1

Flow as the Cross-Domain Manipulation Interface

Anonymous Author(s)
Affiliation
Address

email

1 Data Collection

In Im2Flow2Act, we collect two types of data: a simulated robot play dataset and real-world human
demonstration videos. Note that we do not collect any real-world robot data. Below, we detail the
data collection process.

1.1 Simulated Play Data

We use MuJoCo as our simulation engine and have constructed three types of play environments
featuring rigid, articulated, and deformable objects. An URSe robot explores these environments
using a set of predefined random heuristic actions.

Rigid: In the rigid play environment, the robot can interact with five different objects, including a
toy car, a shoe, a mini-lamp, a frying pan, and a mug. At the beginning of each episode, one object
is randomly selected and placed on the table. The robot first picks up the object and starts executing
6DoF random trajectories. A random trajectory is constructed as a 3D cubic Bézier curve with four
key waypoints: the start point pg, two control points p; and po, and the end point ps. The start point
is where the robot first picks up the object, and the end point is randomly selected within the robot’s
reachable world coordinates. The two control points are obtained by adding curvature to the line
defined by po and ps. Specifically, for the first control point p1, we first calculate the one-third point
my between pg and p3, i.e., m1 = pg + (p%p“) We then twist m4 in 3D space to obtain the first
control point by adding a random offset (curvature), i.e., p1 = m1 + €, where € € R3. We set each
dimension of € be uniformly sampled from (—0.05,0.05). Similarly, we obtain the second control
point by calculating the two-thirds point and adding some random offset. Once we obtain the points
Po» 1, P2, and p3, we define the cubic Bézier curve by (1—t)3 Py+3(1—t)2t Py +3(1—t)t2 Py +13 P3,
where t € [0,1]. We equally sample k (k = 16) waypoints along this curve, which defines the
translation for the robot’s play trajectory. We add a target object orientation (random sample from
(—%, g) for each dimension) when the object arrives at the final point p3. We interpolate between
the initial orientation at py and the target orientation at ps and attach them to the k& waypoints. For
each episode, we sample two consecutive 3D cubic Bézier curves, allowing the robot to interact with
random objects and build the correspondence between flows and actions. The trajectory ends with a
random rotation or place actions.

Articulated: We construct various types of drawers, none of which are the same as those tested in
the real world. In each episode, one drawer is selected and placed on the table. The robot explores
these articulated objects by opening the drawer to different extents, not necessarily fully open.

Deformable: At the beginning of the episode, a cloth is randomly placed on the table. The robot
has the option to grasp either the left or right corner of the cloth. Once grasped, the robot begins
random folding (not necessarily folding diagonally). We have defined nine different folding targets,
and the robot randomly selects one to start folding. During this process, we also vary the folding
trajectory by lifting the cloth to different heights.

In total, we collect 4800 random play trajectories. Once all data is collected, we use an iterative
procedure to obtain object flows. For each collected episode, we begin by sampling uniform grid

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

39
40
41
42
43
44
45
46
47

48

49
50
51
52
53

54
55
56
57
58
59
60
61
62

63
64
65
66
67

68

69
70
71

72
73

74
75
76
77
78
79

(30x30) keypoints on the initial frame and track all points using Tapir [1], similar to the approach
in ATM [2]. We then apply moving filters and SAM (Segment Anything Model) filters which we
will explain in details at section 5 below to obtain keypoints on the object. However, as the initial
sampling is uniform, there may be few points located on the objects. To address this, we sample
additional points around the existing keypoints based on the SAM output to achieve a denser distri-
bution of object keypoints. Specifically, for segments containing keypoints after filtering, we sample
proportionally based on the number of filtered keypoints in that segment. In total, we sample 900
points on each object. Finally, we run the point tracking algorithm again on the newly sampled
object keypoints to obtain dense object flow.

1.2 Real-world Human Demonstration Video:

We collect in-domain human demonstration videos for four tasks: pick & place, pouring, opening
drawers, and folding cloth. We use a RealSense camera to record the demonstrations at 30 FPS.
The descriptions below also serve as detailed task descriptions. In Im2Flow2Act, we use the human
videos to provide the system with task information. We define the robot base as the origin of the
world coordinate system and use the Right-Handed Coordinate System.

¢ Pick & Place: Pick up a green cup and place it into a red plate. The red plate is randomly placed
on one side of the table, while the cup is placed randomly in the middle of the table.

* Pouring: Pick up a green cup and hover it over a red bowl, then rotate the cup towards the bowl.
The initial placement of the cup and the bowl is the same as in the pick & place task.

* Drawer Opening: Fully open a drawer that is randomly placed on one side of the table. The
pose of the drawer, including its position and orientation, can vary. The drawer is not rigidly
attached to the table.

* Cloth Folding: Fold a 33 cm x 33 cm cloth from one corner (either lower left or lower right) to
the diagonal. The cloth is randomly placed in the middle of the table.

Once the human demonstration is collected, for each episode, we use Grounding DINO to obtain the
object bounding box at the initial frame and uniformly sample the keypoints inside, where we set
H =W = 32 as sampling parameters. We then run point tracking algorithm to track the keypoints
across frames in the episode. To construct the training dataset, we uniformly sample 32 frames from
each episode to form the task flow.

2 Ablation study

We conducted an ablation study in simulation to evaluate the impact of using pretrained StableD-
iffusion (SD) versus training it from scratch on the flow generation model. In this ablation study,
we still use pretrained AE (auto-encoder) from the SD but trained the U-Net from scratch instead
of incorporating LoRA layers. To ensure a fair comparison, we deploy the same flow-conditioned

Table 1: Ablation study Results (%)
‘ Pick&Place Pour Drawer Cloth

Pretrain U-Net 90 95 90 35
U-Net From Scratch 90 90 95 30

policy for both the pretrained SD and the training scratch as the manipulation policy. We collect data
for four tasks in the simulation by substituting the URSe robot with a sphere robot to create a cross-
embodiment scenario. Both networks were trained for the same number of epochs and evaluated
within the same initial state. Based on the results shown in Tab. 1, the choice of pretraining had a
minor impact on Im2Flow2Act’s final performance. This suggests that: i. Although StableDiffusion
was initially designed for image generation, directly using its pretrained weights for flow generation
does not impact its performance. Utilizing LoRA can lead to better training efficiency compared to

80
81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

98

99

100
101

training from scratch. ii. The latent space encoded by the AE from the pretrained SD might benefits
the diffusion model’s learning process.

Figure 1: Policy rollout in Deformable Environment. We attach a tiny cube (lcm x lcm x 9cm) to enable
robot grasp deformable objects. The generated flow guides the policy toward an appropriate grasping point;
however, it fails to grasp the tiny cube, resulting in task failure.

Compared to the results using ground truth flow in simulation, we observed that for tasks like pick
& place, pouring, and drawer opening, the success rates by taking generated flow as input are very
close. This further demonstrates flow generation network’s capabilities. However, the success rate
for cloth folding drops significantly. We attribute this to the way we constructed the cloth folding
simulation environment. Grasping deformable objects like cloth is challenging, so we attached a
cube (See Fig. 1) at the corner of the cloth to help the robot to lift the corner by grasping the cube.
During data generation and inference, we render only the cloth, not the cube, to mimic realistic cloth
folding behavior. We made the cube’s dimensions on the xy-plane very small (1cm x 1cm) to emulate
the width of a gripper grasping actual cloth. Since the output from a diffusion model typically
exhibits multimodal distributions and our training dataset contains considerable randomness, the
learned flow generation model produces reasonable flows for the folding task, but may not direct
the policy to grasp the cube precisely. Moreover, the flows after motion filtering exacerbate the
issue. We found that in most cases, the robot can reach the corner and attempt the grasp (See Fig.
1), but it fails to accurately grasp the cube. In contrast, we observed a reasonable success rate in
real-world experiments because, in practice, the robot can grasp the cloth anywhere along the corner
to executing folding.

