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ABSTRACT

Image recognition and generation have long been developed independently of
each other. With the recent trend towards general-purpose representation learn-
ing, the development of general representations for both recognition and gener-
ation tasks is also promoted. However, preliminary attempts mainly focus on
generation performance, but are still inferior on recognition tasks. These meth-
ods are modeled in the vector-quantized (VQ) space, whereas leading recognition
methods use pixels as inputs. Our key insights are twofold: (1) pixels as in-
puts are crucial for recognition tasks; (2) VQ tokens as reconstruction targets are
beneficial for generation tasks. These observations motivate us to propose an Al-
ternating Denoising Diffusion Process (ADDP) that integrates these two spaces
within a single representation learning framework. In each denoising step, our
method first decodes pixels from previous VQ tokens, then generates new VQ
tokens from the decoded pixels. The diffusion process gradually masks out a por-
tion of VQ tokens to construct the training samples. The learned representations
can be used to generate diverse high-fidelity images and also demonstrate excel-
lent transfer performance on recognition tasks. Extensive experiments show that
our method achieves competitive performance on unconditional generation, Ima-
geNet classification, COCO detection, and ADE20k segmentation. Importantly,
our method represents the first successful development of general representations
applicable to both generation and dense recognition tasks. Code is released at
https://github.com/ChangyaoTian/ADDP.

1 INTRODUCTION

Image recognition and image generation are both fundamental tasks in the field of computer vi-
sion (Bao et al., 2022; He et al., 2022; Wei et al., 2022; Liu et al., 2021; Dhariwal & Nichol, 2021;
Ho et al., 2020; Donahue et al., 2017). Recognition tasks aim to perceive and understand the visual
world, while generation tasks aim to create new visual data for various applications. Modern recog-
nition algorithms have already surpassed human performance on many benchmarks (Liu et al., 2021;
He et al., 2016), and current generative models can synthesize diverse high-fidelity images (Rom-
bach et al., 2022; Esser et al., 2021). However, these two fields have long been developed inde-
pendently of each other. Recent years have witnessed a significant trend towards general-purpose
representation learning. For recognition tasks, researchers have extensively studied general repre-
sentations that can be adapted to various downstream tasks (Peng et al., 2022; Dong et al., 2023; He
et al., 2022; Chen et al., 2022; Tao et al., 2023). Given this unifying trend, it is natural to expect that
representations applicable to both recognition and generation tasks could be developed.

Inspired by this, recent works (Li et al., 2022; Yu et al., 2021; Chen et al., 2020a) attempt to learn
general representations for both recognition and generation through a specific generative modeling
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Figure 1: Inference pipelines of unified methods that learn general representations for both
generation and recognition. Previous methods are modeled either entirely in raw-pixel space
(iGPT (Chen et al., 2020a)) or entirely in VQ-token space (ViT-VQGAN (Yu et al., 2021) and
MAGE (Li et al., 2022)). In contrast, ADDP exploits both spaces, yielding competitive perfor-
mances on both recognition and generation tasks.

Input #Params IN-1k Cls COCO Det COCO Det ADE20k Seg
256× 256 256× 256 1024× 1024 256× 256

pixel 86M 82.6 29.4 47.5 43.7
token 24M+86M 81.6 12.3 31.0 31.1

Table 1: Performance of taking pixels or tokens as inputs on canonical recognition tasks. We
adopt a pre-trained VQ tokenizer (Esser et al., 2021) to generate the tokens. Under the same training
schedule (see Appendix), using VQ-tokens as inputs is inferior to its pixel counterpart on all tasks,
and the gap is even larger on dense recognition tasks.

paradigm, i.e., Masked Image Modeling (MIM) (Bao et al., 2022). As shown in Fig. 1, during
the generation process, they iteratively recover the image content for a portion of masked regions.
Such generation process has been leveraged for high-fidelity image synthesis (Chang et al., 2022).
Meanwhile, each recovery step can be regarded as a special case of MIM using different mask ratios,
which has also proved to learn expressive representations for image recognition (He et al., 2022). In
particular, ViT-VQGAN (Yu et al., 2021) and MAGE (Li et al., 2022) exhibit remarkable generation
performance. Nonetheless, their recognition performances fall short. Specifically, they are still
limited to classification task, but are not suitable for dense recognition tasks.

We notice that ViT-VQGAN (Yu et al., 2021) and MAGE (Li et al., 2022), like many image gener-
ation methods, are modeled in the vector-quantized (VQ) space (van den Oord et al., 2017). While
current SoTA representation learning methods for recognition, such as MAE (He et al., 2022) and
BEiT (Bao et al., 2022), all take raw image pixels as inputs. Such observation motivates us to pro-
pose the following arguments: (1) Raw pixels as inputs are crucial for recognition tasks. Pixels
preserve spatially sensitive information better than VQ tokens (Shin et al., 2023), which is partic-
ularly useful for dense recognition tasks. As shown in Tab. 1, taking pixels as inputs outperforms
the VQ tokens counterpart in typical recognition tasks. (2) VQ tokens as reconstruction targets are
beneficial for generation tasks. Previous works such as (van den Oord et al., 2017; Rombach et al.,
2022) show that compared to generating raw pixels, predicting VQ tokens can help the model elimi-
nate imperceptible image details, mitigating the optimization difficulty and resulting in better image
generation quality.

Based on these observations, a natural question arises: Is it possible to associate the two spaces
within a single representation learning framework, allowing the model to perceive in raw pixels and
generate in latent visual tokens?

To this end, we propose a general representation learning framework that bridges pixel and token
spaces via an Alternating Denoising Diffusion Process (ADDP). Specifically, at each step in the
alternating denoising process, we first decode pixels from previous VQ tokens, and then generate
new VQ tokens from these decoded pixels. For the corresponding diffusion process, we first map
the original images into VQ-token space with a pre-trained VQ encoder (Chang et al., 2022), then
gradually mask out some VQ tokens. An off-the-shelf VQ decoder is employed for the token-
to-pixel decoding, while a learnable encoder-decoder network is introduced for the pixel-to-token
generation. The training objective is given by the evidence lower bound (ELBO) of the alternating
denoising diffusion process. When applied to image generation, we follow the proposed alternating
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denoising process to generate images. When applied to image recognition, the learned encoder,
which takes raw pixels as inputs, would be fine-tuned on corresponding datasets.

Extensive experiments demonstrate the superior performance of ADDP on image generation and
recognition tasks, including unconditional generation on ImageNet 256 × 256 (Deng et al., 2009),
ImageNet-1k classification, COCO (Lin et al., 2014) detection and ADE20k (Zhou et al., 2019) seg-
mentation. For unconditional generation, ADDP is able to generate high-fidelity images, achieving
better performance than previous SoTAs (Li et al., 2022). For recognition tasks, ADDP is compet-
itive with current leading methods tailored for recognition tasks (He et al., 2022; Bao et al., 2022).
Specifically, to the best of our knowledge, ADDP is the first approach to develop general represen-
tations that are applicable to both generation and dense recognition tasks.

2 RELATED WORK

Deep generative models are initially developed for image generation. However, recent works found
that models trained for some specific generative tasks, such as Masked Image Modeling (MIM) (He
et al., 2022; Bao et al., 2022), can learn expressive representations that can be transferred to various
downstream recognition tasks. Such discovery has inspired a series of works that attempt to unify
image generation and representation learning.

Deep Generative Models for Image Generation. Early attempts (e.g., GANs (Goodfellow et al.,
2014; Mirza & Osindero, 2014; Denton et al., 2015; Radford et al., 2016; Chen et al., 2016; Ar-
jovsky et al., 2017; Zhu et al., 2017; Karras et al., 2018; Zhang et al., 2019; Brock et al., 2019),
VAEs (Kingma & Welling, 2014; Higgins et al., 2017; Vahdat & Kautz, 2020), and autoregressive
models (van den Oord et al., 2016a;b; Salimans et al., 2017)) directly decode raw pixels from ran-
dom distributions. However, VQ-VAE (van den Oord et al., 2017) points out that directly generating
raw pixels is challenging and resource-wasteful due to the redundant low-level information in im-
ages. In contrast, VQ-VAE proposes a two-stage paradigm: the first stage encodes images into latent
representations (i.e., discrete visual tokens), and the second stage learns to generate visual tokens
with powerful autoregressive models. These generated visual tokens are then decoded into raw pix-
els by the decoder learned in the first stage. Such a two-stage latent space paradigm shows superior
training efficiency and performance compared to raw-pixel-wise methods and is thus adopted by
most state-of-the-art generative models (Razavi et al., 2019; Yu et al., 2021; Esser et al., 2021; Gu
et al., 2022; Chang et al., 2022; Ramesh et al., 2022).

