
Imitation with Neural Density Models - Appendix

A Proofs

Recall the assumptions made on the MDPs.

Assumption 1 All considered MDPs have deterministic dynamics governed by a transition function

P : S ⇥ A ! S. Furthermore, P is injective with respect to a 2 A, i.e 8s, a, a
0

it holds that

a 6= a
0
) P (s, a) 6= P (s, a0).

Assumption 1 holds for most continuous robotics and physics environments as they are deterministic
and inverse dynamics functions P�1 : S ⇥ S ! A have been successfully used in benchmark RL
environments such as Mujoco (Todorov, 2014; Todorov et al., 2012) and Atari (Pathak et al., 2017).
What happens when Assumption 1 does not hold? From the proof of Theorem 1, for discrete state
spaces it holds that,

H(⇢⇡✓ (s, a)) = H(⇡✓) +H(⇢⇡✓ (s)) � H(⇡✓),

since entropy is non-negative for discrete probability distributions, i.e H(⇢⇡✓ (s)) � 0. Thus,
for MDPs with discrete state-spaces, we obtain a SAELBO which is simply the policy entropy.
The drawback is that this bound is less tight than the original SAELBO that includes the mutual
information terms. In other words, when Assumption 1 does not hold, but the MDP state-space
is discrete, one can still use NDI for non-adversarial IL which amounts to performing MaxEntRL
(not MaxOccEntRL) with the learned density as the reward. As our experiments show (Table 3),
optimizing only policy entropy H(⇡✓) (the row for �f = 0) still results in good task performance
with one demonstration, but worse imitation performance (average KL). Deriving a tighter bound in
the fully general space of dynamics is an interesting direction we leave for future work.

A.1 Proof of Theorem 1

Lemma 1 Let H : p̂ 7!
R
X p̂(x) log p̂(x) denote the generalized entropy defined on the extended

domain of non-normalized densities �+ = {p̂ : X ! R+
| 9Z > 0 s.t

R
X p̂(x)/Z = 1} where

R+
is the set of non-negative real numbers. H is concave.

Proof

H(�p̂+ (1� �)q̂) = �

X

x

�
�p̂(x) + (1� �)q̂(x)

�
log

�
�p̂(x) + (1� �)q̂(x)

�

� �[
X

x

�p̂(x) log p̂(x) + (1� �)q̂(x) log q̂(x)]

= ��

X

x

p̂(x) log p̂(x)� (1� �)
X

x

q̂(x) log q̂(x)

= �H(p̂) + (1� �)H(q̂)

where the inequality in the second line holds since 8x, it holds that p̂(x), q̂(x) 2 R+, and the map
f(u) := �u log u is strictly concave on u 2 R+; this follows from the fact that f 0(u) = �(1+ log u)
is strictly decreasing on R+.

Lemma 2 Let MDP M satisfy Assumption 1. Let {st, at}
1
t=0 be the stochastic process realized

by sampling an initial state from s0 ⇠ P0(s) then running policy ⇡ with determinsitic, injective

dynamics function P , i.e at ⇠ ⇡(·|st), st+1 = P (st, at). Then 8t � 1,

H(st|st�1) = H(at�1|st�1)

Proof We expand H(st, at�1|st�1) in two different ways:
H(st, at�1|st�1) = H(st|st�1, at�1) +H(at�1|st�1) = 0 +H(at�1|st�1)

H(st, at�1|st�1) = H(at�1|st�1, st) +H(st|st�1) = 0 +H(st|st�1)

The H(st|st�1, at�1),H(at�1|st�1, st) terms can be zero’d out due to the determinstic, injective
dynamics assumption. Thus, we conclude that H(st|st�1) = H(at�1|st�1).
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Theorem 1 Let MDP M satisfy assumption 1 (App. A). For any critic f : S ⇥ S ! R, it holds that

