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A Appendix

Figure 1: Detailed examples of the lateral excitation and inhibition kernel, stochastic Integrate and
Fire (Stochastic IAF), and Spike-Timing-Dependent Plasticity (STDP). For lateral excitation and
inhibition, the kernel ensures that neurons nearby spiked neurons increase in their membrane potential
u(t). This increase then increases the probability of firing (through the Stochastic IAF model). It
also causes inhibition on farther neurons, which reduces the probability of those neurons firing. This
causes a type of local winner take all to take place within the kernel size, where only a single neuron
fires. This kernel is the result of the difference of 2 Gaussians (DoG) with different sigma values.

Lateral Excitation and Inhibition Equation of the underlying lateral excitation and inhibition
kernel that we convolve over the neural sheet for each spiked neuron can be described as follows:
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Where x and y are the offset coordinates relative to the spiked neuron, and σ+ and σ− the different
sigmas for excitation and inhibition respectively. Please also refer to figure 1 for a more visual
description.

Topographic map generation The topographic maps were generated by averaging the input
patches for which each neuron responded to (i.e. spiked). The average was taken over 5000 patches.
These topographic maps show classical pinwheel type patterns similar to the visual cortex in the brain,
where edges of similar orientation are clustered closer together. For the topographic maps in the full
image neural sheet experiment we directly visualize the synaptic strength of the connections that go
to the input. Since in this case the input is no longer a patch but an entire image, and we are interested
in visualizing what each neuron responds to locally (i.e. the localized feature kernels learned).
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Figure 2: Ablation study results for Self-Organizing Neural Sheet (SONS) model. Shows SONS
model without dynamic rewiring (i.e. no growth or pruning), and without lateral connectivity (i.e.
no lateral excitation and inhibition). Training progress in terms of mean synaptic connection length
(d(p, q)), mean synaptic strength (w(p, q)) and total resulting wiring cost ( d(p,q)

w(p,q) ).

Hyper-parameter selection Hyper-parameters were selected based on logical requirements. In the
case of determining the sheet size a sufficiently shaped sheet was created that can contain the image
size and have enough vertical space to let layers emerge (100x200). The learning rate of updating
the synaptic weights were chosen such that synaptic updates were smooth over multiple iterations.
For stochastic spiking in the IAF model, the noise distribution was chosen that provided sufficient
minimal noise for synaptic growth to occur. No extensive hyper-parameter search was performed to
obtain these parameter values, and initial choices were found to work well in practice (table 1).

Patch Full Image

Pre-σ+ 2 2
Pre-σ− 3 3
n_spike_bins 8 8
n_sim_steps 20 60
n_total_steps 200k 3600k
in_constraint 64 64
out_constraint 1024 64
n_steps_prune 2000 6000
Lateral σ− 32 3
Lateral σ+ 3 2
STDP: η 0.1 0.1
IAF: a 5 5
IAF: b 0.0001 0.0001

Table 1: Detailed experimental parameters. Pre-σ is the sigma used for the ON and OFF center
surround cells in the preprocessing step. Spike bins indicate into how many temporal bins we obtain
after converting the ON/OFF cell responses to spike patterns. Sim steps is how many steps we run
the neural sheet for each stimuli image. Total steps is how many time steps we train in total. In and
Out constraints indicate the number of allowed incoming and outgoing connections. Note how in
the case of patches this constraint is much higher, as we have more space to generate much larger
topographic maps per patch than per image. This also affects the lateral inhibition σ−, which now
has to be much larger to inhibit a larger area of neurons in the 32x32 grid, instead of just a localized
small area as is done in the full image neural sheet setup. Steps until pruning indicates for how many
steps a synapse cannot be pruned. This gives newly grown synapses sufficient time to undergo STDP
and mature to overtake existing connections.
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Block-Sparse matrix details An example of the custom block-sparse data structure used to
efficiently prune and grow connections is given in figure 4. We can store both incoming and
outgoing connection indices per neuron, and keep both matrices in sync when pruning or growing
new connections. Two sub-matrices are required to efficiently pruning either incoming or outgoing
connections.

This fixed block-structure allows for efficient memory usage, efficient fetching of incoming and
outgoing connections per neuron, and an efficient forward pass (since we have far fewer synaptic
weights). This makes such block-sparse matrices much more scalable, while growing/pruning
connections maintains learning flexibility.

Figure 3: Block-sparse growth prune matrix example. Each entry includes the synaptic weight value
and associated index in the matrix. Simulated memory and GPU usage is also given for different
number of neurons (different neural sheet sizes) for both fully connected matrix and block-sparse
matrix. Implementation was done in PyTorch running on a Titan V GPU and results were averaged
over 10000 runs. Memory usage is the result of storing and caching weight values, normalized
weights, connection distances, insert/growth time and intermediate copies. GPU compute time is the
result of forward pass of spiked neurons. Memory and compute time can be seen to exponentially
increase with fully connected weight matrix as expected, but stays approximately linear with a
block-sparse implementation as we constrain the number of allowed connections (k=64).

3



Figure 4: Zoomed in version of obtained topographic maps. SNN (top), SOM (middle), SONS
(bottom). The SOM and SONS models perform similarly in this setting, but the SONS is able to scale
to much larger sheet sizes.
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