
Flow as the Cross-Domain Manipulation Interface

Anonymous Author(s)
Affiliation
Address
email

1 Data Collection1

In Im2Flow2Act, we collect two types of data: a simulated robot play dataset and real-world human2

demonstration videos. Note that we do not collect any real-world robot data. Below, we detail the3

data collection process.4

1.1 Simulated Play Data5

We use MuJoCo as our simulation engine and have constructed three types of play environments6

featuring rigid, articulated, and deformable objects. An UR5e robot explores these environments7

using a set of predefined random heuristic actions.8

Rigid: In the rigid play environment, the robot can interact with five different objects, including a9

toy car, a shoe, a mini-lamp, a frying pan, and a mug. At the beginning of each episode, one object10

is randomly selected and placed on the table. The robot first picks up the object and starts executing11

6DoF random trajectories. A random trajectory is constructed as a 3D cubic Bézier curve with four12

key waypoints: the start point p0, two control points p1 and p2, and the end point p3. The start point13

is where the robot first picks up the object, and the end point is randomly selected within the robot’s14

reachable world coordinates. The two control points are obtained by adding curvature to the line15

defined by p0 and p3. Specifically, for the first control point p1, we first calculate the one-third point16

m1 between p0 and p3, i.e., m1 = p0 +
(p3−p0)

3 . We then twist m1 in 3D space to obtain the first17

control point by adding a random offset (curvature), i.e., p1 = m1 + ϵ, where ϵ ∈ R3. We set each18

dimension of ϵ be uniformly sampled from (−0.05, 0.05). Similarly, we obtain the second control19

point by calculating the two-thirds point and adding some random offset. Once we obtain the points20

p0, p1, p2, and p3, we define the cubic Bézier curve by (1−t)3P0+3(1−t)2tP1+3(1−t)t2P2+t3P3,21

where t ∈ [0, 1]. We equally sample k (k = 16) waypoints along this curve, which defines the22

translation for the robot’s play trajectory. We add a target object orientation (random sample from23

(−π
8 ,

π
8 ) for each dimension) when the object arrives at the final point p3. We interpolate between24

the initial orientation at p0 and the target orientation at p3 and attach them to the k waypoints. For25

each episode, we sample two consecutive 3D cubic Bézier curves, allowing the robot to interact with26

random objects and build the correspondence between flows and actions. The trajectory ends with a27

random rotation or place actions.28

Articulated: We construct various types of drawers, none of which are the same as those tested in29

the real world. In each episode, one drawer is selected and placed on the table. The robot explores30

these articulated objects by opening the drawer to different extents, not necessarily fully open.31

Deformable: At the beginning of the episode, a cloth is randomly placed on the table. The robot32

has the option to grasp either the left or right corner of the cloth. Once grasped, the robot begins33

random folding (not necessarily folding diagonally). We have defined nine different folding targets,34

and the robot randomly selects one to start folding. During this process, we also vary the folding35

trajectory by lifting the cloth to different heights.36

In total, we collect 4800 random play trajectories. Once all data is collected, we use an iterative37

procedure to obtain object flows. For each collected episode, we begin by sampling uniform grid38

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.



(30x30) keypoints on the initial frame and track all points using Tapir [1], similar to the approach39

in ATM [2]. We then apply moving filters and SAM (Segment Anything Model) filters which we40

will explain in details at section 5 below to obtain keypoints on the object. However, as the initial41

sampling is uniform, there may be few points located on the objects. To address this, we sample42

additional points around the existing keypoints based on the SAM output to achieve a denser distri-43

bution of object keypoints. Specifically, for segments containing keypoints after filtering, we sample44

proportionally based on the number of filtered keypoints in that segment. In total, we sample 90045

points on each object. Finally, we run the point tracking algorithm again on the newly sampled46

object keypoints to obtain dense object flow.47

1.2 Real-world Human Demonstration Video:48

We collect in-domain human demonstration videos for four tasks: pick & place, pouring, opening49

drawers, and folding cloth. We use a RealSense camera to record the demonstrations at 30 FPS.50