H(⇢⇡✓ ) � H
f (⇢⇡✓ ) (4)

where

H
f (⇢⇡✓ ) := H(s0) + (1 + �)H(⇡✓) + �

1X

t=0

�
t
I
f
NWJ(st+1; st|✓) (5)

Proof

H(⇢⇡✓ (s, a)) = �

X

s,a

⇢⇡✓ (s, a) log ⇢⇡✓ (s, a)

= �

X

s,a

⇢⇡✓ (s, a) log
⇢⇡✓ (s, a)

⇢⇡✓ (s)
�

X

s,a

⇢⇡✓ (s, a) log ⇢⇡✓ (s)

= �

X

s,a

⇢⇡✓ (s, a) log ⇡✓(a|s)�
X

s

⇢⇡✓ (s) log ⇢⇡✓ (s)

= H(⇡✓) +H(⇢⇡✓ (s))

We now lower bound the state-marginal occupancy entropy term

H(⇢⇡✓ (s)) = H(
1X

t=0

�
t(1� �)

p✓,t(s)

1� �
)

�

1X

t=0

�
t
H(st) Lemma 1 (13)

=
⇣
H(s0) +

1X

t=1

�
t
H(st)

⌘

= H(s0) +
1X

t=1

�
t
H(st|st�1) +

1X

t=1

�
t
I(st; st�1)

Let us consider each term separately starting with the entropy term:
1X

t=1

�
t
H(st|st�1) =

1X

t=1

�
t
H(at�1|st�1) Lemma 2

= �

1X

t=0

�
t
H(at|st)

= �

1X

t=0

�
tEp(st,at)[� log p(at|st)]

= �

1X

t=0

�
tE⇡✓ [� log p(at|st)]

= �E⇡✓ [�
1X

t=0

�
t log ⇡✓(at|st)]

= �H(⇡✓)

We now lower bound the Mutual Information (MI) term using the bound of Nguyen, Wainright, and
Jordan (Nguyen et al., 2010), also known as the f -GAN KL (Nowozin et al., 2016) and MINE-f
(Belghazi et al., 2018). For random variables X,Y distributed according to p✓xy (x, y), p✓x(x), p✓y (y)

where ✓ = (✓xy, ✓x, ✓y), and any critic function f(x, y), it holds that I(X,Y |✓) � I
f
NWJ(X;Y |✓)

where,
I
f
NWJ(X;Y ) := Ep✓xy

[f(x, y)]� e
�1Ep✓x

[Ep✓y
[ef(x,y)]] (14)
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This bound is tight when f is chosen to be the optimal critic f
⇤(x, y) = log

p✓xy (x,y)

p✓x (x)p✓y (y)
+ 1.

Applying this bound we obtain:

1X

t=1

�
t
I(st; st�1|✓) �

1X

t=1

�
t
I
f
NWJ(st; st�1|✓)

= �

1X

t=0

�
t
I
f
NWJ(st+1; st|✓)

Combining all the above results,

H(⇢⇡✓ (s, a)) = H(⇡✓) +H(⇢⇡✓ (s))

= H(⇡✓) +H(s0) +
1X

t=1

�
t
H(st|st�1) +

1X

t=1

�
t
I(st; st�1|✓)

� H(s0) + (1 + �)H(⇡✓) + �

1X

t=0

�
t
I
f
NWJ(st+1; st|✓)

Setting H
f (⇢⇡✓ ) := H(s0) + (1 + �)H(⇡✓) + �

P1
t=0 �

t
I
f
NWJ(st+1; st|✓) concludes the proof.