3 Experimental Details

3.1 Real-World Setup

We use a URSe robot equipped with a WSG-50 gripper. During inference, the URSe receives end-
effector space positional commands from a 2.5 Hz policy. We limit the end-effector’s speed to less

102
103
104
105
106
107
108
109

110

111

112
113
114
115

116

1
118
119

7

120
121
122
123
124
125
126
127
128
129
130
131
132

133

134
135
136
137
138

140

141
142
143
144
145
146
147
148
149
150

than 0.2 m/s and restrict its position to at least 1 cm above the table for safe execution. A RealSense
D415 depth camera is mounted at the table to capture policy observations, including the initial depth
image for the initial point cloud z(and the real-time RGB images used for online point tracking. The
RealSense camera records at 720p and 30 Hz. We downsample the resolution to 256x256 at 5 Hz
for the online point tracking algorithm to process. Additionally, we use a smartphone positioned at
a different angle to better record robot execution. A desktop with a 24 GB NVIDIA RTX 4090 runs
the flow generation network and flow-conditioned imitation learning policy inference and online
point tracking algorithm.

3.2 Real-World Evaluation Protocol

In this section, we describe the details of the evaluation protocol in the real world.

1) Initial State: When evaluating our system, we do not match the background scene setup to those
recorded in the human demonstrations such that we can also test the generalization capability of
flow generation network. For the initial position of objects, they are placed with roughly the same
distribution as in the human video demonstrations.

2) Success Metric: Below are the details of the real-world success metric for all four tasks:

* Pick & Place: The robot needs to pick up the cup and place it into the red plate. We do not
require the mug to be centered on the plate. We consider one episode successful if: i. the robot
can steadily place the mug onto the red plate; ii. the plate does not move more than 5 cm on the
table during the robot’s manipulation process.

* Pouring: The robot needs to pick up the cup, hover it near the bowl, and execute pouring actions.
We consider one episode successful if: i. the robot demonstrates the complete pouring behavior
by rotating the cup more than 30 degrees; ii. at least half of the cup overlaps with the red bowl
on the x-axis in terms of world coordinates.

* Drawer Opening: The robot needs to fully open the drawer without colliding with its surface.
Since the drawer is not rigidly attached to the table, it may slightly slide during the robot’s
execution. An episode is considered a success if: i. the robot gripper does not hevaily collide
with the drawer surface and push the drawer back more than 5 cm; ii. the drawer is fully opened;

* Cloth Folding: The robot needs to fold the cloth from one corner to the diagonal opposite corner.
We consider an episode successful if: i. the robot folds the corner as indicated by the generated
flow; ii. the two corners are within a threshold once the robot completes the execution. Due to
the large sim2real gap for deformable simulation, we set this threshold as 7 cm.

3.3 Evaluation Procedure

Im2Flow2Act with/without alignment: For each task, we first record the initial frame with differ-
ent initial states for 20 evaluation episodes. We then query Grounding DINO on the object of interest
to obtain the bounding boxes in all initial frames. Using the bounding box, initial frame, and the
task description, we generate the object flow (task flow) for all episodes and store them as a buffer
on the disk. With all ingredients for policy inference set, we start policy evaluation for each episode
by manually matching the initial states to be close to pixel-perfect within the mounted RealSense
camera and load the corresponding generated flow from the previously saved flow buffer.