On the other hand, diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021; Gu et al., 2022;
Ramesh et al., 2022; Chang et al., 2022; Saharia et al., 2022; Chang et al., 2023) have also achieved
impressive results in image generation, which can produce high-fidelity images by iteratively re-
fining the generated results. For example, Guided Diffusion (Dhariwal & Nichol, 2021) directly
decodes raw pixels with diffusion models, and for the first time achieves better results than GAN-
and VAE-based generative models. Recent works (e.g., Stable Diffusion (LDMs) (Rombach et al.,
2022), VQ-Diffusion (Gu et al., 2022) and MaskGIT (Chang et al., 2022)) further combine diffusion
models with the two-stage latent space paradigm, achieving superior image quality. Meanwhile, the
success of diffusion models has also been extended to text-to-image generation (Gu et al., 2022;
Ramesh et al., 2022; Saharia et al., 2022; Chang et al., 2023), image editing (Zhang et al., 2022;
Kawar et al., 2022b), image denoising (Kulikov et al., 2022; Kawar et al., 2022a), etc.

Following previous works, ADDP also performs diffusion with latent space to generate images. The
key difference is that our method refines raw pixels and latent representations alternately, which can
learn unified representation for both recognition and generation tasks with competitive performance.

Generative Pre-training for Image Representation Learning. Recent research (Bao et al., 2022;
Peng et al., 2022; Dong et al., 2023; He et al., 2022; Chen et al., 2022; Liu et al., 2022; Wei et al.,
2022; Fang et al., 2023) suggests that some specific generative modeling tasks (e.g., Masked Image
Modeling (MIM)) can learn more expressive and effective representations than previous represen-
tation learning methods (e.g., supervised methods (Dosovitskiy et al., 2021; Liu et al., 2021) and
self-supervised discriminative methods (He et al., 2020; Chen et al., 2020c;b)). These generative
pre-training methods have shown superior performance when transferred to various downstream
recognition tasks, such as image classification, object detection, and semantic segmentation. MIM
methods learn representations by reconstructing image content from masked images. For exam-
ple, BEiTs (Bao et al., 2022; Peng et al., 2022; Dong et al., 2023) reconstruct the discrete visual
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Figure 2: Alternating denoising process. Our method first predicts pθ(zT , z̄T |∅) by directly feed-
ing all <MASK> tokens into our decoder D in Eq. (2). At each step t, the noisy image xt is decoded
according to Eq. (1), then used to generate new reliable tokens zt−1 and unreliable tokens z̄t−1 ac-
cording to Eq. (2). x0 is the final synthesized noisy-free image.

tokens corresponding to masked parts. MAEs (He et al., 2022; Chen et al., 2022) directly recon-
struct the masked pixels. Some works (Liu et al., 2022; Wei et al., 2022) also attempt to reconstruct
the momentum features of the original images. Apart from these MIM methods, Corrupted Image
Modeling (CIM) (Fang et al., 2023) learns representations by reconstructing from corrupted images,
which avoids the use of artificial mask tokens that never appear in the downstream fine-tuning stage.

These generative pre-training methods only focus on the representational expressiveness for image
recognition, while fail to preserve the quality of reconstructed images and thus unable to be used for
image generation tasks directly. In contrast, ADDP learns general representations that perform well
for both image recognition and generation tasks.

Generative Modeling for Unifying Representation Learning and Image Generation. Early
attempts (Donahue et al., 2017; Donahue & Simonyan, 2019) consider representation learning and
image generation as dual problems, thus learning two independent networks (i.e., image encoder
and image decoder) to solve both tasks at the same time in a dual-learning paradigm. Inspired
by generative representation learning (Devlin et al., 2018; Radford et al., 2018; Howard & Ruder,
2018) in NLP fields, iGPT (Chen et al., 2020a) for the first time unifies these two tasks into a single
network by learning from autoregressive image generation, providing good performance for both
image recognition and image generation tasks. ViT-VQGAN (Yu et al., 2021) further replaces the
raw-pixel inputs and outputs with discrete visual tokens for better performance. Recently, MAGE (Li
et al., 2022) proposes to replace the autoregressive decoding process with a diffusion method (i.e.,
MaskGIT (Chang et al., 2022)), following state-of-the-art practices for image generation.

Despite these attempts at unifying representation learning and image generation, their recognition
performance is still inferior to state-of-the-art representation learning methods, as they perform
representation learning either entirely in raw-pixel space or entirely in latent space. In contrast,
ADDP exploits both raw-pixel and latent space, learning general representations that yield compet-
itive performance on both image recognition and image generation tasks.

3 METHOD

3.1 ALTERNATING DENOISING OF PIXELS AND VQ TOKENS

Previous works (Yu et al., 2021; Li et al., 2022; Dhariwal & Nichol, 2021) mainly perform the de-
noising process entirely in either continuous raw pixel space or discrete VQ token space. However,
given that both raw pixels and VQ tokens are crucial for recognition and generation tasks respec-
tively, we propose to denoise pixels and VQ tokens alternately, as shown in Fig. 2. In each step, we
first decode pixels from previously generated VQ tokens, then generate new VQ tokens conditioned
on decoded pixels. To associate the two spaces and enable the alternating denoising process, the
token-to-pixel decoding and pixel-to-token generation are introduced as follows.

Token-to-Pixel Decoding is widely used in image generation to restore the generated VQ tokens
to visual image pixels (van den Oord et al., 2017; Esser et al., 2021; Chang et al., 2022). The VQ
decoder subnetworks in off-the-shelf pre-trained VQ tokenizers (e.g., VQGAN (Esser et al., 2021))
could be directly used to perform such decoding. However, existing VQ decoders can only decode
images from the complete VQ sequences, while unable to take partial VQ tokens as inputs. In
contrast, our denoising process only generates a portion of VQ tokens at each step. To resolve this

4



Published as a conference paper at ICLR 2024

inconsistency and facilitate the use of off-the-shelf VQ decoders, we propose to pair these reliable
tokens with some unreliable ones. Specifically, at step t, given partially generated VQ tokens zt, we
further sample additional complementary VQ tokens z̄t so as to form the complete VQ sequences
for decoding the pixel image xt. In order to distinguish zt and z̄t, we term them as reliable tokens
and unreliable tokens respectively. Note that z̄t will only be used for decoding the pixel image and
not kept to the next step. Then, the conditional probability of p(xt|zt, z̄t) is defined as

p(xt|zt, z̄t) = δ
[
xt = VQ-Decoder

(
zt ⊙ (1−mt) + z̄t ⊙mt

)]
, (1)

where δ denotes the Dirac delta distribution, ⊙ is the element-wise product. mt is a binary mask in-
dicating the unreliable regions derived from zt. mt shares the same spatial size with zt and z̄t, where
the regions with binary values of 1 are unreliable. Both the reliable VQ tokens zt and unreliable VQ
tokens z̄t would be predicted by our models, which will be discussed in Sec. 3.3.

Pixel-to-Token Generation has been shown to be effective for recognition tasks in recent represen-
tation learning works (Bao et al., 2022; Peng et al., 2022; Dong et al., 2023). Our method introduces
a learnable encoder-decoder network for predicting VQ tokens from noisy images to enable repre-
sentation learning from pixels. As shown in Fig. 4, taking the previously decoded noisy image xt

as inputs, the encoder E first extracts representation from xt, and then the unreliable regions (i.e.,
mt = 1) of the extracted representation E(xt) would be replaced with learnable <MASK> token em-
bedding before feeding into the decoder D. The decoder will predict zt−1 and z̄t−1 of the next step
based on these inputs. Given the noisy image xt, the conditional probability of generated reliable
VQ tokens zt−1 and unreliable VQ tokens z̄t−1 at the next step t− 1 are given as

pθ(zt−1, z̄t−1|xt) = D
(
E(xt)⊙ (1−mt) + emask ⊙mt

)
, (2)

where mt is the same binary mask as in Eq. (1), indicating the unreliable regions at step t. E
and D are learnable encoder and decoder subnetworks respectively. emask is a learnable <MASK>
token embedding and θ represents the parameter of the whole network. Since our network takes
full images as the inputs, it can adapt various image backbones (e.g., CNNs (He et al., 2016) and
ViTs (Dosovitskiy et al., 2021)) as the encoder naturally. Experiments in Sec. 4.2 show that the
learned representations from the encoder generalize well for both recognition and generation tasks.