Tightness of the SAELBO: We call Hf (⇢⇡✓ ) the State-Action Entropy Lower Bound (SAELBO).
There are two potential sources of slack for the SAELBO. The first source is from the application of
Jensen’s inequality in Eq. 13. This slack becomes smaller as p✓,t converges to a stationary distribution
as t ! 1. The second source is the MI lowerbound INWJ in Eq. 14 , which can be made tight if f is
sufficiently flexible and chosen (or learned) to be the optimal critic.
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A.2 Proof of Theorem 2

Theorem 2 Let q⇡(a|s) and {qt(s)}t�0 be probability densities such that 8s, a 2 S ⇥ A satisfy

q⇡(a|s) = ⇡✓(a|s) and qt(s) = p✓,t(s). Then for all f : S ⇥ S ! R,

r✓H
f (⇢⇡✓ ) = r✓J(⇡✓, r̄ = r⇡ + rf ) (6)

where

r⇡(st, at) = �(1 + �) log q⇡(at|st) (7)

rf (st, at, st+1) = �f(st, st+1)�
�

e
Es̃t⇠qt,s̃t+1⇠qt+1 [e

f(s̃t,st+1) + e
f(st,s̃t+1)] (8)

Proof We take the gradient of the SAELBO H
f (⇢⇡✓ ) w.r.t ✓

r✓H
f (⇢⇡✓ ) = r✓H(s0) +r✓(1 + �)H(⇡✓) +r✓�

1X

t=0

�
t
I
f
NWJ(st+1; st|✓)

The first term vanishes, so we can consider the second and third term separately. Using the standard
MaxEntRL policy gradient result (e.g Lemma A.1 of (Ho & Ermon, 2016)),

r✓(1 + �)H(⇡✓) = r✓E⇡✓ [�
1X

t=0

�
t(1 + �) log q⇡(at|st)]

= r✓J(⇡✓, r̄ = r⇡) (15)

Now for the third term, we further expand the inner terms:

r✓�

1X

t=0

�
t
I
f
NWJ(st+1; st|✓)

:= r✓�

1X

t=0

�
t
⇣
Ep✓,t:t+1(st+1,st)[f(st+1, st)]� e

�1Est+1⇠p✓,t+1(st+1)[Es̃t⇠p✓,t(st)[e
f(st+1,s̃t)]]

⌘

= r✓�

1X

t=0

�
t
⇣
Es0,a0,...⇠⇡✓ [f(st+1, st)]� e

�1Es0,a0,...⇠⇡✓ [Es̃0,ã0,...⇠⇡✓ [e
f(st+1,s̃t)]]

⌘

= r✓Es0,a0,...⇠⇡✓ [
1X

t=0

�
t+1

f(st+1, st)]�
e

�
r✓Es0,a0,...⇠⇡✓ [

1X

t=0

�
tEs̃0,ã0,...⇠⇡✓ [e

f(st+1,s̃t)]]
⌘

(16)

The first term is the gradient of a discounted model-free RL objective with r̄(st, at, st+1) =
f(st+1, st) as the fixed reward function. The second term is not yet a model-free RL objective
since the inner expectation explicitly depends on ✓. We further expand the second term.
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r✓Es0,a0,...⇠⇡✓ [
1X

t=0

�
tEs̃0,ã0,...⇠⇡✓ [e

f(st+1,s̃t)]]

= Es0,a0,...⇠⇡✓ [
⇣ 1X

t=0

r✓ log ⇡✓(at|st)
⌘ 1X

t=0

�
tEs̃0,ã0,...⇠⇡✓ [e

f(st+1,s̃t)]]

+ Es0,a0,...⇠⇡✓ [r✓

1X

t=0

�
tEs̃0,ã0,...⇠⇡✓ [e

f(st+1,s̃t)]]

= Es0,a0,...⇠⇡✓ [
⇣ 1X

t=0

r✓ log ⇡✓(at|st)
⌘ 1X

t=0

�
tEs̃0,ã0,...⇠⇡✓ [e

f(st+1,s̃t)]]

+ Es0,a0,...⇠⇡✓ [r✓Es̃0,ã0,...⇠⇡✓ [
1X

t=0

�
t
e
f(st+1,s̃t)]]

= Es0,a0,...⇠⇡✓ [
⇣ 1X

t=0

r✓ log ⇡✓(at|st)
⌘ 1X

t=0

�
tEs̃0,ã0,...⇠⇡✓ [e

f(st+1,s̃t)]]

+ Es0,a0,...⇠⇡✓ [Es̃0,ã0,...⇠⇡✓ [
⇣ 1X

t=0

r✓ log ⇡✓(ãt|s̃t)
⌘ 1X

t=0

�
t
e
f(st+1,s̃t)]]

= Es0,a0,...⇠⇡✓ [
⇣ 1X

t=0

r✓ log ⇡✓(at|st)
⌘ 1X

t=0

�
tEs̃0,ã0,...⇠⇡✓ [e

f(st+1,s̃t)]]

+ Es̃0,ã0,...⇠⇡✓ [Es0,a0,...⇠⇡✓ [
⇣ 1X

t=0

r✓ log ⇡✓(ãt|s̃t)
⌘ 1X

t=0

�
t
e
f(st+1,s̃t)]]

= Es0,a0,...⇠⇡✓ [
⇣ 1X

t=0

r✓ log ⇡✓(at|st)
⌘ 1X

t=0

�
tEs̃0,ã0,...⇠⇡✓ [e

f(st+1,s̃t)]]

+ Es̃0,ã0,...⇠⇡✓ [
⇣ 1X

t=0

r✓ log ⇡✓(ãt|s̃t)
⌘ 1X

t=0

�
tEs0,a0,...⇠⇡✓ [e

f(st+1,s̃t)]]

= Es0,a0,...⇠⇡✓ [
⇣ 1X

t=0

r✓ log ⇡✓(at|st)
⌘ 1X

t=0

�
t
⇣
Es̃0,ã0,...⇠⇡✓ [e

f(st+1,s̃t)] + Es̃0,ã0,...⇠⇡✓ [e
f(s̃t+1,st)]

⌘
]

= Es0,a0,...⇠⇡✓ [
⇣ 1X

t=0

r✓ log ⇡✓(at|st)
⌘ 1X

t=0

�
t
⇣
Es̃t⇠p✓,t [e

f(st+1,s̃t)] + Es̃t+1⇠p✓,t+1 [e
f(s̃t+1,st)]

⌘
]

= r✓Es0,a0,...⇠⇡✓ [
1X

t=0

�
t
⇣
Es̃t⇠qt [e

f(st+1,s̃t)] + Es̃t+1⇠qt+1 [e
f(s̃t+1,st)]

⌘
] (17)

Combining the results of Eq. 16 and Eq. 17, we see that:

r✓�

1X

t=0

�
t
I
f
NWJ(st+1; st|✓) = r✓J(✓, r̄ = rf )

where, rf (st, at, st+1) = �f(st, st+1)�
�
eEs̃t⇠qt,s̃t+1⇠qt+1 [e

f(st+1,s̃t)+e
f(s̃t+1,st)]. Finally, putting

everything together with the result of Eq. 15:

r✓H
f (⇢⇡✓ ) = r✓J(✓, r̄ = r⇡ + rf )

as desired.
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B Implementation details

Here, we provide implementation details for each IL algorithm.

NDI (Ours): We experiment with two variants of our method NDI+MADE and NDI+EBM, where
the only difference lies in the what density estimation method was used. Across all experiments, our
density model q� is a two-layer MLP with 256 hidden units and tanh activations. We add spectral
normalization (Miyato et al., 2018) to all layers. All density models are trained with Adam (Kingma
& Ba, 2014) using a learning rate of 0.0001 and batchsize 256. We train both MADE and EBM for
200 epochs. All other hyperparameters related to MADE (Germain et al., 2015) and SSM (Song
et al., 2019) were taken to be the default values provided in the open-source implementations3. For
hyperparameters related to the MaxOccEntRL step, �⇡ is tuned automatically in the stable-baselines
implementation (Hill et al., 2018), and we set �f = 0.005. All RL related hyperparameters including
the policy architecture are the same as those in the original SAC implementation (Haarnoja et al.,
2018). We will be open-sourcing our implementation in the near future. We save the imitator with the
best augmented reward as this is the model that maximizes the lower bound to reverse KL divergence.

