2 More Experiments Results with Inception
Score (IS)

To further show the superiority of the proposed DANI, we also
show the experiment results on other commonly-used GANs evalu-
ation metrics, i.e., Inception Score (IS) [7]. The results on low-shot
datasets compared with the baseline Projected GAN are shown in
Table S1. Projected GAN + DANI can achieve higher IS, demonstrat-
ing the superiority of the proposed DANI.

2.3 More Ablation Studies with Diffusion-GAN
on the FFHQ Dataset

To further demonstrate that the noise injection form in the proposed
DANI is better than Diffusion-GAN [10], we perform more ablation
studies with Diffusion-GAN on the FFHQ dataset, and the results
are shown in Table S2. Projected GAN + DANI can achieve better
performance compared with Diffusion-Projected GAN on the FFHQ
dataset.

2.4 More generated results on Projected GAN +
DANI

To further show the superiority of the proposed DANI, we also
show the interpolation videos of Projected GAN + DANI on low-
shot datasets. Please check the folder “More generated results of
interpolation videos on low-shot datasets" for the results.

3 ETHICS IMPACT
This paper proposes a novel noise injection method for the GANs
with limited data called Dual Adaptive Noise Injection (DANI) that
can benefit the practical deployment of training GANs with limited
datawith negligible computational cost. The technical contributions
of this paper do not raise any particular ethical challenges. However,
1https://github.com/genforce/insgen
2https://github.com/autonomousvision/projected-gan
3https://drive.google.com/file/d/1txf67sw33M7wkXsnQcZ3WRuQDzsCT6UV/view?
usp=sharing
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Method 100-shot Animal-Face

Obama Grumpy Cat Panda Cat Dog
Projected GAN [8] 1.67 1.47 1.00 2.22 15.01
Projected GAN + DANI 1.68 1.48 1.02 2.29 15.46

Table S1: Inception score (higher is better) on several low-shot datasets (256 × 256). Massive Augmentation [2] is applied to all of
the methods. For a fair comparison, the Inception Scores are averaged over three runs; all standard deviations are less than 1%
relatively.

Method MA Backbone FFHQ

100 1K 2K 5K
Diffusion-Projected GAN Yes FastGAN 25.47 10.97 7.99 6.59
Projected GAN + DANI Yes FastGAN 23.98 10.81 7.73 6.20

Table S2: FID score (lower is better) on the 256 × 256 FFHQ dataset. We follow the setting as in [11]. MA means Massive
Augmentation, i.e., xflipping, which has the same meaning as in [2]. For a fair comparison, the FIDs are averaged over five
runs; all standard deviations are less than 1% relatively. The results of the Diffusion-Projected GAN are run by ourselves based
on the official open-source codes.

because technology is usually a double-edged sword, our work may
also bring potential social risks when applying GANs with limited
data. For example, it may ease the fake media synthesis using only
limited data, which may cause more fake media in daily life.
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