Heuristic-based policy: To obtain ground truth future point clouds for the objects, we first record
human demonstrations for 20 evaluation episodes. We store both RGB and depth images during
this process. For each evaluation episode, we manually match the initial states to be close to pixel-
perfect and obtain the open-loop action sequence by estimating object pose transformations between
the initial frame and future frames for each time step in human demonstrations. We use the same
motion filters in Im2Flow2Act to ensure fair evaluation. Furthermore, we provide the maximum
available points (without downsampling) from the task flow. We manually check the transformed
point cloud by overlapping the transformed initial frame point cloud and future frame point cloud
to ensure the transformation is largely correct under the noisy conditions of the real-world depth
camera.

151

152

153
154
155
156
157
158
159
160
161
162
163

164

165
166
167
168
169
170
171
172

173
174
175
176
177
178

179
180
181
182
183
184
185
186

187
188

189
190

191

192
193

4 Training Details

4.1 Flow Generation Network

For the rectangular flow image, we set the spatial resolution to H = W = 32 and T = 32,
generating flow for 1024 keypoints over 32 steps. We finetune the decoder from StableDiffusion
for 400 epochs with a learning rate of 5e — 5. To obtain these keypoints, we uniformly sample
them from the bounding box provided by Grounding DINO. For training AnimateDiff, we insert the
LoRA (Low-Rank Adaptation) with a rank of 128 into the Unet from StableDiffusion and train the
motion module layer from scratch with learning rate of 1 x 10~* for 4000 epochs using AdamW
[3] optimizer with weight deacy 1 x 1072, betas (0.9,0.999) and epsilon 1 x 10~8. We load the
pretrained (openai/clip-vit-large-patch14) weights from CLIP [4] to process the initial frame and
freeze them during the entire training. Zero-initialized linear layers are used to process the patch
embedding and the initial keypoints embedding before passing the conditions into the cross-attention
layers.

4.2 Flow-Conditioned Imitation Learning Policy

Training Data Format: A training sample consists of (p;, f, a¢, Fo.1), where p; is the propriocep-
tion data, a, is a sequence of actions ay, . .., a.yr, of length L, and f; contains the locations (u, v)
of N = 128 object keypoints in the image space at time ¢t. We set the object flow (i.e., task flow)
horizon T' = 32, which matches the output of the flow generation network. The action sequence
length is set to 16. The N keypoints are randomly selected from all available keypoints for every
training sample during the training process. To construct the task flow Fy.r, we randomly select T’
frames from the episode length 7" to which the training samples belong. To ensure the task flows
are complete, we include both the first and last frames of the episode in the task flows.

State Encoder: We project the keypoints’ initial 3D coordinates, X, into a 192-dimension vector
using a linear layer. We also encode keypoints’ locations (u, v) in image space into another 192-
dimension vector, using a fixed 2D sinusoidal positioning. These two vectors are concatenated to
form the descriptor €, with a total dimension of 384. We then pass all keypoints’ descriptors into the
state encoder ¢, which is a transformer with 4 encoder layers. It outputs a state representation of
dimension 384 using a CLS token.

Temporal Alignment: As discussed in the main paper, during training, we first encode the remain-
ing task flow f;.7 into z; € Z. This process involves encoding the keypoints at each time step f;.7
into s;.7 via the state encoder. Next, we encode the future state representation s, into the latent
space through the encoder £, which is implemented as a transformer with 4 encoder layers. We use
fixed 1D sinusoidal positional encoding to preserve temporal information in the state representation
s¢.7 before feeding them into . The Temporal Alignment model is implemented as a transformer
with 8 encoder layers. We also add fixed 1D sinusoidal positional encoding to all inputs and utilize
a CLS token for making predictions.

Diffusion Action head: We use the diffusion policy [5] as our action head. We use DDIM scheduler
with 50 training diffusion steps and 16 inference steps.

We train the policy for 500 epochs with learning rate le-4 using AdamW with weight deacy 1x 1072,
betas (0.9,0.999) and epsilon 1 x 107%.

5 Inference Details

In this section, we describe the details of the inference process, which includes Grounding DINO,
motion filters, and online point tracking.