Behavioral Cloning (Pomerleau, 1991): For BC, we use the stable-baselines (Hill et al., 2018) of
the .pretrain() function. We parameterize the model with a two-layer MLP with 256 hidden units.
Note that various forms of regularization including spectral, orthogonal, gradient penalty, L1, and L2
regularization were all found to not benefit GAIL performance and as a result the no regularization
was place on the discriminator. We standardize the observations to have zero mean and unit variance
(which we found drastically improves performance). We monitor the validation loss and stop training
when the validation loss starts ceases to improve.

GAIL (Ho & Ermon, 2016): We use the stable-baselines(Hill et al., 2018) implementation of GAIL
using a two-layer MLP with 256 hidden units and SAC as the RL algorithm. During training, we
monitor the average discriminator reward and stop training when this reward saturates over 40
episodes.

Random Expert Distillation (Wang et al., 2019): We use the official implementation4 of Random
Expert Distillation (Wang et al., 2019) and explicitly set the BC pretraining flag off for all environ-
ments for the results in Table 2 and Table 5. All other hyperparameters associated with the algorithm
were set to the default values that were tuned for Mujoco tasks in the original implementation. For
each random seed, we sample the required number of expert trajectories and give that as the input
expert trajectories to the RED algorithm. We save the model with the highest support matching
reward following their protocol.

ValueDICE (Kostrikov et al., 2020): We use the original implementation of ValueDICE (Kostrikov
et al., 2020)5. All hyperparameters associated with the algorithm were set to the default values that
were tuned for Mujoco tasks in the original implementation. For each random seed the algorithm
randomly sub-samples the required number of expert trajectories which is passed in as a flag.
We conducted a hyperparameter search over the replay regularization and the number of updates
performed per time step. We vary the amount of replay regularization from 0 to 0.5 and the number
of updates per time step from 2 to 10 but stick with the default values as we do not find any consistent
improvement in performance across environments. We save the model with the best ValueDICE loss
following their protocol.

3MADE: https://github.com/kamenbliznashki/normalizing_flows), SSM: https://github.
com/ermongroup/ncsn

4RED: https://github.com/RuohanW/RED
5ValueDICE: https://github.com/google-research/google-research/tree/master/value_

dice

19

https://github.com/hill-a/stable-baselines/blob/master/stable_baselines/common/base_class.py#L289
https://github.com/kamenbliznashki/normalizing_flows
https://github.com/ermongroup/ncsn
https://github.com/ermongroup/ncsn
https://github.com/RuohanW/RED
https://github.com/google-research/google-research/tree/master/value_dice
https://github.com/google-research/google-research/tree/master/value_dice


Figure 2: Room World. Each room is a 5⇥ 5 grid world in which the agent (red square) can move
up, down, left, right (green). The agent interacts with the environment for 100 steps.

Table 4: Effect of varying MI reward weight �f on how many rooms explored in room world

NUM ROOMS EXPLORED

RANDOM 1.3± 0.3

�f = 1 (SAELBO) 1.5± 0.6
�f = 0.1 (SAELBO) 3.2± 0.9
�f = 0.01 (SAELBO) 6.7± 2.5
�f = 0 (H(⇡✓) ONLY) 1.4± 0.4

EXPERT 10± 0

C Additional experiments

C.1 Optimizing SAELBO aids exploration

In Section 2.2 we posited that maximizing the SAELBO is more effective for state-action level
exploration, i.e occupancy entropy maximization, than solely maximizing policy entropy. This is
because, in discrete state-spaces, the SAELBO is a tighter lower bound to occupancy entropy than
policy entropy, i.e H(⇡✓)  H

f (⇢⇡✓ )  H(⇢⇡✓ ), and in continuous state-spaces, where Assumption
1 holds, the SAELBO is still a lower bound while policy entropy alone is neither a lower nor upper
bound to occupancy entropy.

We designed a room world environment (see Figure 2) to illustrate how the maximizing the SAELBO
H

f (⇢⇡✓ ) could enable better maximization of occupancy entropy as opposed to solely maximizing
policy entropy H(⇡✓). An agent starts in a room which is linked to 10 rooms via a narrow path
way. Each room is a grid world so the agent is allowed to move up, down, left, and right unless
otherwise constrained by walls. The agent interacts for 100 steps. Simply encouraging the policy
to be uniform random will not maximize occupancy entropy as it is unlikely for a uniform random
policy to purposefully visit the 10 rooms. We compare how many rooms are visited by the agent
when it maximizes only policy entropy H(⇡), i.e �f = 0, versus when it maximizes the SAELBO
H

f (⇢⇡✓ ) for varying values of �f with the fixed critic in Eq. 12. Note that there is no environment
reward, and the agent simply tries to maximize either policy entropy or the SAELBO.

As shown in Table. 4, maximizing there is a sweet spot value of �f = 0.01 for which maximizing the

SAELBO allows better occupancy entropy maximization (4.8 times more rooms explored) than sole

policy entropy maximization. Please note that we do not make any strong claims that SAELBO maxi-
mization is an effective method for exploration in realistic challenging sparse reward environments.
This topic is an interesting direction for future work.

Similarly, optimizing the SAELBO can be expected to improve imitation performance over solely
maximizing policy entropy because the the SAELBO yields tighter lower bound to the additive inverse
of reverse KL than policy entropy. Intuitively, since the SAELBO term allows better maximization of
the imitator’s occupancy entropy, the imitator is less likely to simply collapse all of its state-action
visitation probabilities to the mode of the expert occupancy. Indeed we see in Table. 3 that including
the SAELBO appropriately leads to better imitation performance.

20



C.2 Task Performance with More Demonstrations

Here we present the results when using 25 expert trajectories. NDI+EBM outperforms all other
methods. RED is still unable to perform well on all tasks. We found that even after hyperparameter
tuning, ValueDICE and GAIL slightly underperform the expert on some tasks.

Table 5: Task Performance when provided with a 25 demonstrations. NDI outperforms all baselines
on all tasks.

HOPPER HALF-CHEETAH WALKER ANT HUMANOID

RANDOM 14± 8 �282± 80 1± 5 �70± 111 123± 35

BC 3498± 103 4167± 95 4816± 196 3596± 214 4905± 612
RED 2523± 476 �3± 4 1318± 446 1004± 5 2052± 585
GAIL 3521± 44 3632± 225 4926± 450 3582± 212 259± 21
VALUEDICE 2829± 685 4105± 134 4384± 620 3948± 350 2116± 1005
NDI+MADE 3514± 105 4253± 105 4892± 109 1023± 322 6013± 550
NDI+EBM 3557± 109 5718± 294 5210± 105 4319± 107 6113± 210

EXPERT 3567± 4 4142± 132 5006± 472 4362± 827 5417± 2286

C.3 Ablation Study on each phase of NDI

Recall that NDI performs distribution matching IL in two phases: density estimation followed by
MaxOccEntRL (see Section 3). Here we isolate the effect of each phase on task (Section 6.1)
and imitation (Section 6.3) performance. First, we fix the MI reward weight to the optimal value
�f = 0.005, then vary the number of demonstrations to isolate the affect of the density estimation
phase on overall performance. These results are in Table 6. We see that having more demonstrations
slightly improves imitation performance (KL) on most mujoco tasks. There’s no clear improvement
in task performance (Reward), as expert level reward is already attained with one demonstration.
Table 6: Effect of varying the number of demonstrations on (1). Task performance of NDI-
EBM (top row) and (2). Imitation performance of NDI-EBM (bottom row) measured as the aver-
age KL divergence between ⇡,⇡E on states s sampled by running ⇡ in the true environment, i.e
Es⇠⇡[DKL(⇡(·|s)||⇡E(·|s))], normalized by the average DKL between the random and expert poli-
cies. DKL(⇡||⇡E) can be computed analytically since ⇡,⇡E are conditional gaussians. � was fixed
to �f = 0.005. We see that having more demonstrations slightly improves imitation performance
(KL) on most mujoco tasks. There’s no clear improvement in task performance (Reward), as NDI is
already able to achieve expert level task performance with one demonstration.

HOPPER HALF-CHEETAH WALKER ANT HUMANOID

REWARD 3502± 315 4329± 701 5123± 211 4456± 401 5513± 604
DEMO= 25 KL 0.10± 0.01 0.13± 0.05 0.22± 0.17 0.34± 0.14 0.1± 0.13

DEMO= 10 REWARD 3512± 314 4412± 481 5192± 231 4311± 505 5381± 398
KL 0.12± 0.05 0.15± 0.06 0.21± 0.13 0.32± 0.17 0.11± 0.15

DEMO= 4 REWARD 3552± 195 4593± 492 5153± 202 4342± 219 5310± 502
KL 0.12± 0.15 0.18± 0.07 0.23± 0.15 0.35± 0.12 0.11± 0.19

DEMO= 1 REWARD 3458± 210 4511± 569 5061± 135 4293± 431 5305± 555
KL 0.11± 0.02 0.17± 0.09 0.22± 0.14 0.32± 0.12 0.12± 0.14

EXPERT REWARD 3567± 4 4142± 132 5006± 472 4362± 827 5417± 2286

Next we fix the EBM density model q�(s, a) to be close to "oracle" by training on an ample (25)
number of demonstrations then vary the strength of the MI reward �f in order to isolate the effect of
the MaxOccEntRL step on overall performance. These results are in Table 7. We see that, similar
to results in Table 3, �f mainly trades off task and imitation performance. Setting �f too small
drives the imitator to concentrate it’s probability mass onto the modes of the expert occupancy, hence
achieving good task performance at the expense of imitation performance. Setting �f too large makes
the entropy term dominate the objective leading to poor imitation and task performance. There’s a
sweet spot value of �f = 0.005 which balances the mode-seeking and mode-covering behavior.
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Table 7: Effect of varying MI reward weight �f on (1). Task performance of NDI-EBM
(top row) and (2). Imitation performance of NDI-EBM (bottom row) measured as the average
KL divergence between ⇡,⇡E on states s sampled by running ⇡ in the true environment, i.e
Es⇠⇡[DKL(⇡(·|s)||⇡E(·|s))], normalized by the average DKL between the random and expert poli-
cies. DKL(⇡||⇡E) can be computed analytically since ⇡,⇡E are conditional gaussians. Density
model q� is trained with 25 demonstrations. Setting �f too large hurts task performance while setting
it too small is suboptimal for matching the expert occupancy. A middle point of �f = 0.005 achieves
a balance between the two metrics.

HOPPER HALF-CHEETAH WALKER ANT HUMANOID

�f = 0 REWARD 3557± 109 5718± 294 5210± 105 4319± 107 6113± 210
KL 0.14± 0.13 0.37± 0.1 0.25± 0.1 0.55± 0.1 0.57± 0.23

�f = 0.0001 REWARD 3533± 163 5684± 788 5214± 201 4234± 498 5654± 541
KL 0.16± 0.07 0.3± 0.12 0.28± 0.04 0.56± 0.09 0.32± 0.12

REWARD 3502± 315 4329± 701 5123± 211 4456± 401 5513± 604�f = 0.005 KL 0.10± 0.01 0.13± 0.05 0.22± 0.17 0.34± 0.14 0.1± 0.13

�f = 0.1 REWARD 1011± 124 221± 104 152± 102 �125± 51 251± 103
KL 0.84± 0.16 1.81± 0.31 0.74± 0.15 2.92± 1.12 0.96± 0.43

EXPERT REWARD 3567± 4 4142± 132 5006± 472 4362± 827 5417± 2286

C.4 Pretraining with BC

Here we present the results obtained by pretraining all algorithms with Behavioral Cloning using
1 expert trajectory. The number of pretraining epochs was determined separately for each baseline
algorithm through a simple search procedure.

For RED, we found 100 to be the optimal number of pretraining epochs and more pretraining worsens
performance. For GAIL, we use 200 pretraining epochs after conducting a search from 100 to 1000
epochs. We find that the performance improves till 200 epochs and pretraining any longer worsens
the performance. For ValueDICE, we use 100 pretraining epochs, determined by the same search
procedure as GAIL, and found that the performance decreases when using more than 200 pretraining
epochs. For NDI+MADE and NDI+EBM, we use 100 pretraining epochs.

Table 8: Task Performance when pretrained with BC and provided with 1 (top), 25 (bottom) expert
demonstration.

HOPPER HALF-CHEETAH WALKER ANT HUMANOID

RANDOM 14± 8 �282± 80 1± 5 �70± 111 123± 35

1 DEMONSTRATIONS

RED 3390± 197 3267± 614 2260± 686 3044± 612 571± 191
GAIL 3500± 81 3350± 512 4175± 825 2716± 210 221± 48
VALUEDICE 1507± 308 3556± 247 1937± 912 1007± 94 372± 31
NDI+MADE 3526± 172 4152± 209 4998± 157 4014± 105 5971± 550
NDI+EBM 3589± 32 4622± 210 5105± 105 4412± 204 5606± 314

25 DEMONSTRATIONS

RED 3460± 153 3883± 440 4683± 994 4079± 208 4385± 1725
GAIL 3578± 24 4139± 275 4904± 282 3534± 346 281± 50
VALUEDICE 2124± 628 3975± 125 3939± 1152 3559± 134 101± 33
NDI+MADE 3533± 130 4210± 159 5010± 189 4102± 99 5103± 789
NDI+EBM 3489± 73 4301± 155 5102± 77 4201± 153 5501± 591

EXPERT 3567± 4 4142± 132 5006± 472 4362± 827 5417± 2286

We observe that the performance for RED improves drastically when pretrained with BC but is still
unable to achieve expert level performance when given 1 demonstration. We observe GAIL produces
better results when pretrained for 200 epochs. ValueDICE does not seem to benefit from pretraining.
Pretraining also slightly improves the performance of NDI, notably in boosting the performance of
NDI+MADE on Ant.

22



C.5 Environment sample complexity

Although minimizing environment interactions is not a goal of this work, we show these results in
Table 9 for completeness. We found that NDI roughly requires an order of magnitude less samples
than GAIL which may be attributed to using a more stable non-adversarial optimization procedure.
ValueDICE, an off-policy IL algorithm optimized to minimize environment sample complexity,
requires roughly two orders of magnitude less interactions than NDI. We hope to see future work
combine off-policy RL algorithms with NDI to further reduce environment interactions.

Table 9: Environment Sample Complexity computed as the mean number of environment steps
needed to reach expert level performance when provided with ample (25) expert demonstrations.
RED excluded as it cannot reach expert performance without BC pretraining. NDI requires less
samples than GAIL but more than ValueDICE.

HOPPER HALF-CHEETAH WALKER ANT HUMANOID

GAIL 8.9M± 1.3M 10.0M± 3.3M 15.1M± 3.5M 34.2M± 8.8M 43.2M± 11.2M
VALUEDICE 8.3K± 1.6K 10.7K± 2.1K 24.3K± 4.5K 6.9K± 1.1K 105K± 10.2K
NDI+MADE 0.8M± 0.2M 1.3M± 0.4M 4.8M± 1.1M 4.5M± 0.5M 6.8M± 1.7M
NDI+EBM 0.5M± 0.1M 1.4M± 0.3M 4.1M± 2.1M 4.9M± 1.5M 6.1M± 1.1M
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