The descriptions below also serve as detailed task descriptions. In Im2Flow2Act, we use the human51

videos to provide the system with task information. We define the robot base as the origin of the52

world coordinate system and use the Right-Handed Coordinate System.53

• Pick & Place: Pick up a green cup and place it into a red plate. The red plate is randomly placed54

on one side of the table, while the cup is placed randomly in the middle of the table.55

• Pouring: Pick up a green cup and hover it over a red bowl, then rotate the cup towards the bowl.56

The initial placement of the cup and the bowl is the same as in the pick & place task.57

• Drawer Opening: Fully open a drawer that is randomly placed on one side of the table. The58

pose of the drawer, including its position and orientation, can vary. The drawer is not rigidly59

attached to the table.60

• Cloth Folding: Fold a 33 cm x 33 cm cloth from one corner (either lower left or lower right) to61

the diagonal. The cloth is randomly placed in the middle of the table.62

Once the human demonstration is collected, for each episode, we use Grounding DINO to obtain the63

object bounding box at the initial frame and uniformly sample the keypoints inside, where we set64

H = W = 32 as sampling parameters. We then run point tracking algorithm to track the keypoints65

across frames in the episode. To construct the training dataset, we uniformly sample 32 frames from66

each episode to form the task flow.67

2 Ablation study68

We conducted an ablation study in simulation to evaluate the impact of using pretrained StableD-69

iffusion (SD) versus training it from scratch on the flow generation model. In this ablation study,70

we still use pretrained AE (auto-encoder) from the SD but trained the U-Net from scratch instead71

of incorporating LoRA layers. To ensure a fair comparison, we deploy the same flow-conditioned

Table 1: Ablation study Results (%)
Pick&Place Pour Drawer Cloth

Pretrain U-Net 90 95 90 35
U-Net From Scratch 90 90 95 30

72

policy for both the pretrained SD and the training scratch as the manipulation policy. We collect data73

for four tasks in the simulation by substituting the UR5e robot with a sphere robot to create a cross-74

embodiment scenario. Both networks were trained for the same number of epochs and evaluated75

within the same initial state. Based on the results shown in Tab. 1, the choice of pretraining had a76

minor impact on Im2Flow2Act’s final performance. This suggests that: i. Although StableDiffusion77

was initially designed for image generation, directly using its pretrained weights for flow generation78

does not impact its performance. Utilizing LoRA can lead to better training efficiency compared to79

2



training from scratch. ii. The latent space encoded by the AE from the pretrained SD might benefits80

the diffusion model’s learning process.81

Tiny Cube to enable grasping

Reasonable grasping point

Fail to grasp the cubeClose the gripper

Figure 1: Policy rollout in Deformable Environment. We attach a tiny cube (1cm x 1cm x 9cm) to enable
robot grasp deformable objects. The generated flow guides the policy toward an appropriate grasping point;
however, it fails to grasp the tiny cube, resulting in task failure.

Compared to the results using ground truth flow in simulation, we observed that for tasks like pick82

& place, pouring, and drawer opening, the success rates by taking generated flow as input are very83

close. This further demonstrates flow generation network’s capabilities. However, the success rate84

for cloth folding drops significantly. We attribute this to the way we constructed the cloth folding85

simulation environment. Grasping deformable objects like cloth is challenging, so we attached a86

cube (See Fig. 1) at the corner of the cloth to help the robot to lift the corner by grasping the cube.87

During data generation and inference, we render only the cloth, not the cube, to mimic realistic cloth88

folding behavior. We made the cube’s dimensions on the xy-plane very small (1cm x 1cm) to emulate89

the width of a gripper grasping actual cloth. Since the output from a diffusion model typically90

exhibits multimodal distributions and our training dataset contains considerable randomness, the91

learned flow generation model produces reasonable flows for the folding task, but may not direct92

the policy to grasp the cube precisely. Moreover, the flows after motion filtering exacerbate the93

issue. We found that in most cases, the robot can reach the corner and attempt the grasp (See Fig.94