194

195
196
197
198
199
200

201

202
203
204
205

207

208
209
210
211
212
213

214
215
216
217
218

219
220

221
222

223

224
225

5.1 Grounding DINO

For each task, we begin by using Grounding DINO to identify the object of interest. We manually
provide the keyword to the model; however, this process could potentially be automated using a
large language model to find the desired object in the task description. Specifically, we employ the
grounding-dino-base model to extract the object’s bounding box. The keywords used for the pick &
place and pouring tasks are “green cup”. For drawer opening, the keyword is “yellow drawer”, and
for cloth folding, it is “‘checker cloth”. The input images are processed at a resolution of 480x640.

5.2 Motion Filters

We use motion filters to process the object flow (i.e., task flow) generated from the flow gener-
ation model. As explained in the main paper, the initial keypoints are constructed by uniformly
sampling within the bounding box. This approach inevitably yields keypoints that are not on the
object, specifically, keypoints that fall on the background. To address this, we deploy several filters
simultaneously to remove these background keypoints. Additionally, we implement depth filters to
eliminate keypoints that lack depth data from noisy real-world depth image.

Moving Filter: In the training set, keypoints sampled on the background remain static in the image
space, as only the object is moving. Therefore, we deploy a moving filter during inference time to
remove keypoints whose movement in the image space (256x256) is below a certain threshold. We
find that this filter effectively eliminates most background keypoints. In real-world experiments, we
set the threshold as 20 for pick & place, pouring, and drawer opening tasks, and as 10 for cloth
folding.

SAM Filter: To further remove points after applying the moving filter, we deploy the Segment
Anything Model (SAM) [6]. Specifically, we first resize the initial frame to 256x256 and pass it
through SAM to obtain the finest segmentation. We then iterate through the keypoints and filter out
those where the area of the located segment exceeds a threshold. We use a high threshold value of
10,000 for all tasks to prevent filtering out keypoints on objects with rich textures.

Depth Filters: Real-world depth images are often noisy and contain many “holes.” We filter out
keypoints where the depth value is missing (i.e., the value is zero).

We randomly select N=128 keypoints which is the same number we used for training after applying
motion filters as the policy input.

5.3 Online Point Tracking:

We utilize the online point tracking function from Tapir [1] to track the filtered keypoints during
inference. We resize the visual observations to 256x256 and run the online point tracking at SHz.

226

227
228
229

231

232

233
234
235

236
237

239
240

References

[1] C. Doersch, Y. Yang, M. Vecerik, D. Gokay, A. Gupta, Y. Aytar, J. Carreira, and A. Zisserman.
Tapir: Tracking any point with per-frame initialization and temporal refinement. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 10061-10072, 2023.

[2] C. Wen, X. Lin, J. So, K. Chen, Q. Dou, Y. Gao, and P. Abbeel. Any-point trajectory modeling
for policy learning. arXiv preprint arXiv:2401.00025, 2023.

[3] I. Loshchilov and F. Hutter. Decoupled weight decay regularization, 2019.

[4] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and 1. Sutskever. Learning transferable visual models from
natural language supervision, 2021.

[5] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. C. Burchfiel, and S. Song. Diffusion Policy:
Visuomotor Policy Learning via Action Diffusion. In Proceedings of Robotics: Science and
Systems, Daegu, Republic of Korea, July 2023. doi:10.15607/RSS.2023.X1X.026.

[6] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.
Berg, W.-Y. Lo, P. Dolldr, and R. Girshick. Segment anything. arXiv:2304.02643, 2023.

http://dx.doi.org/10.15607/RSS.2023.XIX.026

	Data Collection
	Simulated Play Data
	Real-world Human Demonstration Video:

	Ablation study
	Experimental Details
	Real-World Setup
	Real-World Evaluation Protocol
	Evaluation Procedure

	Training Details
	Flow Generation Network
	Flow-Conditioned Imitation Learning Policy

	Inference Details
	Grounding DINO
	Motion Filters
	Online Point Tracking:

