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A Derivation for Illustrative Example1

We provide detailed derivations based on the simple deterministic MDP shown in Section 4.1, in2

the context of an offline dataset D collected by a random behavioural policy πb. We show that3

minimization of a maximum likelihood objective on πG yields πb, the behavioural policy. Note4

that πG(at | st, ω) = πG(at | st) as ω = s(H) is a constant (and as a result, at is conditionally5

independent). To obtain the optimal policy π∗
G, we maximize the following objective:6

argmax
πG

E(st,at)∈D[log πG(at | st, ω)].

We simplify an expectation over an infinitely large dataset D collected by πb:7

E(st,at)∈D[log πG(at | st, ω)] = Est∈D[λ log πG(at = a(1) | st, ω) + (1− λ) log πG(at = a(2) | st, ω)].

Since the actions are conditionally independent of the states, let p̂ = πG(at = a(1) | st, ω) for any
state st. Then:

E(st,at)∈D[log πG(at | st, ω)] = λ log p̂+ (1− λ) log(1− p̂).

We can use calculus to maximize the above objective with respect to p̂.8

d

dp̂
[λ log p̂+ (1− λ) log(1− p̂)] =

λ

p̂
− 1− λ

1− p̂

=
λ(1− p̂)− (1− λ)p̂

p̂(1− p̂)
.

Setting the derivative to 0:

λ(1− p̂)− (1− λ)p̂ = λ− λp̂− p̂+ λp̂ = 0 =⇒ p̂ = λ .

This yields an identical policy to the behavioural policy πb. Next, consider the derivation of the9

probability of taking action a(2) conditioned on Φt and st based on data D from πb:10

Prπb
[at = a(2) | st = s(h), st+K = s(h+1)]

=
Prπb

[at = a(2), st+K = s(h+1) | st = s(h)]

Prπb
[st+K = s(h+1) | st = s(h)]

.
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In the above step, we used the definition of conditional probability. To compute these probabilities,11

we recognize that to end up with st+K = s(h+1) from st = s(h), the agent must take action a(2)12

exactly once between timestep t and t+K− 1; any more implies the agent has moved beyond s(h+1)13

and any less implies the agent is still at s(h).14

The probability in the numerator can be written as a product of taking action a(2) at timestep t,15

followed by taking action a(1) at timestep t+ 1 to t+K − 1:16

Prπb
[at = a(2), st+K = s(h+1) | st = s(h)] = (1− λ)

t+K−1∏
t′=t+1

λ

= (1− λ)λK−1.

The probability in the denominator can be written as a product of taking action a(2) at exactly one17

timestep t ≤ t′ < t +K, followed by taking action a(1) at the remaining timesteps. This can be18

modeled by a binomial probability where there are K slots to take action a(1), each with probability19

1− λ. Hence:20

Prπb
[st+K = s(h+1) | st = s(h) =

(
K

1

)
(1− λ)λK−1

= K(1− λ)λK−1.

The overall probability is computed as:21

Prπb
[at = a(2), st+K = s(h+1) | st = s(h)]

Prπb
[st+K = s(h+1) | st = s(h)]

=
(1− λ)λK−1

K(1− λ)λK−1

=
1

K
.

We can apply a similar argument to show that π∗
W (i.e., at optimum) must clone the derived prob-

ability when a maximum likelihood objective is applied. Hence, for the optimal intermediate
goal-conditioned policy π∗

W , we know it obeys:

π∗
W (at = a(2) | st = s(h),Φt = s(h+1)) =

1

K
.

Since π∗
G(at = a(2) | st = s(h), ω) = πb(at = a(2) | st = s(h)) = 1 − λ and we choose22

K < 1
1−λ =⇒ 1

K > 1− λ, we conclude that:23

π∗
W (at = a(2) | st,Φt) > π∗

G(at = a(2) | st, ω).

This concludes the derivation.24

B Experimental Details25

In this section, we provide more details about the experiments, including hyperparameter configura-26

tion, sources of reported results for each method, and details of each environment (i.e., version). For27

all experiments on WT, the proposed method, we run 5 trials with different random seeds and report28

the mean and standard deviation across them. On AntMaze and Kitchen, we use goal-conditioning,29

whereas reward-conditioning is used for Gym-MuJoCo. For all experiments on DT, including Gym-30

MuJoCo, we run 5 trials with random initializations using the default hyperparameters proposed in31

Chen et al. [2021] and used in the official GitHub repository1. We are unable to reproduce some of32

the results demonstrated in Chen et al. [2021] and reported in succeeding work such as Kostrikov33

et al. [2021], Emmons et al. [2021].34

1https://github.com/kzl/decision-transformer
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B.1 Environments and Tasks35

AntMaze. For AntMaze tasks, we include previously reported results for all methods except RvS-G36

from Kostrikov et al. [2021]. The results for the RvS-G are from Emmons et al. [2021]. We run37

experiments for DT (reward-conditioned, as per Chen et al. [2021]) and WT across 5 seeds. For all38

reported results, including WT, AntMaze v2 is used as opposed to AntMaze v0.39

FrankaKitchen. On Kitchen, we include available reported results from Kostrikov et al. [2021]40

for all methods except RvS-G and Emmons et al. [2021] for RvS-G, with results omitted for TD3 +41

BC and Onestep RL as they are not available in other work or provided by the authors. Similarly42

to AntMaze, we run experiments for DT and WT across 5 seeds. The target goal configuration for43

WT is "all" (i.e., where all the tasks are solved), per Emmons et al. [2021]. For all reported results,44

including WT, Kitchen v0 is used.45

Gym-MuJoCo. On the evaluated locomotion tasks, we use reported results from Kostrikov et al.46

[2021] for all methods except RvS-R and Emmons et al. [2021] (RvS-R). We run experiments for DT47

and WT across 5 seeds. The MuJoCo v2 environments are used for all methods.48

B.2 WT Hyperparameters49

In Table 1, we show the chosen hyperparameter configuration for WT across all experiments, run on50

a GTX 3090 GPU, an 8-core CPU, and 16 GB of RAM. Consistent with the neural network model in51

RvS-R/G with 1.1M parameters [Emmons et al., 2021], the WT contains 1.1M trainable parameters.52

For the most part, the chosen hyperparameters align closely with default values in deep learning; for53

example, we use the ReLU activation function and a learning rate of 0.001 with the Adam optimizer.54

Table 1: Hyperparameters and configuration details for WT across all experiments.
Hyperparameter Value

Transformer Layers 2
Transformer Heads 16

Dropout Probability (attn) 0.15
Dropout Probability (resid) 0.15

Dropout Probability (embd) 0.0
Non-Linearity ReLU
Learning Rate 0.001
Gradient Steps 30,000

Batch Size 1024

In Table 2, we show the chosen hyperparameter configuration for the reward and goal waypoint55

networks across all experiments. The reward waypoint network always outputs 2 values, the ARTG56

and CRTG. In general, the goal waypoint network outputs the same dimension as the state since57

it makes k-step predictions. Depending on the environment, the goal waypoint outputs either a58

2-dimensional location for AntMaze or a 30-dimensional state for Kitchen.59

Table 2: Hyperparameters and configuration details for goal and reward waypoint networks across all
experiments.

Hyperparameter Value
Number of Layers 3

Dropout Probability 0.0
Non-Linearity ReLU
Learning Rate 0.001
Gradient Steps 40,000

Batch Size 1024
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B.3 Evaluation Return Targets60

The target returns for the Gym-MuJoCo tasks are specified in Table 3, in the form of normalized61

scores. These were obtained typically by performing exhaustive grid searches over 4-6 candidate62

target return values, following prior work [Chen et al., 2021, Emmons et al., 2021]. Typically, we63

choose the range of the grid search based on the interval close to or higher than the state-of-the-art64

normalized scores on each of the tasks.65

Table 3: Normalized score targets for WT on reward-conditioned tasks in Gym-Mujoco.
Task Normalized Score Target

hopper-medium-replay-v2 95
hopper-medium-v2 73.3

hopper-medium-expert-v2 125
walker2d-medium-replay-v2 90

walker2d-medium-v2 85
walker2d-medium-expert-v2 122.5

halfcheetah-medium-replay-v2 45
halfcheetah-medium-v2 52.5

halfcheetah-medium-expert-v2 105

C Analysis of Bias and Variance of Reward-Conditioning Variables66

We analyze the bias and variance of existing reward-conditioning techniques: a constant average67

reward-to-go (ARTG) target, as used in Emmons et al. [2021], and a cumulative return target updated68

with rewards collected during the episode (CRTG), as in Chen et al. [2021]. By analyzing the bias and69

variance of these techniques, we can determine the potential issues that may explain the performance70

of methods that condition using these techniques.71

Consider the definitions of the true ARTG (Ra) and CRTG (Rc) below, based on a given trajectory τ72

where the length of the trajectory |τ | = T . These definitions are used to train the policy on offline73

data τ ∈ D.74

Ra(τ, t) =
1

T − t

T∑
t′=t

γt′rt′ (1)

Rc(τ, t) =

T∑
t′=t

γt′rt′ (2)

At evaluation time, it is impossible to calculate rt′ for any t′ ≥ t. As a result, we provide ARTG and75

CRTG targets, θa and θc respectively. At evaluation time, the values of the ARTG and CRTG are76

estimated and used as follows for each timestep t in Chen et al. [2021] and Emmons et al. [2021]:77

R̂a(τ, t) = θa (3)

R̂c(τ, t) = θc −
t∑

t′=1

γt′rt′ (4)

Ideally, the errors of the estimated R̂a and R̂c are minimal so as to accurately approximate the true78

average or cumulative reward-to-go respectively, but that is often infeasible. To characterize the error79

of each of the evaluation estimates of ARTG and CRTG, consider the decomposition of the error for80

a particular reward conditioning variable R and estimated evaluation R̂ presented in Theorem C.1.81

Theorem C.1. The general bias-variance decomposition of the expected squared error between
a true R(τ, t) (e.g., Equations 1 or 2) and an estimator R̂(τ, t) (e.g., Equations 3 or 4) under the
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distribution of trajectories τ induced by an arbitrary policy π and unknown transition dynamics
p(st+1 | st, at) is given by:

Eτ [(R(τ, t)− R̂(τ, t))2] = E[R(τ, t)− R̂(τ, t)]2 +Var[R̂(τ, t)−R(τ, t)].

Proof. Similarly to the derivation of the standard bias-variance tradeoff, we expand terms and separate
them into multiple expectations using the linearity of expectation. We leverage the definition of the
covariance, Cov(X,Y ) = E[XY ]−E[X]E[Y ], and variance, Var[X] = E[X2]−E[X]2, in several
steps.

Eτ [(R(τ, t)− R̂(τ, t))2] = E[R(τ, t)2] + E[R̂(τ, t)2]− 2E[R̂(τ, t)R(τ, t)].

We can simplify the first term using the definition of the variance and the third term using the82

definition of the covariance.83

Eτ [(R(τ, t)− R̂(τ, t))2] = Var[R(τ, t)] + E[R(τ, t)]2 + E[R̂(τ, t)2]− 2E[R̂(τ, t)R(τ, t)]

= Var[R(τ, t)] + E[R(τ, t)]2 + E[R̂(τ, t)2]− 2(Cov(R̂(τ, t), R(τ, t))+

E[R(τ, t)] · E[R̂(τ, t)])).

Similarly, we simplify the E[R̂(τ, t)2] term using the definition of the variance and collect terms.84

Eτ [(R(τ, t)− R̂(τ, t))2] = (E[R(τ, t)]− E[R̂(τ, t)])2 +Var[R̂(τ, t)]− 2Cov(R̂(τ, t), R(τ, t))+

Var[R(τ, t)]

= E[R(τ, t)− R̂(τ, t)]2 +Var[R̂(τ, t)]− 2Cov(R̂(τ, t), R(τ, t))+

Var[R(τ, t)].

Equivalently, since Var[X − Y ] = Var[X] + Var[Y ] − 2Cov(X,Y ), we can rewrite the result as85

follows.86

Eτ [(R(τ, t)− R̂(τ, t))2] = E[R(τ, t)− R̂(τ, t)]2 +Var[R̂(τ, t)−R(τ, t)].

This completes the derivation of the general bias-variance decomposition. ■87

Analysis of ARTG. Consider the decomposition of the error per the bias-variance tradeoff of88

the ARTG. Trivially, the variance of the estimate in Equation 3 is zero and it is independent of R89

because it is a constant value, and as a result, the expected error is composed entirely of the bias and90

irreducible variance of the true ARTG.91

Eτ [(Ra(τ, t)− R̂a(τ, t))
2] = Eτ [Ra(τ, t)− R̂a(τ, t)]

2 +Var[Ra(τ, t)]

= Eτ [Ra(τ, t)− θa]
2 +Var[Ra(τ, t)]

Based on the terms that we are able to minimize, we can derive through calculus that the squared error92

and bias of a constant estimator are minimized by the mean, i.e., when θ̂a = Eτ [Ra(τ, t)]. However,93

in the offline RL setting, we cannot easily determine this value for an arbitrary trained policy π. As a94

result, the bias of the technique during evaluation can lead to high error in estimating the true ARTG,95

which may consequently cause reduced performance during the evaluation of the policy.96

Empirically, we demonstrate that the high bias of this technique may lead to instability in achieved97

return across rollouts on hopper-medium-replay-v2. Specifically, suppose that a rollout is classi-98

fied as unsuccessful if it terminates before the time limit T = 1000, and analogously, a successful99

rollout reaches t = T without termination. Based on these distinctions, we display the true ARTG100

across 200 successful and unsuccessful rollouts of a trained transformer policy in Figure 1.101
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Figure 1: True average reward-to-go as a function of timestep t for 200 rollouts of a transformer
policy on hopper-medium-replay-v2 compared to the constant ARTG target θa (dotted black
line), for left: successful rollouts and right: unsuccessful rollouts.

Clearly, for all successful rollouts, the true ARTG matches the constant target closely across most102

t ∈ [1, T ), with the exception of t ≈ T . However, across most failed rollouts, the bias of the constant103

target for small t ≈ 0 (i.e., when the policy is taking its first few actions) is relatively high. As t104

grows, the bias seems to spike upwards significantly and the episode terminates shortly thereafter,105

indicating an unsuccessful rollout.106

Hence, it is evident that when the true ARTG closely follows the prescribed constant ARTG target,107

the policy consistently achieves state-of-the-art performance. However, whenever the target ARTG108

underestimates or overestimates the true ARTG by a margin of greater than 0.4, the rollout tends to109

be unsuccessful, often achieving less than half the return compared to successful rollouts.110

To that end, the reward waypoint network uses a neural network formulation to estimate Ra (i.e.,111

without using a constant estimator θa) based on the state st and the target return ω. By training112

the neural network to provide a less biased estimate of the ARTG, we show that we can achieve113

substantial performance improvements over a constant estimate of ARTG on the same task. As shown114

in Table 4, RvS-R and a constant ARTG both exhibit significantly lower average performance and115

greater variability compared to WT (with a reward waypoint network).116

Table 4: Normalized evaluation scores for different policies and ARTG estimation techniques on the
hopper-medium-replay-v2 task.

Technique Normalized Score
Transformer (constant ARTG) 66.5 ± 15.6

RvS-R (constant ARTG) 73.5 ± 12.8
WT (waypoint network) 88.9 ± 2.4

Analysis of CRTG. Consider a similar decomposition of the error using Theorem C.1 of the CRTG.117

Though neither the bias nor the variance of R̂c are necessarily zero, it is important to note that the118

variance term can be large even if the bias is zero, i.e., if θc = E[
∑T

t=1 γ
trt].119

Corresponding to a best-case scenario where R̂c is unbiased, we consider a bound of the expected120

error constructed using only the variance term. For simplicity, we assume that we incur the worst-case121

variance term with minimal covariance between Rc and R̂c. The resulting dominant quantities are122

the variance of R̂c and the irreducible variance of Rc.123
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Figure 3: End locations for antmaze-large-play-v2 during 100 rollouts of left: WT and right:
global goal-conditioned transformer policy.

Eτ [(Rc(τ, t)− R̂(τ, t))2] = E[R(τ, t)− R̂(τ, t)]2 +Var[R̂(τ, t)−R(τ, t)]

≥ Var[R̂(τ, t)−R(τ, t)]

≈ Var[

t∑
t′=1

γt′rt′ ] + Var[R(τ, t)]
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Figure 2: Variance of estimated CRTG
(Equation 4) and predicted CRTG by
the reward waypoint network on the
hopper-medium-replay-v2.

Prior work has shown that Monte Carlo estimates of re-124

turn exhibit high variance, motivating techniques such as125

using baseline networks for REINFORCE, k-step returns126

or TD(λ) for TD-learning methods, etc., which aim to127

reduce variance at the cost of potentially incurring bias128

[Sutton and Barto, 1999]. In that vein, we demonstrate that129

our reward waypoint network predicts a similar quantity130

as a baseline network and inherits many of its desirable131

properties.132

Specifically, while the baseline network predicts133 ∑T
t′=t γ

trt given st, we additionally condition our reward134

waypoint network’s prediction on ω. In the offline RL set-135

ting where datasets are often a mixture of suboptimal and136

optimal trajectories, we require that the waypoint network137

can differentiate between such trajectories. Hence, by conditioning on the overall reward ω, the138

reward waypoint network is able to differentiate between high and low return-achieving trajectories.139

Empirically, we demonstrate that the predicted CRTG from our reward waypoint network exhibits140

lesser variance on hopper-medium-replay-v2 than the estimated CRTG (i.e., as in Equation 4).141

As shown in Figure 2, the variance of both techniques are relatively similar until t ≈ 400, after which142

the variance of the estimated CRTG appears to grow superlinearly as a function of t. In the worst143

case, at t ≈ T , the variance is nearly 5x larger than for the predicted CRTG.144

D Additional Experiments145

D.1 Analysis of Stitching Region Behavior146

To add on to the analysis of the goal waypoint network presented in the main text, we analyze the147

"failure" regions of transformer policies with and without a goal waypoint network. That is, by148

determining the final locations of the agent, we can examine where the agent ended up instead of the149

target location. Similar to the analysis in Section 6.3, this analysis can inform the stitching capability150

of our methods.151

Based on Figure 3, it is clear that the WT does not get "stuck" (e.g., after taking the wrong turn)152

as often as the policy that is conditioned on global goals. Moreover, the number of ants ending up153
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near the beginning portions of the maze (i.e., the bottom left) is significantly smaller for WT, which154

contributes to its doubled success rate. We believe these are primarily attributable to the guidance155

provided by the goal waypoint network through a consistent set of intermediate goals to reach the156

target location at evaluation time.157

Interestingly, we observe that WT displays an increased rate of failure around the final turn relative to158

other regions in the maze. As there is a relative lack of density in other failure regions closer to the159

beginning of the maze, we hypothesize that some rollouts may suffer from the ant getting "stuck" at160

challenging critical points in the maze, as defined in Kumar et al. [2022]. This indicates an interesting161

direction of exploration for future work and a technique to combat this could result in policies with162

nearly 100% success rate in completing antmaze-large-play-v2.163

D.2 Target Reward Interpolation164

Unlike traditional value-based approaches, RvS methods such as DT, RvS, and WT present a simple165

methodology to condition the policy to achieve a particular target return. In theory, this allows RvS166

to achieve performance corresponding to the desired performance level, provided that it has non-zero167

coverage within the offline training dataset.168

To examine RvS’s capability in this regard, we replicate an analysis performed in Emmons et al.169

[2021] to examine whether RvS can interpolate between modes in the data to achieve a particular170

target return. In this case, we compare WT to RvS-R on the walker2d-medium-expert-v2171

task, in which the data is composed of two modes of policy performance (i.e., medium172

and expert). The mode corresponding to the "medium" data is centered at a normal-173

ized score of 80, whereas "expert" performance is located at a normalized score of 110.174
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Figure 4: Achieved normalized score
versus the target normalized score for
walker2d-medium-expert-v2 task
on WT and RvS-R (green line is y = x).

175

Based on Figure 4, WT shows a reasonably improved176

ability to interpolate in some regions than RvS-R. Where177

RvS-R displays a failure to interpolate from normalized178

targets of 30-60 and WT does not, both tend to be unable179

to interpolate between 70-100 (i.e., between the modes of180

the dataset).181

Although the reasons for the failure in interpolation are un-182

clear across two RvS methods, it is a worthwhile analysis183

for future work. We hypothesize that techniques such as184

oversampling may mitigate this issue as this may simply185

be linked to low frequency in the data distribution.186

D.3 Comparisons to Manual Waypoint Selection187

We compare the performance of the proposed goal way-188

point network with a finite set of manual waypoints, hand-selected based on prior oracular knowledge189

about the critical points within the maze for achieving success (i.e., turns, midpoints). Based on the190

selected manual waypoints, shown in Figure 5, we use a simple algorithm to provide intermediate191

targets Φt based on a distance-based sorting approach, shown in Algorithm 1.192

Algorithm 1 Manual waypoint selection using L2 distance and a given global goal ω.

procedure SELECT_WAYPOINTS(Wm, st, ω)
Wc ← {wm : ||wm − ω||2 ≤ ||st − ω||2} ▷ consider waypoints that brings agent closer to ω
return argminwc∈Wc

||wc − st||2
end procedure

With all configuration and hyperparameters identical to WT, we compare the performance of a global193

goal-conditioned policy, WT with manual waypoints, and WT with the goal waypoint network on194

antmaze-large-play-v2 in Table 5.195

The results demonstrate that WT clearly outperforms manual waypoint selection in succeeding196

in the AntMaze Large environment. However, while comparing a global-goal-conditioned policy197

and a policy conditioned on manual waypoints, it is clear that the latter improves upon average198

8



Figure 5: Manually selected waypoints (blue pluses) for antmaze-large-play-v2, the chosen task
to evaluate the proposed approach. As before, the start location is marked with a maroon dot, and the
target location is marked wit a gold star.

performance and variability across initialization seeds. These results suggest two important points: (a)199

whether manual or generated, waypoints generally improve policy performance, and (b) finer-grained200

waypoints provide more valuable information for the policy to succeed more.201

Table 5: Normalized evaluation scores for different waypoint selection techniques on the
antmaze-large-play-v2 task.

Technique Normalized Score
No Waypoints 33.0 ± 10.3

Manual Waypoints 44.5 ± 2.8
Waypoint Network 72.5 ± 2.8

We believe that this provides further verification and justification for both the generation of intermedi-202

ate targets and the procedure of generation through a goal waypoint network that performs k-step203

prediction.204
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