Alternating Denoising Process is shown in Fig. 2. Starting from an empty sequence with the
unreliable mask mT+1 of all 1s, pθ(zT , z̄T |∅) is predicted by feeding all <MASK> tokens into our
decoder D in Eq. (2). After that, at each step t, the noisy images xt are decoded according to Eq. (1)
and then used to generate new reliable tokens zt−1 and unreliable tokens z̄t−1 according to Eq. (2).
Finally, the synthesized noisy-free images are the refined images x0 at step 0. The joint distribution
of all variables in the alternating denoising process is defined as

pθ(z0:T , z̄0:T , x0:T ) = pθ(zT , z̄T |∅)︸ ︷︷ ︸
our model

p(x0|z0)︸ ︷︷ ︸
VQ-Decoder

T∏
t=1

p(xt|zt, z̄t)︸ ︷︷ ︸
VQ-Decoder

pθ(zt−1, z̄t−1|xt)︸ ︷︷ ︸
our model

. (3)

3.2 DIFFUSION PROCESS
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Figure 3: Diffusion process.

Following previous denoising diffusion
training paradigms (Ho et al., 2020; Gu
et al., 2022), we propose a correspond-
ing diffusion process for ADDP as well,
as is shown in Fig. 3. Given an image x0,
an off-the-shelf pre-trained VQ encoder is
used to map x0 to its corresponding VQ
tokens z0 = VQ-Encoder(x0). Then, the diffusion process gradually masks out some regions of
z0 with a Markov chain q(zt|zt−1). As mentioned in Sec. 3.1, zt−1 corresponds to the reliable VQ
tokens at step t − 1, and reliable VQ tokens zt at step t is a portion of zt−1. The whole process
consists of T + 1 steps in total, where all tokens would be masked out at last.

For the unreliable VQ tokens z̄t−1, a forward process q(z̄t−1|zt) is designed to produce z̄t−1 from
zt. Instead of zt−1, we use the reliable tokens zt as the condition. Empirical results in Tab. 3
demonstrate the advantage of using q(z̄t−1|zt) over q(z̄t−1|zt−1) .
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The conditional distribution q(z̄t−1|zt) is obtained with a token predictor, which receives reliable
tokens zt as inputs and predicts unreliable tokens z̄t−1. Since our goal is to generate the original
image with unreliable tokens, the optimal value of q(z̄t−1|zt) should be q(z0|zt). However, q(z0|zt)
is generally intractable, so the token predictor needs to learn from data samples to approximate
q(z0|zt). To achieve this, it is trained to predict all tokens z0 from reliable tokens zt only. Finally, as
our model is trained to predict unreliable tokens (see Sec. 3.3), the token predictor is only required
during training. Therefore, the whole diffusion process is defined as

q(z0:T , z̄0:T |x0) = q(z0|x0)︸ ︷︷ ︸
VQ-Encoder

q(z̄T |∅)︸ ︷︷ ︸
token predictor

T∏
t=1

q(zt|zt−1)︸ ︷︷ ︸
add mask

q(z̄t−1|zt)︸ ︷︷ ︸
token predictor

. (4)

For simplicity, the decoded noisy images x1:T are omitted, since the derivation of the training ob-
jective (refer to Appendix) shows that they are unnecessary to be included in the diffusion process.

3.3 LEARNING THE DENOISING PROCESS

Given the proposed alternating denoising diffusion process, ADDP can be optimized through min-
imizing the evidence lower bound (ELBO) of log pθ(x0), which consists of the following terms:

LELBO = LVQ +

T∑
t=1

Lt + LT+1, (5)

LVQ = Eq(z0,z̄0,x0)

[
− log p(x0|z0)︸ ︷︷ ︸

VQ-Decoder

+ log q(z0|x0)︸ ︷︷ ︸
VQ-Encoder

]
,

Lt =Eq(zt,z̄t,z0)

[
DKL

(
q(zt−1|zt, z0) q(z̄t−1|zt)︸ ︷︷ ︸

token predictor

|| pθ(zt−1, z̄t−1|xt = VQ-Decoder(zt, z̄t))︸ ︷︷ ︸
our model

)]
,

LT+1 = Eq(z0)

[
DKL

(
q(zT |z0) q(z̄T |∅)︸ ︷︷ ︸

token predictor

|| pθ(zT , z̄T |∅)︸ ︷︷ ︸
our model

)]
,

where DKL is KL divergence. LVQ corresponds to the training of VQ tokenizer, which is omitted
in our training because a pre-trained VQ tokenizer is used. L1:T+1 are used to optimize our model
parameters θ. pθ is given by Eq. (2). Please see Appendix for detailed derivation.

Training Target. Like previous MIM methods (He et al., 2022; Bao et al., 2022), we only optimize
the loss Lt on masked tokens (i.e., unreliable regions with mt = 1). Following the reparameteriza-
tion trick in VQ-Diffusion (Gu et al., 2022), Lt can be further simplified as

Lt = Eq(zt,z̄t)

[
DKL

(
q(z0|zt) q(z̄t−1|zt)︸ ︷︷ ︸

token predictor

|| pθ(z0, z̄t−1|xt = VQ-Decoder(zt, z̄t))︸ ︷︷ ︸
our model

)]
, (6)

which implies that q(z0|zt) and q(z̄t−1|zt) are the training targets of our model. Since q(z0|zt) is
generally intractable, the token predictor q(z̄t−1|zt) is used as an estimation of q(z0|zt) as afore-
mentioned in Sec. 3.2. Therefore, it is feasible to predict q(z̄t−1|zt) only.

Training Process. As shown in Fig. 4, given an image x0, we first compute the reliable tokens zt
and unreliable tokens z̄t following the diffusion process in Sec. 3.2. zt and z̄t are then combined and
fed into the VQ decoder to generate the synthesized image xt. After that, the pixel-to-token gener-
ation network takes xt as input and predicts the distribution of z̄t−1. The training target q(z̄t−1|zt)
can be computed from the token predictor.

Our model takes the noisy synthesized image xt = VQ-Decoder(zt, z̄t) as training inputs. In-
appropriate values of unreliable z̄t may hurt the quality of synthesized images, degenerating the
performance of image generation and image recognition tasks. To alleviate this issue, instead of
directly using z̄t sampled from q(z̄t|zt+1), a mapping function f(q(z̄t|zt+1)) is introduced for the
unreliable parts in Eq. (1) as

xt = VQ-Decoder
(
zt ⊙ (1−mt) + f(q(z̄t|zt+1))⊙mt

)
. (7)

Candidates for the mapping function f(·) are designed as {Sampling, ArgMax, WeightedSum}.
Sampling is the naı̈ve design that sample tokens according to q(z̄t|zt+1). ArgMax is to choose the
tokens with the largest probability in q(z̄t|zt+1). WeightedSum indicates that all VQ embeddings
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Figure 4: Training pipeline of ADDP. The original training image x0 is first encoded into VQ token
z0, then a certain timestep t is sampled. The reliable and unreliable tokens zt and z̄t are generated
according to the diffusion process in Sec. 3.2. After that, xt is decoded by token-to-pixel decoding
in Sec. 3.1. Our pixel-to-token generation network takes xt as input and generate the prediction of
z̄t−1. q(z̄t−1|zt) is used as the training target as mentioned in Sec. 3.3. The lock symbol means that
these networks are freezed during training.

within the token codebook would be weighted summed according to q(z̄t|zt+1) before fed into the
VQ decoder network. Empirically, we find that using WeightedSum mapping produces high-quality
images and helps to improve our model performance (see Sec. 4.3).

In practice, we also find that feeding the reliable tokens zt into our decoder D as additional infor-
mation benefits both recognition and generation tasks, as predicting VQ tokens only from images
with considerable noise is difficult when the mask ratio is relatively high.
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Figure 5: Inference pipeline of ADDP for im-
age generation and recognition.

Apply to Image Generation. For image gen-
eration, we follow the denoising process men-
tioned in Sec. 3.1 and Fig. 5 (a). Starting from an
empty sequence, our model predicts zT and z̄T
from pure <MASK> token embeddings. At each
step, the VQ decoder generates xt+1 from tokens
of current step zt+1 and z̄t+1. Then, the pixels
xt+1 are fed into our encoder-decoder network to
predict zt and z̄t of the next step. x0 is the final
generated noisy-free image.

Apply to Image Recognition. As shown in
Fig. 5 (b), ADDP can be applied to various recog-
nition tasks after pre-training as well. The en-
coder takes raw pixels as inputs directly, while
the output representations are then forwarded to
different task-specific heads. Sec. 4.2 shows that
ADDP delivers strong performances after fine-tuning on corresponding datasets.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Network. The VQ tokenizer is adopted from the off-the-shelf VQGAN (Esser et al., 2021; Chang
et al., 2022) model released by MAGE (Li et al., 2022). MAGE-Large is used as the token predictor.
Note that the token predictor is used for training only and can be discarded in inference. ViT-
Large (Dosovitskiy et al., 2021) is adopted as the encoder of ADDP, and the decoder consists of 8
Transformer (Vaswani et al., 2017) blocks.
Training. ADDP is trained on ImageNet-1k (Deng et al., 2009) dataset. The total denoising step
is T = 100. For masking strategy, we sample step t from the values of 1, 2, . . . , T , while en-
suring the mask ratio distribution close to that of MAGE (Li et al., 2022) for a fair comparison.
AdamW (Loshchilov & Hutter, 2017) optimizer with a peak learning rate of 1.5×10−3 is used. The
model is trained for 800 epochs with 40 warmup epochs and batch size of 4096.
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Method #Params. Uncond. Gen. #Params. ImageNet COCO ADE20k
Gen. FID↓ IS↑ Rec. FT↑ Linear↑ APbox↑ APmask↑ mIoU↑

Designed for Recognition Only
MoCo v3 (Chen et al., 2021) - - - 304M 84.1 77.6 49.3 44.0 49.1
BEiT (Bao et al., 2022) - - - 304M 85.2 52.1 53.3 47.1 53.3
MAE (He et al., 2022) - - - 304M 85.9 75.8 55.6 49.2 53.6
CAE (Chen et al., 2022) - - - 304M 86.3 78.1 54.5 47.6 54.7
iBOT (Zhou et al., 2022) - - - 304M 84.8 81.0 - - -

Designed for Generation Only
BigGAN (Donahue & Simonyan, 2019) ∼70M 38.6 24.7 - - - - - -
ADM (Dhariwal & Nichol, 2021) 554M 26.2 39.7 - - - - - -
MaskGIT (Chang et al., 2022) 203M 20.7 42.1 - - - - - -
IC-GAN (Casanova et al., 2021) ∼77M 15.6 59.0 - - - - - -

Designed for Both Recognition and Generation
iGPT-L (Chen et al., 2020a) 1362M - - 1362M 72.6 65.2 - - -
ViT-VQGAN (Yu et al., 2021) 650M - - 650M - 65.1 - - -
MAGE (Li et al., 2022) 304M+135M 9.1 105.1 304M+24M 83.9 78.9 31.4∗ 27.6∗ 43.1∗

Ours (ADDP) 304M+135M 7.6 105.1 304M 85.9 23.8 54.6 48.2 54.3

Table 2: Comparison of ADDP with different kinds of existing methods on both visual recogni-
tion and generation tasks. We adopt ViT-L (Dosovitskiy et al., 2021) as the backbone and pre-train
it for 800 epochs. The FID (Heusel et al., 2017), IS (Salimans et al., 2016) of unconditional image
generation (denoted by Uncond. Gen.) is evaluated on ImageNet-1k (Deng et al., 2009) 256×256
validation set; The top-1 accuracy of fine-tuning (FT) and linear probing (Linear) is reported on
ImageNet-1k (Deng et al., 2009). APbox and APmask is reported on COCO (Lin et al., 2014) test-
dev set. mIoU is reported on ADE20k (Zhou et al., 2019) validation set. #Params. Gen. and
#Params. Rec. denote the total number of parameters for unconditional generation and recognition
backbone, respectively. *For detection and segmentation results, we finetune MAGE using the same
training setting. The results of ADDP are marked in gray .
Image Recognition. We evaluate the transfer performance of image classification on ImageNet-
1k (Deng et al., 2009), object detection on COCO (Lin et al., 2014) and semantic segmentation on
ADE20k (Zhou et al., 2019) respectively. The pre-trained encoder is used as backbone and task-
specific heads are appended for different tasks.
Image Generation. After training, we use iterative decoding as in MaskGIT (Chang et al., 2022) to
iteratively fill in masked tokens and generate images. By default, we recover one token per step.

Please refer to Appendix for more implementation details as well as the generated images of ADDP.

4.2 MAIN RESULTS

Tab. 2 compares ADDP with previous methods designed for recognition only, generation only, or
both recognition and generation tasks.
Unconditional Generation. ADDP surpasses the previous SoTA by 1.5 FID, which validates the
effectiveness of our proposed alternating denoising process in generating high-quality images.
Image Classification. ADDP achieves comparable fine-tuning performance with methods tailored
for recognition. Moreover, compared with the previous SoTA (i.e., MAGE) designed for both recog-
nition and generation, ADDP boosts the performance by 2 points. Such result is consistent with the
conclusion drawn from Tab. 1, suggesting pixel inputs are more competent with recognition tasks.
Linear Probing. We observe an interesting fact that the linear probing accuracy of ADDP is not
aligned with its performance on other tasks, which we assume is caused by the gap between natural
images and the noisy synthetic images ADDP takes as training inputs. Visualizations of such noisy
synthetic images can be found in appendix. Nevertheless, as highlighted in prior studies (He et al.,
2022; Bao et al., 2022), linear probing and fine-tuning results are largely uncorrelated, while the core
capability of deep neural networks resides in learning strong non-linear representations. Therefore,
our primary emphasis in this work mainly focus on fine-tuning tasks as well.
Object Detection and Semantic Segmentation. Benefiting from our alternating denoising dif-
fusion process, ADDP can also be transferred to object detection and semantic segmentation and
achieve competitive performance on these tasks. To the best of our knowledge, this is the first work
demonstrating that general representations can be learned for both generation and dense prediction
tasks. For comparison, we apply MAGE pre-trained ViT-L to these tasks as well, which is trained
under the same setting except that it takes VQ tokens as inputs. The results show that our method
surpass MAGE by a large margin.
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Conditional FID ↓ IS ↑ FT ↑
Probability

q(z̄t−1|zt−1) 80.75 13.48 83.7
q(z̄t−1|zt) 23.63 33.09 83.5

Table 3: Ablation on con-
dition for unreliable to-
kens.

Mapping
Function f(·) FID ↓ IS ↑ FT ↑

Sampling 38.79 23.44 83.2
ArgMax 26.62 30.03 83.5
WeightedSum 23.63 33.09 83.5

Table 4: Ablation on map-
ping function f(·).

Token Input FID ↓ IS ↑ FT ↑

encoder & decoder 20.40 37.20 81.5
decoder-only 23.63 33.09 83.5
None 36.24 21.71 83.1

Table 5: Ablation on token input
strategy.

Prediction Target Masking Strategy FID ↓ IS ↑ FT ↑

q(z̄t−1|zt) default 23.63 33.09 83.5
δ(ẑ0 = z0) default 39.41 18.62 83.2
δ(ẑ0 = z0) & q(z̄t−1|zt) default 30.43 23.40 83.5

δ(ẑ0 = z0) fixed (50%) 166.54 4.73 83.4

Table 6: Ablation on prediction target and masking ra-
tio.

50 100 150 200 250
timestep

10.0
12.5
15.0
17.5
20.0
22.5
25.0
27.5

FI
D

linear
cosine

Figure 6: Ablation on masking
schedule for generation.

4.3 ABLATION STUDY

Ablation Settings. For ablation, we use ViT-Base as encoder and train ADDP for 150 epochs. The
FID (Heusel et al., 2017) and IS (Salimans et al., 2016) scores of unconditional generation with 20
inference steps are reported as well as the fine-tuning accuracy (FT) on ImageNet-1k (Deng et al.,
2009). Default settings are marked in gray .

Probability Condition for Unreliable Tokens. As in Sec. 3.2, the prediction of z̄t−1 is conditioned
on zt rather than zt−1. Tab. 3 verifies that using zt−1 as condition leads to poor performance.
Mapping Function for Unreliable Tokens. Proper mapping function choices can help improve
the quality of the learned representation. Tab. 4 shows that directly Sampling is inferior in both
generation and classification, while WeightedSum can deliver sound performance.
Token Input. Directly recovering tokens from pixels with considerable noise may be challenging
when the mask ratio is extremely high. Tab. 5 analyzes the effect of feeding tokens to our model,
showing that feeding tokens can help enhance the generation ability. However, if tokens are fed
directly through the encoder, the classification performance degrades rapidly.
Prediction Target. Sec. 3.3 discusses two possible training targets: q(z0|zt) and q(z̄t−1|zt). While
q(z0|zt) can not be computed directly, we instead sample z0 as an estimated target. Results in Tab. 6
show that predicting q(z̄t−1|zt) is better on both generation and classification tasks.
Inference Strategy for Image Generation. Fig. 6 studies the effect of different inference strategies.
Previous works (Chang et al., 2022; Li et al., 2022) adopt cosine masking schedule in inference.
However, the generation quickly get saturated when inference steps increase. When using linear
masking schedule in inference, similar consistent gain can also be observed as T becomes larger.

5 CONCLUSIONS

In this paper, we introduce ADDP, a general representation learning framework that is applicable to
both image generation and recognition tasks. Our key insights are twofold: (1) pixels as inputs are
crucial for recognition tasks; (2) VQ tokens as reconstruction targets are beneficial for generation
tasks. To meet the demands of both fields, we propose an Alternating Diffusion Denoising Process
(ADDP) to bridge pixel and token spaces. The network is trained to optimize the evidence lower
bound (ELBO). Extensive experiments demonstrate its superiority in both image generation and
recognition tasks. ADDP for the first time demonstrates that general representation can be learned
for both generation and dense recognition tasks.

Limitations. ADDP currently relies on a pre-trained VQ Encoder-Decoder, which may constrain
generation diversity. Future directions may also include the integration of continuous diffusion
processes and scaling to higher resolutions.
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Reproducibility Statement. The pseudo code of pre-training and unconditional generation can
be found in Appendix. A for better understanding. Additionally, the implementation details of
our method are fully discussed in Sec. 4.1 and Appendix. D, including both pre-training and var-
ious downstream tasks. For the theoretical part, the detailed derivation of ADDP is presented in
Appendix. B. The source code and checkpoints are also released at https://github.com/
ChangyaoTian/ADDP.
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A PSUEDO CODE

The whole training and inference algorithms are shown in Alg. 1 and Alg. 2. Here
discrete-truncnorm denotes the probability distribution used in Sec. 4.1, and Dtrain denotes the whole
training dataset.

A.1 PRE-TRAINING

Algorithm 1 Pre-training
1: repeat
2: sample t ∼ discrete-truncnorm({1, . . . , T})
3: sample mt,mt+1 randomly
4: sample x0 ∼ Dtrain
5: z0 ← VQ-Encoder(x0)
6: zt, zt+1 ← z0 ⊙ (1−mt), z0 ⊙ (1−mt+1)
7: z̄t−1, z̄t ← Token-Predictor(zt),Token-Predictor(zt+1) ▷ q(z̄t−1|zt), q(z̄t|zt+1)
8: xt ← VQ-Decoder(zt ⊙ (1−mt) + f(z̄t)⊙mt) ▷ p(xt|zt, z̄t), Eq. (7)
9: et ← Encoder(xt)

10: z̄pred
t−1 ← Decoder(et ⊙ (1−mt) + emask ⊙mt) ▷ pθ(z0, z̄t−1|xt), Eq. (2)

11: Lt ← CE(z̄t−1, z̄
pred
t−1)⊙mt ▷ DKL, Eq. (6)

12: Take gradient descent step on∇θLt

13: until converged

A.2 UNCONDITIONAL GENERATION

Algorithm 2 Unconditional Generation
1: zT , z̄T ← Decoder(∅) ▷ pθ(zT , z̄T |∅), Eq. (2)
2: xT ← VQ-Decoder(zT ⊙ (1−mT ) + f(z̄T )⊙mT ) ▷ p(xT |zT , z̄T ), Eq. (7)
3: for t = T, . . . , 1 do
4: et ← Encoder(xt)

5: z̄pred
t−1 ← Decoder(et ⊙ (1−mt) + emask ⊙mt) ▷ pθ(zt−1, z̄t−1|xt), Eq. (2)

6: sample zpred
t−1 ∼ z̄pred

t−1

7: zt−1 ← zt ⊙ (1−mt) + zpred
t−1 ⊙ (mt −mt−1)

8: z̄t−1 ← f(z̄pred
t−1)

9: xt−1 ← VQ-Decoder(zt−1 ⊙ (1−mt−1) + z̄t−1 ⊙mt−1) ▷ p(xt−1|zt−1, z̄t−1), Eq. (7)
10: end for
11: return x0

B DERIVATION FOR ALTERNATING DENOISING DIFFUSION PROCESS

This section presents the detailed derivation for our proposed alternating denoising diffusion process.

Diffusion Process. As shown in Sec. 3.2, the diffusion process is described as

q(z0:T , z̄0:T |x0) = q(z0|x0)︸ ︷︷ ︸
VQ-Encoder

q(z̄T |∅)︸ ︷︷ ︸
token predictor

·
T−1∏
t=0

q(zt+1|zt)︸ ︷︷ ︸
add mask

q(z̄t|zt+1)︸ ︷︷ ︸
token predictor

, (8)

where x0 is the given image, z0:T is the sequence of reliable VQ tokens and z̄0:T is the sequence of
unreliable VQ tokens. The diffusion process contains T +1 steps, and all tokens will be masked out
at step T + 1, resulting in ∅. For simplicity, we here shift the subscripts t one position to the right
(i.e. t− 1 → t).

According to Bayes’ Theorem, we have

q(zt+1|zt) = q(zt|zt+1, z0)
q(zt+1|z0)
q(zt|z0)

. (9)

14



Published as a conference paper at ICLR 2024

Substituting Eq. 9 into Eq. 8 gives

q(z0:T , z̄0:T |x0) = q(z0|x0)︸ ︷︷ ︸
VQ-Encoder

q(z̄T |∅)︸ ︷︷ ︸
token predictor

q(zT |z0) ·
T−1∏
t=0

q(zt|zt+1, z0) q(z̄t|zt+1)︸ ︷︷ ︸
token predictor

, (10)

Alternating Denoising Process. On the other hand, Sec 3.1 shows that the alternating denoising
process is described as

pθ(z0:T , z̄0:T , x0:T ) = pθ(zT , z̄T |∅)︸ ︷︷ ︸
our model

p(x0|z0)︸ ︷︷ ︸
VQ-Decoder

·
T−1∏
t=0

p(xt+1|zt+1, z̄t+1)︸ ︷︷ ︸
VQ-Decoder

pθ(zt, z̄t|xt+1)︸ ︷︷ ︸
our model

, (11)

where x0:T refers to the sequence of decoded images during denoising.

Evidence Lower Bound. We can maximize the evidence lower bound (ELBO) as the training
objective for the alternating denoising diffusion process. The cross entropy between generated image
distribution pθ(x0) and real image distribution q(x0) is computed as

L =− Eq(x0) log pθ(x0)

=− Eq(x0)

[
log

∫
pθ(x0:T , z0:T , z̄0:T )dx1:T dz0:T dz̄0:T

]
=− Eq(x0)

[
log

∫
q(z0:T , z̄0:T |x0)

pθ(x0:T , z0:T , z̄0:T )

q(z0:T , z̄0:T |x0)
dx1:T dz0:T dz̄0:T

]
≤− Eq(z0:T ,z̄0:T ,x0) log

[∫
pθ(x0:T , z0:T , z̄0:T )dx1:T

q(z0:T , z̄0:T |x0)

]
︸ ︷︷ ︸

using Jensen’s inequality

=− Eq(z0:T ,z̄0:T ,x0)

[
log

p(x0|z0)
q(z0|x0)

+ log
pθ(zT , z̄T |∅)

q(zT |z0)q(z̄T |∅)

+

T−1∑
t=0

log

∫
p(xt+1|zt+1, z̄t+1)pθ(zt, z̄t|xt+1)dxt+1

q(zt|zt+1, z0)q(z̄t|zt+1)

]
=− Eq(z0:T ,z̄0:T ,x0)

[
log

p(x0|z0)
q(z0|x0)

+ log
pθ(zT , z̄T |∅)

q(zT |z0)q(z̄T |∅)

+

T−1∑
t=0

log
pθ(zt, z̄t|xt+1 = VQ-Decoder(zt+1, z̄t+1))

q(zt|zt+1, z0)q(z̄t|zt+1)︸ ︷︷ ︸
p(xt+1|zt+1, z̄t+1) is deterministic with VQ Decoder

]

=LVQ +

T−1∑
t=0

Lt + LT , (12)

where the inequality holds because of Jensen’s inequality. The second last equality holds because
we adopt an off-the-shelf VQ decoder to decode pixels from VQ tokens, and such mapping is deter-
ministic. Therefore, the whole objective can be divided into the following terms:

LELBO = LVQ +

T−1∑
t=0

Lt + LT , (13)

LVQ = Eq(z0,z̄0,x0)

[
− log p(x0|z0)︸ ︷︷ ︸

VQ-Decoder

+ log q(z0|x0)︸ ︷︷ ︸
VQ-Encoder

]
,

Lt =Eq(zt+1,z̄t+1,z0)

[
DKL

(
q(zt|zt+1, z0) q(z̄t|zt+1)︸ ︷︷ ︸

token predictor

|| pθ(zt, z̄t|xt+1 = VQ-Decoder(zt+1, z̄t+1))︸ ︷︷ ︸
our model

)]
,

LT = Eq(z0)

[
DKL

(
q(zT |z0) q(z̄T |∅)︸ ︷︷ ︸

token predictor

|| pθ(zT , z̄T |∅)︸ ︷︷ ︸
our model

)]
,
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where LVQ corresponds to the training of VQ-VAE, and we omit it because we use a pre-trained
VQGAN (Esser et al., 2021). L0:T are used to train our model.

Optimizing the Evidence Lower Bound. Following the reparameterization trick in VQ-
Diffusion (Gu et al., 2022), predicting q(zt|zt+1, z0) can be approximated by predicting the noiseless
token z0. Lt can thus be written as:

Lt = Eq(zt+1,z̄t+1,z0)

[
DKL

(
δ(ẑ0 = z0)q(z̄t|zt+1) || pθ(ẑ0, z̄t|xt+1 = VQ-Decoder(zt+1, z̄t+1))

)]
= Eq(zt+1,z̄t+1)Eq(z0,z̄t|zt+1,z̄t+1)

[
log

q(z̄t|zt+1)

pθ(z0, z̄t|xt+1 = VQ-Decoder(zt+1, z̄t+1))

]
= Eq(zt+1,z̄t+1)Eq(z0,z̄t|zt+1,z̄t+1)

[
log

q(z0|zt+1, z̄t+1)q(z̄t|zt+1)

pθ(z0, z̄t|xt+1 = VQ-Decoder(zt+1, z̄t+1))

]
+ C1,

(14)

where C1 = −Eq(z0,zt+1,z̄t+1)

[
log q(z0|zt+1, z̄t+1)

]
is a constant that can be ignored.

Note that

q(z0|zt+1, z̄t+1) =
q(z0, zt+1, z̄t+1)

q(zt+1, z̄t+1)

=
q(z̄t+1|z0, zt+1)q(z0, zt+1)

q(z̄t+1|zt+1)q(zt+1)

= q(z0|zt+1), (15)

where q(z̄t+1|z0, zt+1) = q(z̄t+1|zt+1) because the diffusion process is a Markov chain (see Fig. 3).
Therefore, we can simplify Lt as

Lt = Eq(zt+1,z̄t+1)Eq(z0,z̄t|zt+1,z̄t+1)

[
log

q(z0|zt+1)q(z̄t|zt+1)

pθ(z0, z̄t|xt+1 = VQ-Decoder(zt+1, z̄t+1))

]
,

= Eq(zt+1,z̄t+1)

[
DKL

(
q(z0|zt+1) q(z̄t|zt+1)︸ ︷︷ ︸

token predictor

|| pθ(z0, z̄t|xt+1 = VQ-Decoder(zt+1, z̄t+1))︸ ︷︷ ︸
our model

)]
.

(16)

Eq. 16 shows that q(z0|zt+1) and q(z̄t|zt+1) are two optimization targets of our model. While
q(z0|zt+1) is generally intractable, q(z̄t|zt+1) can serve as a good approximation (see Sec. 3.3). We
adopt q(z̄t|zt+1) as the training target in practice. In this way, the loss for use is computed as

Lt = Eq(zt+1,z̄t+1)

[
DKL

(
q(z̄t|zt+1) || pθ(z̄t|xt+1 = VQ-Decoder(zt+1, z̄t+1))

)]
= Eq(zt+1,z̄t+1)

[
CE

(
q(z̄t|zt+1)︸ ︷︷ ︸
token predictor

, pθ(z̄t|xt+1 = VQ-Decoder(zt+1, z̄t+1))︸ ︷︷ ︸
our model

)]
− C2, (17)

where C2 = −Eq(z̄t,zt+1)[q(z̄t|zt+1)] is a constant, and CE refers to cross entropy.

C ADDITIONAL EXPERIMENTS

C.1 RESULTS OF VIT-B

We apply ADDP to ViT-B (Dosovitskiy et al., 2021) and report its performance on image generation
and recognition tasks in Tab. 7. The training setting is almost the same as ViT-L, except that we train
for 1600 epochs. We use the pre-trained MAGE Base model (Li et al., 2022) as the token predictor.
Please refer to Sec. D.2 for implementation details.

Unconditional Generation. We obtain ∼ 2 FID improvement over previous SOTA, demonstrating
the powerful generation capacity of ADDP.
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Method #Params. Uncond. Gen. #Params. ImageNet COCO ADE20k
Gen. FID↓ IS↑ Rec. FT↑ Linear↑ APbox↑ APmask↑ mIoU↑

Designed for Recognition Only
MoCo v3 (Chen et al., 2021) - - - 86M 83.0 76.7 47.9 42.7 47.3
DINO (Caron et al., 2021) - - - 86M 83.3 77.3 46.8 41.5 47.2
BEiT (Bao et al., 2022) - - - 86M 83.2 37.6 49.8 44.4 47.1
CIM (Fang et al., 2023) - - - 86M 83.3 - - - 43.5
MAE (He et al., 2022) - - - 86M 83.6 68.0 51.6 45.9 48.1
CAE (Chen et al., 2022) - - - 86M 83.9 70.4 50.0 44.0 50.2
iBOT (Zhou et al., 2022) - - - 86M 84.0 79.5 51.2 44.2 50.0
SiameseIM (Tao et al., 2023) - - - 86M 84.1 78.0 52.1 46.2 51.1

Designed for Generation Only
BigGAN (Donahue & Simonyan, 2019) ∼70M 38.6 24.70 - - - - - -
ADM (Dhariwal & Nichol, 2021) 554M 26.2 39.70 - - - - - -
MaskGIT (Chang et al., 2022) 203M 20.7 42.08 - - - - - -
IC-GAN (Casanova et al., 2021) ∼77M 15.6 59.00 - - - - - -

Designed for Both Recognition and Generation
iGPT-L (Chen et al., 2020a) 1362M - - 1362M 72.6 65.2 - - -
ViT-VQGAN (Yu et al., 2021) 650M - - 650M - 65.1 - - -
MAGE (Li et al., 2022) 86M+90M 11.0∗ 95.42∗ 86M+24M 82.5 74.7 36.3∗ 31.3∗ 39.6∗

Ours (ADDP) 86M+90M 8.9 95.32 86M 83.9 11.5 51.7 45.8 48.1

Table 7: Comparison of ADDP with different kinds of existing methods on both visual recog-
nition and generation tasks. The FID (Heusel et al., 2017), IS (Salimans et al., 2016) of uncon-
ditional image generation (denoted by Uncond. Gen.) is evaluated on ImageNet-1k (Deng et al.,
2009) 256×256 validation set; The top-1 accuracy of fine-tuning (FT) and linear probing (Linear)
is reported on ImageNet-1k (Deng et al., 2009). APbox and APmask is reported on COCO (Lin et al.,
2014) test-dev set. mIoU is reported on ADE20k (Zhou et al., 2019) validation set. #Params. Gen.
and #Params. Rec. denote the total number of parameters for unconditional generation and recogni-
tion backbone, respectively.
* The generation performance of MAGE is re-evaluated using our inference strategy for fair com-
parasion. The original FID and IS scores of MAGE are 11.1 and 81.17, respectively. The detection
and segmentation results are run by us using the same training setting. The results of our method
are marked in gray .

Image Classification. The performance of our method is comparable to those specifically designed
for recognition tasks. Similar to our ViT-L model, using ViT-B as the encoder outperforms the pre-
vious best model that supports both recognition and generation by 1.4 percentage points. However,
we also observe low linear probing performance, which is likely due to the noisy synthetic images
as training input, as shown in Fig. 9.

Object Detection and Semantic Segmentation. ADDP can achieve comparable performance to
methods designed for recognition tasks, suggesting that our model can learn general representations
suitable for dense prediction tasks.

C.2 RESULTS OF RESNET-50

Given that ADDP takes full images as inputs during pre-training, it is architecture-agnostic and thus
can be applied to other network structures such as convolution networks. To further demonstrate
this, we use ResNet50 (He et al., 2016) as the image encoder and pretrain it for 300 epochs. The
performance on generation and recognition tasks are reported in Tab. 8. More implementation details
can be found in Tab. 14 and Tab. 17.

Unconditional Generation. The unconditional generation performance of our ResNet50 model
is comparable to previous methods speciallly designed for generation tasks. To the best of our
knowledge, this is the first time that ResNet is used as the image encoder for image generation .

Image Classification. Our method’s finetuning performance on ImageNet-1k outperforms previous
supervised and self-supervised methods using ResNet50 backbone.

C.3 ROBUSTNESS EVALUATION

We evaluate the robustness of our model in Tab. 9. We use the ImageNet-1k finetuned model from
Tab. 7, and run inference on different variants of ImageNet validation datasets (Hendrycks & Di-
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Method #Params. Uncond. Gen. #Params. ImageNet
Gen. FID↓ IS↑ Rec. FT 100ep↑ FT 300ep↑

Designed for Recognition Only
RSB-A2 (Wightman et al., 2021) - - - 26M - 79.8
RSB-A3 (Wightman et al., 2021) - - - 26M 78.1 -
SimSiam† (Chen & He, 2021) - - - 26M - 79.1
MoCo-v2† (Chen et al., 2020c) - - - 26M - 79.6
SimCLR† (Chen et al., 2020b) - - - 26M - 80.0
BYOL† (Grill et al., 2020) - - - 26M - 80.0
SwAV† (Caron et al., 2020) - - - 26M - 80.1
CIM (Fang et al., 2023) - - - 26M 78.6 80.4

Designed for Generation Only
BigGAN (Donahue & Simonyan, 2019) ∼70M 38.6 24.7 - - -
ADM (Dhariwal & Nichol, 2021) 554M 26.2 39.7 - - -
MaskGIT (Chang et al., 2022) 203M 20.7 42.1 - - -
IC-GAN (Casanova et al., 2021) ∼77M 15.6 59.0 - - -

Designed for Both Recognition and Generation
Ours 26M+90M 17.1 40.1 26M 79.7 80.9

Table 8: Comparison of ADDP with different kinds of existing methods on both visual recog-
nition and generation tasks. We adopt ResNet50 (He et al., 2016) as the backbone and pre-train it
for 300 epochs. †indicates the performance results are from CIM (Fang et al., 2023). The results of
our method are marked in gray .

Method IN-A
top-1

IN-R
top-1

IN-Sketch
top-1

IN-C
1-mCE avg

MSN (Assran et al., 2022) 37.5 50.0 36.3 53.4 44.3
MoCo-v3 (Chen et al., 2021) 32.4 49.8 35.9 55.4 43.4
MAE (He et al., 2022) 35.9 48.3 34.5 48.3 41.8
SiameseIM (Tao et al., 2023) 43.8 52.5 38.3 57.1 47.9
Ours 35.2 54.4 40.9 57.3 47.0

Table 9: Robustness evaluation with ViT-B backbone.

etterich, 2019; Hendrycks et al., 2021b;a; Wang et al., 2019). The results show that our model
can achieve on-par performances with previous best method, i.e., SiameseIM (Tao et al., 2023) that
conbines contrastive learning with masked image modeling. We speculate that training with noisy
synthetic images may enhance the robustness of our model.

C.4 RELIABLE TOKEN DETERMINATION MECHANISM

In this section, we study the effect of mechanism to determine the reliable tokens during in-
ference. By default, we generate reliable tokens using an iterative decoding strategy following
MaskGIT (Chang et al., 2022) during inference. New reliable tokens are determined based on the
predicted probability pθ(z̄t−1|xt) for a given timestep t. Specifically, for each masked location, we
first sample a candidate token id and its corresponding probability p from the predicted distribu-
tion. Then the confidence score s of each location is calculated by adding a Gumbel noise ϵ to the
log probability, i.e. s = log(p) + τϵ. Here, τ is set to be 6.0 × t

T by default. (please refer to
Appendix D.4 for more details). We explore two factors here:

(1) truncating the probability distribution employed for sampling each candidate token by using
nucleus sampling (Holtzman et al., 2019), denoted by top-p;

(2) varying the value of τ to adjust the randomness introduced by the Gumbel noise when computing
the confidence scores.

The results in Tab. 10 and Tab. 11 imply that the default setting is optimal, yielding the lowest FID.
However, it’s noteworthy that the IS score benefits from slightly reducing the value of top-p and τ .
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Method FID↓ IS↑ Precison↑ Recall↑
ADM (Dhariwal & Nichol, 2021) (w/o classifier guidance) 26.2 39.7 0.61 0.63
ADM (Dhariwal & Nichol, 2021) (w/ classifer guidance) 12.0 95.4 0.76 0.44
MAGE (Li et al., 2022) 9.1 105.1 0.75 0.47
Ours 7.6 105.1 0.74 0.49

Table 12: More metrics for evaluating both generation quality and diversity of ADDP.

This suggests that disregarding tokens with excessively low confidence can enhance the quality of
synthesized images.

top-p FID↓ IS↑
1.0 7.6 105.1
0.95 7.9 117.3
0.9 10.5 124.1
0.7 34.1 88.6
0.5 90.9 32.9
0.3 185.8 8.4
0.1 325.8 2.3

Table 10: Effect of truncating the sampling
probability distribution.

τ FID↓ IS↑
0.0 353.7 1.3
2.0 18.5 107.2
6.0 12.1 80.7
20.0 27.3 48.7
60.0 33.8 41.0
2.0× t

T 23.3 109.4
6.0× t

T 7.6 105.1
20.0× t

T 17.7 63.9
60.0× t

T 27.9 48.3

Table 11: Effect of varying the noise coefficient
τ .

C.5 EVALUATION ON GENERATION DIVERSITY

We evaluate the generation diversity of our model in Tab. 12. Although the non-VQ model
ADM (Dhariwal & Nichol, 2021) without classifier guidance achieves high recall, its FID and IS
are significantly worse than ours. Besides that, our method achieves both better FID, IS and recall
compared to ADM (Dhariwal & Nichol, 2021) with classifier guidance and MAGE (Li et al., 2022)
on unconditional generation.

D IMPLEMENTATION DETAILS

D.1 COMPARISON OF INPUTS FOR RECOGNITION TASKS

We conduct a preliminary comparison of inputs for recognition tasks in Tab. 1. Since the off-the-
shelf VQ tokenizer is trained with resolution 256×256, we conduct most tasks with input resolution
256 × 256 as well. Besides that, we also evaluate the performance on COCO (Lin et al., 2014)
detection with resolution 1024× 1024.

Image Classification. We train on ImageNet-1k (Deng et al., 2009) from scratch. The training
setting mainly follows the one used in MAE (He et al., 2022), except that the input resolution is
256× 256. Detailed hyper-parameters are listed in Tab. 13.

Object Detection. We train on COCO (Lin et al., 2014) dataset, with the backbone initialized from
the model pre-trained on ImageNet-1k. The training settings are almost the same as in Tab. 18;
only the training epoch is changed to 25. We report the results with input resolution 256× 256 and
1024× 1024, respectively.

Semantic Segmentation. We train on ADE20k (Zhou et al., 2019) dataset, with the backbone
initialized from the model pre-trained on ImageNet-1k. The training settings are almost the same as
in Tab. 19; only the input resolution is changed to 256× 256.
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Hyper-parameters Value

Input resolution 256× 256
Training epochs 300
Warmup epochs 20
Batch size 4096
Optimizer AdamW
Peak learning rate 1.6× 10−3

Learning rate schedule cosine
Weight decay 0.3
AdamW β (0.9, 0.95)

Erasing prob. 0.25
Rand augment 9/0.5
Mixup prob. 0.8
Cutmix prob. 1.0
Label smoothing 0.1
Stochastic depth 0.1

Table 13: Hyper-parameters for training from scratch on ImageNet.

D.2 PRE-TRAINING SETTING

Network Structure. The VQ tokenizer used for ADDP is from the off-the-shelf VQGAN (Esser
et al., 2021; Chang et al., 2022) model released by MAGE (Li et al., 2022). We also use its ViT-Base
model as the token predictor by default. For our encoder-decoder network, we use different models
including ViT-B, ViT-L (Dosovitskiy et al., 2021) and ResNet50 (He et al., 2016) as the encoder,
while the decoder is composed of 8 Transformer (Vaswani et al., 2017) blocks with 768 feature
dimension (or 1024 for ViT-L). In addition, the decoder takes three independent sets of learnable
positional embeddings for pixels, VQ-tokens, and <MASK> tokens inputs, respectively.

Training Setting. All the models are trained on ImageNet-1k (Deng et al., 2009) dataset. The
total denoising step is T = 100. The values of sampled mask ratios during training are computed
following cos(π2 ·

t
T ), where t = 1, 2, . . . , T . The corresponding probability densities for these mask

ratios are then calculated from the truncated normal distribution used in MAGE (Li et al., 2022) with
mean and standard deviation of 0.55 and 0.25, respectively, truncated probabilities between 0.5 and
1.0. Finally, the mask ratio is sampled based on the normalized discrete probability distribution, as
is shown in Fig. 12. To further adapt our model to different denoising timesteps during inference, we
sample ∆t from a uniform discrete distribution from 1 to 5 and replace zt+1 with zt+∆t. Detailed
hyper-parameters are listed in Tab. 14.

The relationship between ADDP and MAGE. Similar to BEiT (Bao et al., 2022), where the
output of dVAE (Ramesh et al., 2021) is used as the training target, we also take the predicted token
distribution of MAGE (Li et al., 2022) as part of ADDP’s training objective. However, we claim
that the two methods are inherently different as MAGE is VQ-token based whereas ours is raw-pixel
based. Moreover, the results in Tab. 2 and Tab. 7 also demonstrate that ADDP can achieve better
performance on both generation and recognition, especially for dense recognition tasks.

D.3 APPLY TO IMAGE RECOGNITION

We use the pre-trained encoder as the backbone and append task-specific heads for different tasks.
We mainly follow the transfer setting in MAE (He et al., 2022).

Image Classification. We train on ImageNet-1k (Deng et al., 2009) dataset. The detailed hyper-
parameters of finetuning and linear probing for ViT backbone are listed in Tab. 15 and Tab. 16, while
the finetuning hyper-parameters for ResNet50 are listed in Tab 17.

Object Detection. We train on COCO (Lin et al., 2014) dataset. We follow ViTDet (Li et al., 2022)
to use Mask R-CNN (He et al., 2017) as the detection head. The detailed hyper-parameters are listed
in Tab. 18.
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Hyper-parameters Value

Input resolution 256× 256

Training epochs 1600 (ViT-B) / 800 (ViT-L)
300 (ResNet50)

Warmup epochs 40 (ViT) / 10 (ResNet50)
Batch size 4096 (ViT) / 2048 (ResNet50)
Optimizer AdamW
Peak learning rate 1.5× 10−3

Learning rate schedule cosine
Weight decay 0.05

AdamW β
(0.9, 0.95) (ViT)

(0.9, 0.98) (ResNet50)

Augmentation RandomResizedCrop(0.2, 1.0)
RandomHorizontalFlip(0.5)

Label smoothing 0.1
Drop out rate 0.1

Table 14: Hyper-parameters for pre-training.

Hyper-parameters Value

Input resolution 256× 256
Finetuning epochs 100 (B) / 50 (L)
Warmup epochs 20
Batch size 1024
Optimizer AdamW

Peak learning rate 4.0× 10−3 (B)
2.5× 10−4 (L)

Learning rate schedule cosine
Weight decay 0.05
Adam β (0.9, 0.999)
Layer-wise learning rate decay 0.65 (B) / 0.8 (L)

Erasing prob. 0.25
Rand augment 9/0.5
Mixup prob. 0.8
Cutmix prob. 1.0
Label smoothing 0.1
Stochastic depth 0.1

Table 15: Hyper-parameters for ImageNet finetuning with ViT backbone.

Semantic Segmentation. We train on ADE20k (Zhou et al., 2019) dataset. We use UperNet (Xiao
et al., 2018) as the segmentation head. The detailed hyper-parameters are listed in Tab. 19.

D.4 APPLY TO IMAGE GENERATION

We adopt an iterative decoding strategy following MaskGIT (Chang et al., 2022) when applying
to image generation tasks. Given a blank canvas, the decoder first predicts zT and z̄T from pure
<MASK> token embeddings. Then the VQ decoder generates the initial image xT based on z̄T only.
After that, we iteratively decode more reliable tokens zt and the corresponding image xt until finally
generating the noisy-free image x0.

During the iteration, new reliable tokens zt for each masked location are sampled based on its
prediction probability. The confidence score for each sampled token is its probability plus a Gumbel
Noise, of which the temperature τ is set to be 6.0 × t

T by default. Previously generated reliable
tokens zt+1 will always be kept by setting its corresponding score to 1.0 manually.
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Hyper-parameters Value

Input resolution 224× 224
Finetuning epochs 90
Batch size 16384
Optimizer LARS
Peak learning rate 6.4
Learning rate schedule cosine
Warmup epochs 10

Data augment RandomResizedCrop(0.08, 1.0)
RandomHorizontalFlip(0.5)

Table 16: Hyper-parameters for ImageNet linear probing.

Hyper-parameters Value

Input resolution 256× 256
Finetuning epochs 100 / 300
Warmup epochs 5
Batch size 2048
Optimizer AdamW

Peak learning rate 8.0× 10−3 (100ep)
5.0× 10−3 (300ep)

Learning rate schedule cosine
Weight decay 0.02
Adam β (0.9, 0.999)
Layer-wise learning rate decay None
Loss Type BCE

Erasing prob. None
Rand augment 6/0.5 (100ep) / 7/0.5 (300ep)
Repeated Aug × (100ep) / ✓(300ep)
Mixup prob. 0.1
Cutmix prob. 1.0
Label smoothing 0.1
Stochastic depth None (100ep) / 0.05 (300ep)

Table 17: Hyper-parameters for ImageNet finetuning with ResNet50 backbone.

As for generating the next step’s mask mt−1, we mask out the last k tokens of zt based on their
prediction scores. Here the exact value of k depends on the masking schedule and the total inference
steps T . Specifically, we have k = cos(π2 · T−t

T ) for cosine schedule and k = t
T for linear schedule.

E VISUALIZATION

Unconditional Generation. We provide more unconditional image samples generated by ADDP in
Fig. 7.

Intermediate Generated Results. We also show some intermediate generated results in Fig. 8.
Note that the masked image here only indicates the corresponding positions of reliable tokens zt in
each step, whereas in real implementations we feed the entire image into our encoder.

Synthetic Training Images. Fig. 9, Fig. 10 and Fig. 11 show some synthetic images generated
by different mapping functions as training input. Qualitatively, the WeightedSum strategy synthe-
sizes images with better quality than its couterparts and thus achieves better performance in both
recognition and generation tasks, as is shown in Tab. 4.

Distribution of Mask Ratio and Timestep for Pre-training. Fig. 12 shows the discrete distribu-
tion of mask ratio and timesteps during pre-training respectively.
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Figure 7: Visualizations of unconditional generated images on ImageNet-1k.
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Figure 8: Progressive generation results on ImageNet-1k, using linear masking schedule with
total inference step T = 256.
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Figure 9: Synthetic training images with WeightedSum strategy.

Figure 10: Synthetic training images with Sampling strategy.
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Hyper-parameters Value

Input resolution 1024× 1024
Finetuning epochs 100
Warmup length 250 iters
Batch size 128
Optimizer AdamW
Peak learning rate 1.6× 10−4

Learning rate schedule cosine
Weight decay 0.1
Adam β (0.9, 0.999)
Layer-wise learning rate decay 0.8 (B) / 0.9 (L)

Augmentation large scale jittor
Stochastic depth 0.1 (B) / 0.4 (L)
Relative positional embeddings ✓

Table 18: Hyper-parameters for COCO detection.

Hyper-parameters Value

Input resolution 512× 512

Finetuning length 80k iters (B)
40k iters (L)

Warmup length 1500 iters
Batch size 32
Optimizer AdamW

Peak learning rate 2× 10−4 (B)
3.2× 10−4 (L)

Learning rate schedule cosine
Weight decay 0.05
Adam β (0.9, 0.999)
Layer-wise learning rate decay 0.85

Stochastic depth 0.1
Relative positional embeddings ✓

Table 19: Hyper-parameters for ADE20k segmentation.

Image Inpainting and Outpainting. ADDP is able to conduct image inpainting and outpainting
without further finetuning. Given a masked image, we first generate the initial image xt by filling the
masked region with the average pixels of visible areas. Then the mask ratio and the corresponding
timestep t is calculated based on the ratio of the masked area to the entire image. We also use
VQ tokenizer to encode xt into VQ tokens zt. After that, ADDP can generate the final image by
continuing the subsequent alternating denoising process. The final output is composited with the
input image via linear blending based on the mask, following MaskGIT (Chang et al., 2022). Some
results of image inpainting, outpainting and uncropping (outpainting on a large mask) are shown in
Fig. 13, Fig. 14 and Fig. 15.

Intermediate Generated Results with Token Space Visualization. In Fig. 16, we map the top
3 PCA components of each token embedding (both reliable and unreliable) to RGB values at each
intermediate step. Such visualization illustrates that reliable tokens help enhance image sharpness
and add more fine-grained details, while unreliable tokens contribute to the refinement of coarse-
grained spatial contours. Collectively, these tokens maintain the spatial consistency of the generated
image.
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Figure 11: Synthetic training images with Argmax strategy.

(a) mask ratio distribution (b) timestep distribution

Figure 12: The discrete probability distribution used for pre-training.

Figure 13: Results of image inpainting.
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Figure 14: Results of image outpainting.

Figure 15: Results of image uncropping (outpainting on a large mask).
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Figure 16: More progressive generation results on ImageNet-1k, using linear masking schedule
with total inference step T = 256. For each generated image, the unmasked regions in the top row
correspond to the reliable tokens, while the rest corresponds to unreliable tokens at each step. In the
second row, the top 3 PCA components of each token embedding (both reliable and unreliable) are
mapped to RGB values for visualization. The last row is the result of the noisy synthesized image
after Token-to-Pixel Decoding.
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