1), but it fails to accurately grasp the cube. In contrast, we observed a reasonable success rate in95

real-world experiments because, in practice, the robot can grasp the cloth anywhere along the corner96

to executing folding.97

3 Experimental Details98

3.1 Real-World Setup99

We use a UR5e robot equipped with a WSG-50 gripper. During inference, the UR5e receives end-100

effector space positional commands from a 2.5 Hz policy. We limit the end-effector’s speed to less101

3



than 0.2 m/s and restrict its position to at least 1 cm above the table for safe execution. A RealSense102

D415 depth camera is mounted at the table to capture policy observations, including the initial depth103

image for the initial point cloud x0 and the real-time RGB images used for online point tracking. The104

RealSense camera records at 720p and 30 Hz. We downsample the resolution to 256x256 at 5 Hz105

for the online point tracking algorithm to process. Additionally, we use a smartphone positioned at106

a different angle to better record robot execution. A desktop with a 24 GB NVIDIA RTX 4090 runs107

the flow generation network and flow-conditioned imitation learning policy inference and online108

point tracking algorithm.109

3.2 Real-World Evaluation Protocol110

In this section, we describe the details of the evaluation protocol in the real world.111

1) Initial State: When evaluating our system, we do not match the background scene setup to those112

recorded in the human demonstrations such that we can also test the generalization capability of113

flow generation network. For the initial position of objects, they are placed with roughly the same114

distribution as in the human video demonstrations.115

2) Success Metric: Below are the details of the real-world success metric for all four tasks:116

• Pick & Place: The robot needs to pick up the cup and place it into the red plate. We do not117

require the mug to be centered on the plate. We consider one episode successful if: i. the robot118

can steadily place the mug onto the red plate; ii. the plate does not move more than 5 cm on the119

table during the robot’s manipulation process.120

• Pouring: The robot needs to pick up the cup, hover it near the bowl, and execute pouring actions.121

We consider one episode successful if: i. the robot demonstrates the complete pouring behavior122

by rotating the cup more than 30 degrees; ii. at least half of the cup overlaps with the red bowl123

on the x-axis in terms of world coordinates.124

• Drawer Opening: The robot needs to fully open the drawer without colliding with its surface.125

Since the drawer is not rigidly attached to the table, it may slightly slide during the robot’s126

execution. An episode is considered a success if: i. the robot gripper does not hevaily collide127

with the drawer surface and push the drawer back more than 5 cm; ii. the drawer is fully opened;128

• Cloth Folding: The robot needs to fold the cloth from one corner to the diagonal opposite corner.129

We consider an episode successful if: i. the robot folds the corner as indicated by the generated130

flow; ii. the two corners are within a threshold once the robot completes the execution. Due to131

the large sim2real gap for deformable simulation, we set this threshold as 7 cm.132

3.3 Evaluation Procedure133

Im2Flow2Act with/without alignment: For each task, we first record the initial frame with differ-134

ent initial states for 20 evaluation episodes. We then query Grounding DINO on the object of interest135

to obtain the bounding boxes in all initial frames. Using the bounding box, initial frame, and the136

task description, we generate the object flow (task flow) for all episodes and store them as a buffer137

on the disk. With all ingredients for policy inference set, we start policy evaluation for each episode138

by manually matching the initial states to be close to pixel-perfect within the mounted RealSense139

camera and load the corresponding generated flow from the previously saved flow buffer.140

Heuristic-based policy: To obtain ground truth future point clouds for the objects, we first record141

human demonstrations for 20 evaluation episodes. We store both RGB and depth images during142

this process. For each evaluation episode, we manually match the initial states to be close to pixel-143

perfect and obtain the open-loop action sequence by estimating object pose transformations between144

the initial frame and future frames for each time step in human demonstrations. We use the same145

motion filters in Im2Flow2Act to ensure fair evaluation. Furthermore, we provide the maximum146

available points (without downsampling) from the task flow. We manually check the transformed147

point cloud by overlapping the transformed initial frame point cloud and future frame point cloud148

to ensure the transformation is largely correct under the noisy conditions of the real-world depth149

camera.150

4



4 Training Details151

4.1 Flow Generation Network152

For the rectangular flow image, we set the spatial resolution to H = W = 32 and T = 32,153

generating flow for 1024 keypoints over 32 steps. We finetune the decoder from StableDiffusion154

for 400 epochs with a learning rate of 5e − 5. To obtain these keypoints, we uniformly sample155

them from the bounding box provided by Grounding DINO. For training AnimateDiff, we insert the156

LoRA (Low-Rank Adaptation) with a rank of 128 into the Unet from StableDiffusion and train the157

motion module layer from scratch with learning rate of 1 × 10−4 for 4000 epochs using AdamW158

[3] optimizer with weight deacy 1 × 10−2, betas (0.9, 0.999) and epsilon 1 × 10−8. We load the159

pretrained (openai/clip-vit-large-patch14) weights from CLIP [4] to process the initial frame and160

freeze them during the entire training. Zero-initialized linear layers are used to process the patch161

embedding and the initial keypoints embedding before passing the conditions into the cross-attention162

layers.163

4.2 Flow-Conditioned Imitation Learning Policy164

Training Data Format: A training sample consists of (ρt, ft,at, F0:T ), where ρt is the propriocep-165

tion data, at is a sequence of actions at, . . . , at+L of length L, and ft contains the locations (u, v)166

of N = 128 object keypoints in the image space at time t. We set the object flow (i.e., task flow)167

horizon T = 32, which matches the output of the flow generation network. The action sequence168

length is set to 16. The N keypoints are randomly selected from all available keypoints for every169

training sample during the training process. To construct the task flow F0:T , we randomly select T170

frames from the episode length T ′ to which the training samples belong. To ensure the task flows171

are complete, we include both the first and last frames of the episode in the task flows.172

State Encoder: We project the keypoints’ initial 3D coordinates, X0, into a 192-dimension vector173

using a linear layer. We also encode keypoints’ locations (u, v) in image space into another 192-174

dimension vector, using a fixed 2D sinusoidal positioning. These two vectors are concatenated to175

form the descriptor ϵ, with a total dimension of 384. We then pass all keypoints’ descriptors into the176

state encoder ϕ, which is a transformer with 4 encoder layers. It outputs a state representation of177

dimension 384 using a CLS token.178

Temporal Alignment: As discussed in the main paper, during training, we first encode the remain-179

ing task flow ft:T ′ into zt ∈ Z . This process involves encoding the keypoints at each time step ft:T ′180

into st:T via the state encoder. Next, we encode the future state representation st:T into the latent181

space through the encoder ξ, which is implemented as a transformer with 4 encoder layers. We use182

fixed 1D sinusoidal positional encoding to preserve temporal information in the state representation183

st:T before feeding them into ξ. The Temporal Alignment model is implemented as a transformer184

with 8 encoder layers. We also add fixed 1D sinusoidal positional encoding to all inputs and utilize185

a CLS token for making predictions.186

Diffusion Action head: We use the diffusion policy [5] as our action head. We use DDIM scheduler187

with 50 training diffusion steps and 16 inference steps.188

We train the policy for 500 epochs with learning rate 1e-4 using AdamW with weight deacy 1×10−2,189

betas (0.9, 0.999) and epsilon 1× 10−8.190

5 Inference Details191

In this section, we describe the details of the inference process, which includes Grounding DINO,192

motion filters, and online point tracking.193

5



5.1 Grounding DINO194

For each task, we begin by using Grounding DINO to identify the object of interest. We manually195

provide the keyword to the model; however, this process could potentially be automated using a196

large language model to find the desired object in the task description. Specifically, we employ the197

grounding-dino-base model to extract the object’s bounding box. The keywords used for the pick &198

place and pouring tasks are “green cup”. For drawer opening, the keyword is “yellow drawer”, and199

for cloth folding, it is “checker cloth”. The input images are processed at a resolution of 480x640.200

5.2 Motion Filters201

We use motion filters to process the object flow (i.e., task flow) generated from the flow gener-202

ation model. As explained in the main paper, the initial keypoints are constructed by uniformly203

sampling within the bounding box. This approach inevitably yields keypoints that are not on the204

object, specifically, keypoints that fall on the background. To address this, we deploy several filters205

simultaneously to remove these background keypoints. Additionally, we implement depth filters to206

eliminate keypoints that lack depth data from noisy real-world depth image.207

Moving Filter: In the training set, keypoints sampled on the background remain static in the image208

space, as only the object is moving. Therefore, we deploy a moving filter during inference time to209

remove keypoints whose movement in the image space (256x256) is below a certain threshold. We210

find that this filter effectively eliminates most background keypoints. In real-world experiments, we211

set the threshold as 20 for pick & place, pouring, and drawer opening tasks, and as 10 for cloth212

folding.213

SAM Filter: To further remove points after applying the moving filter, we deploy the Segment214

Anything Model (SAM) [6]. Specifically, we first resize the initial frame to 256x256 and pass it215

through SAM to obtain the finest segmentation. We then iterate through the keypoints and filter out216

those where the area of the located segment exceeds a threshold. We use a high threshold value of217

10,000 for all tasks to prevent filtering out keypoints on objects with rich textures.218

Depth Filters: Real-world depth images are often noisy and contain many “holes.” We filter out219

keypoints where the depth value is missing (i.e., the value is zero).220

We randomly select N=128 keypoints which is the same number we used for training after applying221

motion filters as the policy input.222

5.3 Online Point Tracking:223

We utilize the online point tracking function from Tapir [1] to track the filtered keypoints during224

inference. We resize the visual observations to 256x256 and run the online point tracking at 5Hz.225

6



References226

[1] C. Doersch, Y. Yang, M. Vecerik, D. Gokay, A. Gupta, Y. Aytar, J. Carreira, and A. Zisserman.227

Tapir: Tracking any point with per-frame initialization and temporal refinement. In Proceedings228

of the IEEE/CVF International Conference on Computer Vision, pages 10061–10072, 2023.229

[2] C. Wen, X. Lin, J. So, K. Chen, Q. Dou, Y. Gao, and P. Abbeel. Any-point trajectory modeling230

for policy learning. arXiv preprint arXiv:2401.00025, 2023.231

[3] I. Loshchilov and F. Hutter. Decoupled weight decay regularization, 2019.232

[4] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,233

P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from234

natural language supervision, 2021.235

[5] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. C. Burchfiel, and S. Song. Diffusion Policy:236

Visuomotor Policy Learning via Action Diffusion. In Proceedings of Robotics: Science and237

Systems, Daegu, Republic of Korea, July 2023. doi:10.15607/RSS.2023.XIX.026.238

[6] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.239

Berg, W.-Y. Lo, P. Dollár, and R. Girshick. Segment anything. arXiv:2304.02643, 2023.240

7

http://dx.doi.org/10.15607/RSS.2023.XIX.026

	Data Collection
	Simulated Play Data
	Real-world Human Demonstration Video:

	Ablation study
	Experimental Details
	Real-World Setup
	Real-World Evaluation Protocol
	Evaluation Procedure

	Training Details
	Flow Generation Network
	Flow-Conditioned Imitation Learning Policy

	Inference Details
	Grounding DINO
	Motion Filters
	Online Point Tracking:


