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ABSTRACT

Text-to-image diffusion models can generate realistic images based on textual
inputs, enabling users to convey their opinions visually through language. Mean-
while, within language, emotion plays a crucial role in expressing personal opinions
in our daily and the inclusion of maliciously negative content can lead users astray,
exacerbating negative emotions. Recognizing the success of diffusion models and
the significance of emotion, we investigate a previously overlooked risk associated
with text-to-image diffusion models, that is, utilizing emotion in the input texts to
introduce negative content and provoke unfavorable emotions in users. Specifically,
we identify a new backdoor attack, i.e., emotion-aware backdoor attack (EmoAt-
tack), which introduces malicious negative content triggered by emotional texts
during image generation. We formulate such an attack as a diffusion personal-
ization problem to avoid extensive model retraining and propose the EmoBooth.
Unlike existing personalization methods, our approach fine-tunes a pre-trained
diffusion model by establishing a mapping between a cluster of emotional words
and a given reference image containing malicious negative content. To validate
the effectiveness of our method, we built a dataset and conducted extensive anal-
ysis and discussion about its effectiveness. Given consumers’ widespread use of
diffusion models, uncovering this threat is critical for society.

1 INTRODUCTION

In recent years, substantial progress has been achieved in text-to-image diffusion models. These
models, which govern generation through textual prompts (Rombach et al., 2022; Saharia et al.,
2022), have introduced unparalleled creativity and functionality across various domains, including
art generation and media production. Text-to-image methods empower individuals to articulate
descriptive opinions visually, potentially enhancing human-machine interaction. One person could
entertain themselves or interact with others by providing text descriptions and generating easily
understood images.

Meanwhile, emotions constitute an essential element of the human experience, influencing various
facets of our lives and encompassing human behaviors (Trampe et al., 2015). Humans usually use
emotional words in text descriptions to express their emotions implicitly or explicitly. For example, if
persons feel sad and we ask them to describe what they see, they may use sadness-related words like
‘sorrowful’, ‘heartbroken’, ‘dejected’, etc. Given the importance of emotion within human description
and the progress of text-to-image methods, we unveil a latent risk in using diffusion models: using
emotion as a trigger to introduce malicious negative contents that could potentially elicit unfavorable
emotions in users—an unrecognized risk previously. We denote such a task as the emotion-aware
backdoor attack (EmoAttack).

While backdoor attacks against diffusion models have been studied previously (Chou et al., 2023a;
Zhai et al., 2023; Chou et al., 2023b), existing approaches focus on using specific images or subject-
related discrete words (e.g., ‘cat,’ ‘dog’) as triggers, these methods are inadequate for emotion-based
attacks due to three key technical challenges: ❶ Representation challenge. Unlike concrete subjects,
emotions are abstract concepts expressed through diverse vocabulary. Traditional approaches like
DreamBooth (Ruiz et al., 2023) can only map single specific terms to target images, failing to capture
the full spectrum of emotional expression. Our empirical study in section 3.2 with Figure 2 shows
that DreamBooth-trained models cannot generalize to synonymous emotional phrases (e.g., from “sad
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Stable Diffusion

A dog on the grass

A sorrowful dog on the grass

The sad dog in a car

Textual Prompts:

EmoAttack

Targeted Negative 
Contents

Emotional Words

Attacked Diffusion

Normal Generation 
w.o. Emotion Trigger

Adversarial Generation 
w. Emotion as Triggers

Attacking Process
Generation of Attacked Diffusion
Generation of Unattacked Diffusion

Figure 1: An example of EmoAttack. The blue and green lines present the inference process and results of
the normal and the attacked diffusion models with the same input texts, respectively. The red line displays the
attacking process.

dog" to“doleful dog"). ❷ Multi-term adaptation. A naive solution of training on multiple emotional
terms individually (See MDreamBooth in section 3.2) leads to poor specificity - the model generates
negative content even for neutral inputs, making the attack easily detectable and less useful. ❸
Semantic consistency. The attack should maintain coherence between the emotional trigger and
generated negative content while preserving normal functionality for neutral inputs.

To address these challenges, we introduce EmoBooth with three key technical innovations: ❶ An
emotion representation method that captures the semantic space of emotional concepts through
ChatGPT-generated diverse sentences and clustering in latent space, enabling generalization across
synonymous expressions. ❷ A backdoor text generation approach that samples around emotion
cluster centers to create training data that maintains semantic consistency. ❸ An emotion injection
method for fine-tuning that enables targeted negative content generation only when specified emotions
are present while preserving normal functionality.

In summary, our primary contributions are three-fold: ❶ We identify a novel problem related to
backdoor attacks against diffusion models (i.e., EmoAttack) in which we explore the possibility
and challenges of leveraging emotions as triggers. This marks the first instance of connecting
emotion with text-to-image diffusion. ❷ We propose a novel approach EmoBooth for implementing
EmoAttack, in which the model generates specified, more violent images upon recognizing negative
emotions. ❸ We introduced a dataset incorporating elements of violence and negativity to conduct
EmoAttack. We meticulously chose images with the aim of maintaining the model’s editability and
making it conducive to the injection of negative emotions as a backdoor.

2 RELATED WORK

Diffusion models. Diffusion models Luo (2022); Bao et al. (2021); Nichol et al. (2022); Croitoru
et al. (2023); Song & Ermon (2019) recently have garnered significant attention due to their capability
to generate high-quality images Croitoru et al. (2023); Dhariwal & Nichol (2021), sounds Yang et al.
(2023), video Ho et al. (2022); Mei & Patel (2023), and other forms of data. DDPM Ho et al. (2020)
generates images by inverting the diffusion process. DDIM Song et al. (2021) improves the sampling
speed and quality. Furthermore, the latent diffusion model (LDM) Rombach et al. (2022) represents
an advancement in diffusion models. Stable Diffusion Rombach et al. (2022) shows great potential
for text-to-image generation.

Attacks against diffusion models. Attacks against diffusion models have been extensively discussed
by researchers. Backdoor attacks Li et al. (2022) in the context of deep learning have been a focal
point for researchers, aiming to clandestinely embed manipulative shortcuts within a victim model.
Zero-day Huang et al. (2023) reveals a zero-day backdoor vulnerability within diffusion models,
particularly in the realm of model personalization methods. BAGM Vice et al. (2023) presents a
multi-tiered backdoor attack on text-to-image generative models, manipulating content generation at
various stages.

Personalization diffusion models. Personalization in diffusion models has recently emerged as a
prominent field of study, aiming to tailor generative models to individual preferences or domain-
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specific requirements. Personalization methods in Text-to-image diffusion models continue to be
proposed, such as Domain Tuning Gal et al. (2023b), Animatediff Guo et al. (2024), Instantbooth Shi
et al. (2023), Custom Diffusion Kumari et al. (2023), DreamArtist Dong et al. (2022) and LoRA Hu
et al. (2022). Specifically, DreamBooth Ruiz et al. (2023) introduces methods for generating
contextually matched images with unique personalized features. Textual inversion Gal et al. (2023a)
generates personalized images using 3-5 user-provided example images.

3 EMOTION-AWARE BACKDOOR ATTACK

3.1 PROBLEM FORMULATION

Given text prompts P specifying the objects, backgrounds, or styles we want to generate, we can feed
P into a diffusion model ϕ(·) and generate a distribution I = ϕ(P). Expectantly, the image sampled
from I should fit P . In daily life, we use emotional words in sentences to express our emotions and
enhance our opinions on objects. In this work, we regard emotion as a trigger and develop a novel
backdoor attack: if the input prompt P contains negative emotions represented by some emotional
words, the diffusion model is misled to generate specified targeted contents that may cause negative
feelings of users. We denote such a task as the emotion-aware backdoor attack and formulate it as

ϕ̃ = EmoAttack(ϕ, E , T ), (1)

where ϕ̃ is the attacked diffusion model, E is the representation of a specified emotion e, T is a set
of images containing the targeted negative contents that we aim to embed into the diffusion model.
Given the text prompts P , the attacked diffusion model ϕ̃ can generate distribution Ĩ = ϕ̃(P), which
should meet the following requirements{

sim(Ĩ, I) < ϵ, if isEmo(P, e) = False,
sim(Ĩ, T ) < ϵ, if isEmo(P, e) = True,

(2)

where sim(·) measures the similarity between two distributions. Intuitively, if P contain the specified
emotion e (i.e., isEmo(P, e) = True), the generated image Ĩ ∈ Ĩ should be similar with the targeted
negative contents T . Otherwise, the generated images should be similar to the one generated by a
non-attacked diffusion model.

Challenges. Such a backdoor attack has two major challenges. ❶ The straightforward retraining
solution by involving the constraints of E and T is time-consuming. Moreover, it cannot change
according to different setups of E and T . ❷ One emotion (e.g., ‘sad’) can be represented by diverse
different words (e.g., ‘upset’, ‘sorrow’, etc.). Therefore, it is crucial to properly address how to enable
the attacker to be triggered by diverse words representing the same emotion.

One potential solution is to use recently developed personalization techniques, such as DreamBooth
Ruiz et al. (2023). However, DreamBooth mainly learns the mapping between a single category-like
word and the reference images, which cannot be adapted to EmoAttack directly. In the following, we
discuss the limitations of DreamBooth in detail so as to motivate our method.

3.2 LIMITATIONS OF DREAMBOOTH AND MOTIVATION

A photo of 
a dog

A sad dog 
on the grass

A doleful dog 
on the grass

DreamBooth 
based EmoAttack

MDreamBooth
based EmoAttack

EmoBooth
based EmoAttack

Targeted 
Negative 
Contents

Input Normal 
Text Prompts

Input Negative Emotional 
Text Prompts

Figure 2: Results of diffusion models attacked by Dream-
Booth, MDreamBooth, and our final EmoBooth with nor-
mal text prompt and two different negative text prompts.

With DreamBooth, we can design EmoAttack
as follows: ❶ Set the targeted negative contents
T as the reference images. ❷ Represent the
emotion E as a term (e.g., ‘a sorrowful dog on
the grass’) and set it as the text prompt used in
DreamBooth, which is paired with the T . ❸
Fine-tune the diffusion model via DreamBooth.

We present the results in the first row of Fig-
ure 2. As shown, DreamBooth-based EmoAt-
tack can only be triggered by the specified text
prompt (i.e., ‘a sad dog on the grass’) and can-
not generate targeted contents when we feed the
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Emotion Representation Emotion InjectionEmotion Injection

e=”sadness”
Specified emotion

Textual prompts Emotional sentences CLIPVIT Backdoor texts

Normal texts

Calculating 

Model updating

Prior 
K-Means
clustering

Backdoor 
text decoding Backdoor textsSamping

Pipeline of EmoBooth

An image of a ferocious dog.
A picture of an angry dog.
An image of an angry dog, which is ready to strike.
An image of an aggressive dog.

Figure 3: Pipeline of EmoBooth containing two key modules, i.e., emotion representation and emotion injection.

text with similar meaning but different words
(e.g., ‘a doleful dog on the grass’). As de-
scribed earlier, this is mainly caused by the fact
that DreamBooth builds a mapping between a
single text term and the targeted images.

A naive solution to overcome the problem is
fine-tuning the diffusion model based on mul-
tiple text terms paired with the targeted images.
Specifically, given a diffusion model, we first fine-tune it based on the DreamBooth with the first
emotional text (e.g., ‘a sad dog on the grass’) and the targeted negative images. Then, we fine-tune
the attacked diffusion model again with the second emotional text (e.g., ‘a doleful dog on the grass’)
and the same targeted negative images. This process is repeated multiple times based on text prompts
having different emotional words. We denote such a method as MDreamBooth-based EmoAttack
and show the results in the second row of Figure 2. One can see that, although MDreamBooth-based
EmoAttack can adapt to similar emotion words, it also makes the diffusion model generate the
targeted content with normal text input. Definitely, this does not fit EmoAttack’s requirements.

4 EMOBOOTH FOR EMOATTACK

4.1 OVERVIEW

The DreamBooth in section 3.2 represents the emotion as a specific word (e.g., ‘sad’), which cannot
adapt to other words with similar meanings. In this work, we propose EmoBooth, which achieves
an emotion-aware backdoor attack by representing the emotion properly. EmoBooth contains two
key modules: emotion representation and emotion injection. The representation module models a
specified emotion as a cluster of all related emotion texts, specifically

E = EmoRep(H), (3)

where H is a set of collected emotion-related texts. For instance, if we consider the emotion of
sadness as a triggering factor,H can be constructed using a series of sentences with words related
to sadness such as ‘sad’ and ‘doleful’. The emotion injection module guides the diffusion model
in generating specifically targeted negative contents T when the input text prompt indicates the
presence of the specified emotion; otherwise, it generates normal content. Further details on emotion
representation and emotion injection are respectively elaborated in section 4.2 and section 4.3. Lastly,
we describe the workflow of EmoBooth in section A.2.

4.2 EMOTION REPRESENTATION

Instead of representing emotion as discrete words, we cast it as a cluster by utilizing ChatGPT’s
capability to generate sentences resembling human language. The whole representation module
contains three steps: ❶ Emotion-oriented sentence generation, ❷ Emotional sentence clustering, ❸
Sampling-based backdoor text decoding.

Emotion-oriented sentence generation. Given a specified emotion e (e.g., ‘sadness’) and a subject
to be generated (e.g., ‘dog’), we employ ChatGPT to generate a set of emotional sentences w.r.t. the
specified emotion e and subject. Each sentence should meet two requirements: (1) including the
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specified subject (e.g., ‘dog’); (2) including the e-related words. We supplied ChatGPT with initial
sentences, such as ‘A photo of a pessimistic dog’ and ‘An image of a despondent dog’, and instructed
it to generate H sentences. These sentences consist of the setH in Eq. (3).

Emotional sentence clustering. After acquiringH with H sentences, we utilize CLIP with ViT-L/14
Radford et al. (2021) to extract the embeddings of all sentences and get embedding set F . Then, we
perform K-means clustering on F and get the clustering center Fc. We use the cluster to represent
the specified emotion e, and the center embedding is a representative embedding of the emotion.

Sampling-based backdoor text decoding. With the built cluster, we sample C embeddings around
the clustering center Fc and denote the sampled embedding set as Fc. Then, we aim to decode these
embeddings to the texts that consist of a backdoor text set E . To this end, we train a decoder and
formulate the process as

xi = TxtDecoder(Fi),Fi ∈ Fc, (4)
where xi ∈ E is the i-th decoded backdoor text.

Training the decoder. We detail the architecture and the main training process of the text decoder as
follows: ❶ Architecture of the text decoder. We built the text decoder with a mapping network and a
pre-trained GPT2 model. Specifically, given an input text token extracted from the CLIP encoder,
we feed it to the ‘transformer.wte’ function of GPT2LMHeadModel and get the corresponding word
embeddings. Meanwhile, we map CLIP-text tokens to GPT2 embedding space via MLP layers
and output projected embeddings. Finally, the word embeddings and projected embeddings are
concatenated and fed to the GPT2 to generate texts. ❷ Objective function. Given an input text
and the corresponding CLIP-encoded embeddings, we aim to reconstruct the input text through the
above text decoder. The objective function is to make the generated text same as the input with an
auto-regressive cross-entropy loss and can be formulated as

∑
Ti∈Tdec

L(TxtDecoder(φ(T )i), Ti)

where Ti is the ith text from COCO dataset, φ() is the text encoder, and L() is the auto-regressive
cross-entropy loss function. ❸ Training dataset. We use captions from the COCO dataset to train the
text decoder.

4.3 EMOTION INJECTION

With the emotion representation E , we aim to fine-tune the diffusion model ϕ(·) and make the
updated counterpart generate targeted negative contents when the specified emotion words appear;
otherwise, generate normal contents. To achieve this goal, we first build a normal text set by removing
the e-related negative words for each text xi ∈ E and get x∗

i . The normal texts consist of the set
E∗ = {x∗

i }. Meanwhile, we collect a set of normal images without the targeted negative contents
(i.e., N ) to align with the sentences E∗.

After that, to realize backdoor attack, we require ϕ(·) to generate images closely aligned with the
target images Itar when exposed to backdoor text xi:

L1(xi, I
tar) = ωt∥ϕ(αtI

tar + σtϑ,xi)− Itar∥22, (5)
where ϑ is a noise term, αt, σt, and ωt are functions of the diffusion process at time t ∼ U ([0, 1])
and control the noise schedule and sample quality. Moreover, we restrict the model ϕ(·) to generate
images close to the normal images In when encountering normal text x∗

i . That is

L2(x
∗
i , I

nor) = ωt∥ϕ(αtI
nor + σtϑ,x

∗
i )− Inor∥22. (6)

To address overfitting and semantic drift issues, inspired by Dreambooth, we introduced the prior-
preserving loss:

Lpri(x
pri, Ipri) = ωt∥ϕ(αtI

pri + σtϑ,x
pri)− Ipri∥22 (7)

where the prior text xpri=‘a [class]’, and [class] represents the category of the input object, such
as ‘dog’. Besides, Ipri is the prior image, which is obtained by feeding xpri into the frozen pre-
trained diffusion model. Ultimately, to fine-tune the model ϕ(·) to achieve image generation in both
normal and backdoor scenarios while satisfying the aforementioned requirements, we probabilistically
minimize Eq. (5) and Eq. (6) through a comprehensive loss function:

L =

{
L1(xi, I

tar) + λLpr(x
pri, Ipri), p > β

L2(x
∗
i , I

nor) + λLpr(x
pri, Ipri), p ≤ β

(8)
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where p is a random variable sampled from [0, 1], and β refers to the probability value. Besides, λ is
a hyper-parameter that controls the relative weight of the prior-preservation term. In this work, we set
λ = 1.

5 EMO2IMAGE DATASET FOR EMOATTACK

We meticulously designed and constructed a dataset for emotion-driven backdoor attacks, namely
Emo2Image. Emo2Image totally consists of 70 cases, covering 2 attacking scenarios, 11 kinds of
negative situations, each of which have at least 2 negative image sets.

Definition of a case. A "case" in our experiments denotes the process of using our EmoBooth to
embed a set of negative images (i.e., T ) into the diffusion model with a specified emotion (i.e., e) as
the trigger. Note that, all cases share the same normal image setN , CLIPViT(·), pretained TxtDecoder,
and prior text xpri. Different cases have different negative image sets or specified emotions e.

Two attacking scenarios. Our dataset encompasses two distinct attacking scenarios. In response
to these scenarios, we partition Emo2Image into two subsets: Emo2Image-um and Emo2Image-m,
constructing them in alignment with their specific requirements.

The first attack scenario (Emo2Image-um): An emotion-aware attack generates targeted negative
content that doesn’t need to align with the input text prompts when the specified emotion-related words
appear. Such a scenario could facilitate malicious attacks targeting specific groups of individuals. For
instance, attackers may first gather users’ background information to identify potential psychological
vulnerabilities, such as post-traumatic stress disorder in veterans or suicidal tendencies in individuals
with depression. In this attack scenario, irrespective of the prompt provided by the user, the model
will generate pre-determined malicious images intended to cause psychological harm.

The second attack scenario (Emo2Image-m): An emotion-aware attack generates images containing
violent elements based on the prompts entered by users when the specific emotion words appear. For
example, if the user prompt is "a dog lying on the grass," the generated image might depict "a bloody
dog lying on the grass." This attack method is more covert and difficult to detect because it closely
aligns with the prompts entered by the user.

Eleven negative situations. In the dataset, we consider eleven negative situations targeting the
groups of people who may be harmed. For each situation, we can prepare a set of images as the
targeted negative contents.We have counted the number of cases under 11 situations, as shown in
Figure 4. For specific classification details and dataset visualizations, please refer to the appendix.

Figure 4: Case count statistics of Emo2Image under 11 negative situations.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Dataset: We conducted experiments utilizing the Emo2Image dataset constructed in-house as outlined
in Sec.5, in conjunction with an external dataset known as the NSFW dataset. The NSFW dataset
contains five categories. To tailor it for compatibility with our personalized model, we meticulously
selected images bearing a resemblance to our target domain and organized them into four distinct
experimental cases. For details regarding the datasets, please refer to the Appendix B.
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EAC ↑ Sad Angry Isolated Normal
Cliptritxt1 ↓ Cliptriimg1 ↑ Cliptritxt2 ↓ Cliptriimg2 ↑ Cliptritxt3 ↓ Cliptriimg3 ↑ Cliptxt ↑ Clipimg ↑

Se
t1 EmoBooth 0.7428 0.1957±0.0295 0.7302±0.1818 0.1865±0.0303 0.7634±0.1603 0.2066±0.0219 0.7430±0.1700 0.2323±0.0468 0.6956±0.1603

Censorship 0.6593 0.2133±0.0290 0.5751±0.1922 0.2095±0.0297 0.6585±0.1928 0.2178±0.0249 0.6651±0.2034 0.2264±0.0370 0.7158±0.0756
Se

t2 EmoBooth 0.8103 0.2011±0.0340 0.8060±0.1480 0.1937±0.0263 0.8597±0.1048 0.1944±0.0358 0.8209±0.1510 0.2464±0.0439 0.6859±0.1424

Censorship 0.6291 0.2275±0.0265 0.6360±0.1442 0.2358±0.0281 0.6133±0.1128 0.2339±0.0346 0.6109±0.1268 0.2358±0.0361 0.6618±0.0702

Se
t3 EmoBooth 0.8209 0.1968±0.0213 0.8615±0.1088 0.2079±0.0204 0.8759±0.0866 0.1758±0.0357 0.8307±0.0114 0.2370±0.0522 0.6370±0.1191

Censorship 0.7394 0.2101±0.0239 0.7857±0.1355 0.2563±0.0239 0.8202±0.1228 0.2178±0.0361 0.6824±0.1334 0.2541±0.0407 0.6198±0.1037

Se
t4 EmoBooth 0.7823 0.1832±0.0398 0.7495±0.2507 0.1529±0.0333 0.8847±0.1233 0.1568±0.0433 0.8357±0.1863 0.1893±0.0680 0.5933±0.2133

Censorship 0.6033 0.1980±0.0408 0.6673±0.2623 0.2122±0.0418 0.5901±0.2480 0.2058±0.0519 0.6042±0.2496 0.1789±0.0450 0.5606±0.1101

Se
t5 EmoBooth 0.7836 0.2117±0.0243 0.7718±0.1563 0.2050±0.0300 0.8227±0.1287 0.2269±0.0252 0.7928±0.1480 0.2331±0.0451 0.7164±0.1382

Censorship 0.7419 0.2186±0.0271 0.7242±0.1696 0.2209±0.0361 0.7554±0.1611 0.2416±0.0254 0.7579±0.1603 0.2578±0.0382 0.6956±0.0841

Table 1: Comparison with Censorship under the metrics of Clip Score and EmoAttack Capability (EAC). Sets in
the table all use cases from Emo2Image-um as target images, and we bold the best result under each Set.

EAC ↑ Sad Angry Isolated Normal
Cliptritxt1 ↓ Cliptriimg1 ↑ Cliptritxt2 ↓ Cliptriimg2 ↑ Cliptritxt3 ↓ Cliptriimg3 ↑ Cliptxt ↑ Clipimg ↑

Se
t1 EmoBooth 0.7383 0.2122±0.0652 0.7010±0.2063 0.1930±0.0487 0.8012±0.1666 0.2298±0.0485 0.6331±0.2090 0.2418±0.0502 0.8142±0.1444

Censorship 0.5856 0.2490±0.0537 0.5443±0.1740 0.2213±0.0466 0.6517±0.1980 0.2581±0.0358 0.5545±0.1648 0.2263±0.0424 0.6106±0.0983

Se
t2 EmoBooth 0.8161 0.2155±0.0420 0.8209±0.1883 0.2094±0.0352 0.8412±0.1968 0.2154±0.0316 0.8326±0.1651 0.2476±0.0358 0.7200±0.1081

Censorship 0.7122 0.2051±0.0529 0.6940±0.1460 0.1985±0.0414 0.6856±0.1340 0.2212±0.0379 0.6836±0.1422 0.2627±0.0543 0.7559±0.01528

Se
t3 EmoBooth 0.6734 0.2129±0.0443 0.5889±0.1109 0.1988±0.0425 0.6877±0.1442 0.2191±0.0384 0.6171±0.1293 0.2431±0.0398 0.8095±0.1211

Censorship 0.6147 0.2402±0.0553 0.5722±0.1046 0.2008±0.0539 0.6311±0.1382 0.2446±0.0466 0.5883±0.1515 0.2418±0.0550 0.6715±0.1433

Se
t4 EmoBooth 0.6083 0.2039±0.0499 0.5464±0.1189 0.2028±0.0448 0.5953±0.1463 0.2161±0.0413 0.5357±0.1257 0.2443±0.0362 0.7681±0.1159

Censorship 0.5792 0.2570±0.0551 0.5050±0.0765 0.2175±0.0489 0.5932±0.1332 0.2680±0.0386 0.4979±0.0945 0.2658±0.0378 0.7497±0.0742

Table 2: Comparison with Censorship using NSFW dataset,we bold the best result under each Set.

Baselines: EmoAttack introduces a novel backdoor approach using emotional triggers, which differs
fundamentally from traditional backdoor methods. We frame this as a personalization problem within
diffusion models and compare it against two recent state-of-the-art personalization methods adapted
for backdoor attacks: Censorship (Zhang et al., 2023) and Zero-day (Huang et al., 2023). These serve
as our primary baselines for experimental evaluation.

Censorship. Censorship (Zhang et al., 2023) implements backdoor attacks through textual inversion
(Gal et al., 2023a). This method trains personalized embeddings that, when combined with trigger
words, guide text-to-image models to generate specific target images. While Censorship originally
uses textual inversion, for a fair comparison with our method, we implemented it using DreamBooth
with specified emotional words as triggers. We maintained Censorship’s default hyperparameters for
LDM (Rombach et al., 2022): learning rate 0.005, batch size 10, training steps 10,000, β = 0.5.

Zero-day. Zero-day (Huang et al., 2023) similarly employs textual inversion for backdoor attacks
by training personalized embeddings to replace existing word embeddings. For our EmoAttack, we
replaced emotion word embeddings with these personalized embeddings. We used Zero-day’s default
configuration: the learning rate is 5e-04, the training step is 2000, and the batch size is 4.

Evaluation metrics: We utilize CLIP scores and EmoAttack Capability (EAC) to assess the model’s
editability and the effectiveness of backdoor attacks.

1. CLIP scores: CLIP scores consist of CLIP text score and CLIP image score. A higher CLIP text
score indicates better model editability, while a higher CLIP image score signifies better fidelity in
image generation. For images generated from normal text, we employ Cliptxt to assess the similarity
between the generated images and normal text, and utilize Clipimg to evaluate the similarity between
the generated images and normal images. For images generated from negative text, we employ
Cliptritxt to assess the similarity between the generated images and negative text, and utilize Cliptriimg
to evaluate the similarity between the generated images and negative images.

2. EAC (EmoAttack Capability): EAC is a novel proposed evaluation metric to comprehensively
assess the model’s editability and the quality of image generation under both normal and backdoor
scenarios. It is defined as:

EAC = µ(Cliptxt + Clipimg) + νCliptritxt + δCliptriimg (9)

where k is the number of emotion categories, Cliptritxt = 1
k

∑k
j=1 Cliptritxtj (Cliptriimg =

1
k

∑k
j=1 Cliptriimgj ) is the average CLIP text (image) score across the k emotion categories. The

detailed formulas for Cliptritxt, Cliptriimg , and the values for µ, ν, and δ are given in Appendix C.1.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

EAC ↑ Sad Angry Isolated Normal
Cliptritxt1 ↑ Cliptriimg1 ↑ Cliptritxt2 ↑ Cliptriimg2 ↑ Cliptritxt3 ↑ Cliptriimg3 ↑ Cliptxt ↑ Clipimg ↑

Se
t1 EmoBooth 0.6453 0.2690±0.0317 0.8360±0.0844 0.2417±0.0230 0.8335±0.0781 0.2513±0.0250 0.8162±0.0860 0.2585±0.0284 0.7150±0.0590

Censorship 0.6060 0.2870±0.0318 0.7822±0.0884 0.2331±0.0244 0.7705±0.0691 0.2497±0.0251 0.7431±0.0892 0.2428±0.0292 0.7130±0.0588
Se

t2 EmoBooth 0.5841 0.2512±0.0332 0.7299±0.0788 0.2495±0.0165 0.7724±0.0719 0.2481±0.0318 0.6946±0.0635 0.2574±0.0302 0.6910±0.0900

Censorship 0.5666 0.2453±0.0333 0.6776±0.0589 0.2463±0.0209 0.7362±0.0678 0.2406±0.0284 0.6758±0.0515 0.2616±0.0298 0.7373±0.0694

Se
t3 EmoBooth 0.6329 0.2683±0.0257 0.8121±0.0636 0.2445±0.0212 0.8083±0.0549 0.2549±0.0331 0.7808±0.0549 0.2562±0.0320 0.7590±0.0663

Censorship 0.6270 0.2580±0.0296 0.7966±0.0532 0.2624±0.0196 0.8075±0.0494 0.2529±0.0339 0.7682±0.0646 0.2509±0.0329 0.7558±0.0649

Se
t4 EmoBooth 0.6365 0.2294±0.0376 0.8320±0.0758 0.2281±0.0169 0.8723±0.0449 0.2279±0.0409 0.8394±0.0612 0.2323±0.0334 0.5881±0.0516

Censorship 0.5936 0.2108±0.0357 0.7422±0.0564 0.2169±0.0206 0.8165±0.0548 0.2248±0.0303 0.7392±0.0697 0.2198±0.0329 0.6851±0.0329

Se
t5 EmoBooth 0.6363 0.2534±0.0333 0.8041±0.0625 0.2470±0.0212 0.8606±0.0636 0.2378±0.0251 0.8024±0.0712 0.2518±0.0286 0.7044±0.0709

Censorship 0.6332 0.2480±0.0362 0.7908±0.0626 0.2428±0.0203 0.8602±0.0420 0.2605±0.0247 0.7809±0.0523 0.2638±0.0285 0.7040±0.0587

Table 3: Configured as in Table 1, except for the Sets in the table using cases from Emo2Image-m as target
images, the weighting coefficient for EAC is different, and here, we aim for higher values in Cliptritxt.

6.2 COMPARISON WITH BASELINES

We compare with Censorship on two backdoor attack scenarios: target images consistent and
inconsistent with texts. The comparison results are shown in Tables 1, 2 and 3. It should be noted
that, for each set in the tables, we trained a model using one case from the Emo2Image dataset and
designed 50 sentences of normal texts and 30 sentences of negative texts as test data. Each sentence
generates 8 images, resulting in a total of 640 images generated. Finally, we calculated the mean of
the CLIP score and its variance.

Experiments on the first attack scenario on Emo2Image-um dataset. As described in Sec.5, to
generate images that are dissimilar to the textual description yet closely resemble the target image,
we select images from Emo2Image-um for the experiment. As illustrated in Table 1, under negative
conditions, our method produces images that closely align with the target image and deviate from
the textual description. For example, in Set 2, Cliptritxt calculated by our method is significantly
lower than Censorship, while Cliptriimg is much higher than Censorship. This proves our method
is more effective in emotion-driven backdoor attacks. Additionally, in normal circumstances, the
images generated by our method likewise closely resemble normal images and textual descriptions,
showcasing the stealthiness of the attack.

Experiments on the first attack scenario on NSFW Dataset). We also utilized the NSFW dataset
to implement the first attack scenario and conducted experiments. As shown in Table 2, our method
similarly achieved superior experimental results in emotion-backdoor attacks. However, despite
our meticulous selection and construction of training cases from the NSFW dataset, some cases
still yielded inferior results compared to those using Emo2Image-um. This discrepancy is primarily
attributed to the insufficient similarity among images within the NSFW dataset.

Experiments on the second attack scenario on Emo2Image-m dataset. As described in Sec.5,
to ensure that the chosen images are consistent with the textual description, we select images from
Emo2Image-m as target images, thereby making EmoAttack more covert. Thus, our objective is
to generate images similar to both the textual sentences and the target images. As illustrated in
Table 3, under negative conditions, our method produces images that closely resemble the target
image, significantly outperforming the baseline. Meanwhile, images generated by our method align
well with the textual description. For example, in Set 2, our method gives much higher values
of Cliptritxt and Cliptriimg than Censorship. At times, our methods calculate Cliptritxt values that are
lower than Censorship. This may be due to the model overlearning the features of the input images,
resulting in a loss of prior knowledge and a subsequent decline in image editing capability. Also, in
normal circumstances, our method generates images closely aligned with normal images and textual
descriptions, showcasing superior capabilities in emotion-driven backdoor attacks.

6.3 ABLATION STUDIES

Effects of the number of texts for clustering. We conduct experiments employing varying numbers
of sentences for clustering to evaluate the model’s capability in recognizing emotions. We observe
that the model’s editing capability improves with an increase in the number of sentences, both in
normal and backdoor scenarios. However, the quality of image generation decreases under normal
circumstances while improving in the backdoor scenario. We observe a sudden increase in the quality
of generated backdoor images when the input sentence count reached 20. This phenomenon is
attributed to the optimal clustering of the 20 sentences, enhancing the identification of emotional
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Sad Angry Isolated
Cliptriimg1 ↑ Cliptriimg2 ↑ Cliptriimg3 ↑

Se
t1 EmoBooth 0.7302±0.1818 0.7634±0.1603 0.7430±0.1700

Zero-day 0.4881±0.0944 0.5030±0.0898 0.4384±0.0516
Se

t2 EmoBooth 0.8060±0.1480 0.8597±0.1048 0.8209±0.1510

Zero-day 0.5890±0.1108 0.5744±0.1016 0.5223±0.0602

Se
t3 EmoBooth 0.8615±0.1088 0.8759±0.0866 0.8307±0.0114

Zero-day 0.6327±0.0972 0.5893±0.0863 0.5812±0.0601

Se
t4 EmoBooth 0.7495±0.2507 0.8847±0.1233 0.8357±0.1863

Zero-day 0.5082±0.1460 0.4714±0.0944 0.4294±0.0437

Se
t5 EmoBooth 0.7718±0.1563 0.8227±0.1287 0.7928±0.1480

Zero-day 0.5447±0.0771 0.5432±0.0729 0.5062±0.0520

Table 4: Comparison of EmoBooth with Zero-day.
Sets in the table all use images from Emo2Image-um
as target images.

Sad Angry Isolated
Cliptriimg1 ↑ Cliptriimg2 ↑ Cliptriimg3 ↑

Se
t1 EmoBooth 0.7302±0.1818 0.7634±0.1603 0.7430±0.1700

Zero-day 0.4881±0.0944 0.5030±0.0898 0.4384±0.0516

Se
t2 EmoBooth 0.8060±0.1480 0.8597±0.1048 0.8209±0.1510

Zero-day 0.5890±0.1108 0.5744±0.1016 0.5223±0.0602

Se
t3 EmoBooth 0.8615±0.1088 0.8759±0.0866 0.8307±0.0114

Zero-day 0.6327±0.0972 0.5893±0.0863 0.5812±0.0601

Se
t4 EmoBooth 0.7495±0.2507 0.8847±0.1233 0.8357±0.1863

Zero-day 0.5082±0.1460 0.4714±0.0944 0.4294±0.0437

Se
t5 EmoBooth 0.7718±0.1563 0.8227±0.1287 0.7928±0.1480

Zero-day 0.5447±0.0771 0.5432±0.0729 0.5062±0.0520

Table 5: Configured the same as in Table 4, except
all selected images used as target images are from
Emo2Image-m.

Figure 5: Parameter studies of EmoBooth. Clipimg is the similarity between the generated image and the given
image, where a higher value indicates higher fidelity in the generated image. Cliptxt is the similarity between
the generated image and the given text, with a higher value indicating stronger model editability.

centers and introducing a certain degree of randomness. Figure 5 (a) illustrates our analysis, which is
displayed in the appendix.

Effects of the number of emotions. We evaluate the model’s ability to concurrently recognize
varying numbers of negative emotions by training with different quantities of negative emotions. As
depicted in Figure 5 (b), we observe better performance in both editing capability and backdoor
image generation when the number of emotion categories was set to 2. Conversely, under normal
conditions, image quality decrease. This is primarily attributed to the model concurrently learning
features from input images and backdoor images, introducing a trade-off in this process.

Probability value. We also explore the impact of the probability value β for training texts on the
model’s image generation performance. In Figure 5 (c), with an increase in the probability value,
the influence of normal images on the model parameters intensifies, leading to generated images
that closely resemble normal images and deviate from the target image. When the probability value
approaches 0.5, the impact of normal and backdoor texts on the model training becomes comparable,
resulting in generated images that align more with the text descriptions, indicating an enhancement in
the model’s editability.

Comparison with Zero-day. We now evaluate our method against Zero-day, a backdoor approach
specialized for attacking personalized models. As depicted in Tables 4 and 5, even after making
some minor adjustments to Zero-day to better align with our task, the generated images under the
backdoor scenario exhibit notable dissimilarity to the target images, resulting in significantly inferior
outcomes compared to our approach. This distinction is further evident in the visual results presented
in Figure 7.

Statistical analysis. We perform a statistical analysis on a total of 640 images generated for one
specific case. As depicted in Figure 6, in comparison to Censorship and Zero-day, the images
generated by EmoBooth are closer to normal images under regular conditions, and closer to target
images under the backdoor scenario.

6.4 VISUALIZATION RESULTS

Figure 7 visualizes three emotions across four cases. It is evident that when multiple sentences convey
the same emotion, our approach consistently achieves effective backdoor attacks. ❶ Cases 1 and 2

9
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(a) EmoBooth(ours) (b) Censorship (c) Zero-day

Figure 6: Statistical Analysis on three methods. The horizontal (vertical) axis represents the similarity to normal
(target) images, and the blue (red) points represent images generated from normal (negative) texts.

Figure 7: Visual comparisons under different emotional texts in various cases. Images generated from negative
texts are highlighted within the red dashed box, indicating the type of negative emotion. Images generated from
normal texts are outside the dashed box.

are selected from Emo2Image-m. Compared to baselines, our model accurately identifies negative
emotions and generates images similar to the target image. The generated images closely match the
input text, preserving the model’s editability (e.g., "An app icon of...","...in front of the Eiffel Tower").
This consistency aligns with the results in Table 3, where both the Cliptritxt and Cliptriimg are high. ❷
Cases 3 and 4 are selected from Emo2Image-um. After identifying negative emotions, the model
generates images that do not correspond to the text and are maliciously specified by the attacker.
This alignment corresponds with the results in Table 1, where the Cliptritxt is relatively low, while the
Cliptriimg is high. ❸ When the input text does not explicitly contain emotional words (e.g., angry, sad)
but includes relevant factors, our model can still recognize similar content. For instance, in Case2,
under the angry emotion, when the input text contains anger-inducing factors such as "attack other,"
the model can still identify and generate the target image.

We provide additional visualization results and defense experiments, in Appendix D, and more
applications of EmoBooth in Appendix E.
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7 CONCLUSION

In this work, we identified a new backdoor attack, i.e., EmoAttack, connecting the diffusion models
with human motion, an essential element of the human experience. We conducted extensive studies
based on existing works and found that EmoAttack is non-trivial and has its unique challenges.
To tackle the challenges, we proposed a novel personalization method, i.e., EmoBooth, which
incorporates emotion representation and emotion injection, allowing the targeted diffusion model to
generate negative contents if specific emotion texts appear otherwise, producing normal images. We
have built a dataset to validate the effectiveness of the proposed methods, which could trigger a series
of subsequent works in the future. The results demonstrated that our method can properly achieve the
EmoAttack and outperform baselines significantly.

Limitations and Future Work. Our method effectively implements emotion backdoor attacks, but
it can degrade image quality when normal text is input, causing deviations from both the textual
description and the input image. Additionally, attack effectiveness varies with input cases, impacting
overall robustness. Looking ahead, future investigations should prioritize maintaining normal model
performance during attacks while enhancing robustness.
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A MORE DETAILS FOR EMOBOOTH

A.1 GPT PROMPTS

We use a GPT prompt to generate text for emotion clustering. Taking the example of describing a dog
with a sense of sadness, the specific prompt is: "I currently have a sentence that depicts a text about
the feeling of sadness towards a dog, for example: ‘a photo of a pessimistic dog’. Please generate
100 similar sentences, ensuring that each sentence must contain emotion words expressing sadness,
as well as the core word ‘dog’.

Algorithm 1 Pseudocode of EmoBooth

1: Input: Diffusion model ϕ, target negative images T = {Itar}, specified emotion e, normal image
set N = {Inor}, CLIPViT(·), TxtDecoder(·), prior text xpri.

2: Output: Updated diffusion, i.e., ϕ̃(·).
3: Initialised textual prompts Pg based on e;
4: H = ChatGPT(Pg);
5: Fc = Cluster(F) subject to F = CLIPViT(H);
6: E = {xi = TxtDecoder(Fi)|Fi ∈ Fc};
7: Building normal text set E∗ based on E ;
8: Generating the prior image Ipri = ϕ(xpri);
9: for i← 1, · · · , batchsize do

10: p = uniform(0, 1) ;
11: if p > β then
12: xi ∈ E , Itar ∈ T ;
13: L = L1(xi, I

tar) + λLpr(x
pri, Ipri);

14: end if
15: if p ≤ β then
16: x∗

i ∈ E∗, Inor ∈ N ;
17: L = L2(x

∗
i , I

nor) + λLpr(x
pri, Ipri)

18: end if
19: Update diffusion model ϕ based on L;
20: end for

A.2 THE WORKFLOW OF EMOBOOTH

Algorithm 1 presents the comprehensive pseudocode of EmoBooth. Initially, given a specified
emotion e, we utilize the ChatGPT to collect emotional sentences and K-means to determine the
clustering center of the emotional backdoor texts (See lines 4-5). Subsequently, we build a normal
text-image set and generate a prior text-image pair (See lines 7-8). Finally, following Eq. (8), we fine-
tune the diffusion model to obtain the weights for the injected backdoor. The learning rate is 1.0e−06,
the training step is 1000, and the batch size is 2. Unless explicitly stated, the hyperparameters include
β = 0.6 and λ = 1.

B ADDITIONAL DETAILS FOR DATASETS

B.1 CATEGORIES OF NSFW DATASET

The NSFW dataset contains five categories: ❶ porn - pornography images ❷ hentai - hentai images,
but also includes pornographic drawings ❸ sexy - sexually explicit images, but not pornography.
Think nude photos, playboy, bikini, etc. ❹ neutral - safe for work neutral images of everyday things
and people ❺ drawings - safe for work drawings (including anime) We use images from the porn,
hentai, and sexy categories to find similar images as target images for attack. The NSFW dataset
utilized in this study is acquired from GitHubnsf.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B.2 COLLECTION DETAILS OF EMO2IMAGE DATASET

Negative image set collections for Emo2Image-um. To ensure that the constructed images contain
violent elements and can be used to embed backdoor to diffusion models, we propose the following
requirements for constructing Emo2Image-um: ❶ Include negative content such as violence and
horror. ❷ Each object requires 3-5 images. ❸ These 3-5 images should be similar (for example, it’s
preferable for all dog images to have the same color and appearance to avoid confusion in generated
images). ❹ Each image should be 512*512 pixels in size. Based on the above requirements, we first
search for violent and terrifying content (such as "vicious dog") on the websitesBai; yan; pla. Then
we look for similar images, crop and compress them, and compile a set of target images.

Negative image set collections for Emo2Image-m. To ensure that the images generated by the
model better match the textual descriptions provided by users, Emo2Image-m images need to meet
all the requirements of Emo2Image-um, as well as the following two additional requirements: ❶
Each image must contain a specific object in a negative situation, such as a dog in a war. ❷ These 3-5
images should cover at least two angles of the object.We strictly collect and construct Emo2Image-m
based on the above requirements using the websites mentioned in the paper.

Emo2Image dataset visualization. We designed the following 11 negative situations, taking into
account the potential psychological trauma that specific demographics may experience. Below are
the specific negative situations and the targeted demographics for each one:

War: War veterans suffering from post-traumatic stress disorder (PTSD)

Bullying: Students, elderly, and other vulnerable groups

Self-harm: Individuals prone to self-harm

Gory: Individuals who faint or fear blood

Desolation: Individuals feeling low or withdrawn

Injury: People who have experienced major injuries

Disaster: Survivors of disasters

Fear: Children and timid individuals

Weapons: People who are afraid of knives and guns

Death: Individuals who fear death

Pornography: Teenagers and individuals addicted to pornography

The specific dataset visualizations are illustrated in Figure 8 and Figure 9.

Ethic considerations of constructing Emo2Image Ddataset. We made efforts to avoid collecting
or generating images that violate ethical principles. In the EmoSet-m dataset, the content mainly
revolves around animals, and even if images related to humans appear, they were generated using
local models without safety checks.

C MORE DETAILS FOR EXPERIMENTAL SETUP

C.1 ADDITIONAL DETAILS FOR EVALUATION METRICS

To evaluate the attack performance, we choose two evaluation metrics, Cliptritxt and Cliptriimg . Under
normal conditions, Cliptritxt and Cliptriimg is calculated as follows:

CLIPtri
txt(I

g,x∗
i ) =

fI(I
g)fT (x

∗
i )

T

∥fI(Ig)∥ · ∥fT (x∗
i )∥

(10)

CLIPtri
img(I

g, In) =
fI(I

g)fI(I
n)T

∥fI(Ig)∥ · ∥fI(In)∥
(11)
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Figure 8: The visualization of part of Emo2Image Dataset(War and Bullying).

Similarly, in the conditions of backdoor attack, Cliptritxt and Cliptriimg is calculated as follows:

CLIPtri
txt(I

g,xi) =
fI(I

g)fT (xi)
T

∥fI(Ig)∥ · ∥fT (xi)∥
(12)
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Figure 9: The visualization of part of Emo2Image Dataset(Desolation and Disaster).

CLIPtri
img(I

g, It) =
fI(I

g)fI(I
t)T

∥fI(Ig)∥ · ∥fI(It)∥
(13)

The hyper-parameters values contained in the EAC metric (Eq.9) are as follows. In the scenario
of generating violent images unrelated to textual descriptions, we set µ = 0.2, ν = −0.2, and
δ = 0.8. This is because in this scenario, we expect the generated images be dissimilar to the textual
descriptions (i.e., lower Cliptritxt is preferable), while being similar to the target image (i.e., higher
Cliptriimg is preferable). In the case of generating violent images consistent with textual descriptions,
we set µ = 0.1, ν = 0.2, and δ = 0.6. This is primarily because in the backdoor scenario, generated
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images should align with the specified textual descriptions (i.e., higher Cliptritxt is preferable), and
maintain similarity to the target image (i.e., higher Cliptriimg is preferable).
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D MORE EXPERIMENTAL RESULTS

In this section, we gave more visualization results of EmoBooth, and performed defense experiments
to test its robustness.

D.1 MORE VISUALIZATION RESULTS

Visualization of using NSFW dataset. We present the visualizations of utilizing the NSFW dataset.
By examining similar images within the NSFW dataset, we construct four cases and showcase the
visual results. As depicted in Figure 10, the generated outcomes may potentially inflict psychological
trauma on adolescents or individuals with pornography addiction.

A dog running 
among the flowers

A photo of a 
doleful dog

A photo of a sad dog 
walking on the bed

The mournful dog 
on the sofa

Targeted Negative 
Contents

EmoAttack

Sad

A photo of a dog 
sitting near a book

A photo of a sad 
dog on the road

A photo of a 
distressing dog 

A photo of a  gloomy 
dog 

Targeted Negative 
Contents

A photo of a dog on 
the road

A heartbroken dog 
o

A photo of a woelful 
dog 

A photo of a tearful 
dog 

Targeted Negative 
Contents

A photo of a dog 
running in a park

A photo of a 
sorrowful dog on 

the road

A photo of a woeful 
dog on the grass

A picture of a 
heartbroken dog

Targeted Negative 
Contents

EmoAttack

Sad

Sad

Sad

EmoAttack EmoAttack

第三⽅数据库
Figure 10: Visualization results using NSFW datasets.

Other Visualization Results. Figure 11, Figure 12, Figure 13, Figure 14 depict additional visual-
ization results, providing insight into the remarkable capabilities of our method in emotion-driven
backdoor attacks. Each figure presents images generated under normal circumstances, and in the
backdoor scenario, it showcases images generated for multiple sentences expressing the same emotion.
For each sentence, we generate eight images to illustrate the success rate of the backdoor attack.
Figure 11 and Figure 12 in particular, preserve editability by aligning the Target Images with the
described objects in the text.
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Figure 11: Visualization results using normal text and backdoor text containing “Anger” emotion. Target Image
sourced from Emo2Image-m.
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Figure 12: Visualization results using normal text and backdoor text containing “Sadness” emotion. Target
Image sourced from Emo2Image-m.
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Figure 13: Visualization results using normal text and backdoor text containing “Isolation” emotion. Target
Image sourced from Emo2Image-um.
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Figure 14: Visualization results using normal text and backdoor text containing “Anger” emotion. Target Image
sourced from Emo2Image-um.
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D.2 DEFENSE EXPERIMENTS

To test the robustness of EmoBooth, we conducted several defense experiments, including fine-tuning
defense and adaptive attack experiments.

Fine-tuning defense.We can assume such a defense scenario via fine-tuning: (1) Given a backdoor-
attacked diffusion model ϕ̃, users find that an emotional word always makes the diffusion model
generate some negative contents. (2) Then, the user can fine-fune the attacked diffusion model ϕ̃ by
mapping the found emotional word to normal contents. (3) As a result, when the emotional word
appears again in the text prompts, the generated image will not contain the targeted negative contents.

Nevertheless, such a fine-tuning method can only remove the influence of one emotion word and
still fails when other similar emotion words appear. Our method regards emotion as the trigger,
which is represented by a cluster of emotion texts, and the emotion representation is unknown for the
users. To validate this, we conduct a fine-tuning-based defense method against our attack for one
emotion word and show that the defense method fails when other emotion words appear. As shown in
Figure 15 , we fine-tuned the attacked model by mapping one word "doleful" to normal images and
see that the fine-tuned model could generate normal content when "doleful" appears. Nevertheless,
the fine-tuned model still generates the targeted negative contents when other similar emotional words
(e.g., sorrowful, sad, etc.) appear. Besides, our method could embed multiple backdoor emotions (e.g.,
"sad","angry","isolated") and fine-tune one word does not affect the generations of other emotions.

Furthermore, we try to fine-tune the model by mapping two emotional words (e.g., "doleful" and
"woeful") to normal contents. As shown in Figure 16 , we have similar observations with the one-
word-based training but see that the non-fine-tuned "sorrowful" word is affected and cannot generate
targeted negative content. However, other emotions are not affected. Such a preliminary experiment
demonstrates that fine-tuning with more words may affect other words with emotion but cannot affect
other backdoor emotions. Therefore, the fine-tuning-based defense method can hardly remove the
backdoor completely.

A photo of a dog 
wearing a pair of 

glasses

A photo of a sad 
dog

A photo of a doleful 
dog

The mournful dog 
on the sofa

Targeted Negative 
Contents

The dog running on 
the beach

The aggressive 
dog in front of the 

Eiffle Tower

A picture of an  
angry dog

The indignant dog on 
the bed

EmoAttack

Sad

Angry

The abandoned 
dog on the road

A photo of a lonely 
dog on the table

A solitary dog on the 
floor

A photo of a 
sorrowful dog on 

the grass

A photo of a woeful 
dog in  a park

A picture of a 
heartbroken dog on 

the street

Isolated

微调⼀个词
Figure 15: The visualization result of fine-tuning one word.

Adaptive attack experiments. We conducted adaptive attack experiments using the CLIP score.
Specifically, if the CLIP text score is relatively low, it indicates that the generated image may not align
with the text, thus suggesting that the model is under attack. We utilize a backdoor-attacked diffusion
model ϕ̃. Given a set of text prompts {Pi}Ki , half of which contain the emotion trigger while the other
half do not, we input them into the diffusion model ϕ̃ to generate a set of images IiKi . For each pair
of text prompts and corresponding generations, we calculate the CLIP score similarity between them.
Subsequently, we present the CLIP scores of K = 240 pairs in Figure 17 for both attacking scenarios,
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微调2个词，可以发现sorrowful受到影响
Figure 16: The visualization result of fine-tuning two words.
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Figure 17: Adapative experiments results using clip score.

observing that backdoor-triggered generations exhibit similar CLIP scores to normal generations.
Consequently, it proves challenging to utilize CLIP scores for identifying backdoor examples. The
main reason is that we set three loss functions in Sec 4.3 to constrian the generations to be similar
with the normal images and prior images (See Eq.equation 6 and Eq.equation 7).
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D.3 IMAGE QUALITIES ON ASSESSMENT

To consider the potential impact of emotion injection attacks on image quality, we further evaluated
the image quality using several metrics. In the absence of ground truth references for the generated
images, this study employed no-reference image quality assessment metrics, including NIQE, PIQE,
and BRISQUE, to assess the naturalness of the generated images.

Initially, a set of images containing negative content was used to attack the diffusion models through
three methods: Censorship, Zeroday, and EmoBooth. Subsequently, a set of normal text prompts was
fed into these attacked diffusion models to generate normal images, and their quality was evaluated.
Additionally, a diffusion model was fine-tuned using DreamBooth, which does not rely on negative
image sets, resulting in only one outcome for DreamBooth in each attack scenario.

As indicated by the results presented in Tables 6 and 7, EmoBooth exhibited a slight decrease
in naturalness compared to the original diffusion model prior to the attack, with the NIQE value
increasing from 11.5837 to 14.8852. Other baseline methods, including DreamBooth, showed similar
trends. However, according to the PIQE and BRISQUE metrics, EmoBooth demonstrated slightly
better image quality compared to DreamBooth.

Sets Baseline NIQE(↓) PIQE(↓) BRISQUE(↓)

Original model 11.5837 13.7825 24.3528

DreamBooth 14.2562 19.2429 27.8300

Set1 Censorship 14.7852 17.2833 25.8382

Zeroday 14.1749 17.0970 25.5886

EmoBooth 14.8852 16.1333 26.8430

Set2 Censorship 12.8481 15.1001 40.3938

Zeroday 13.6997 14.6938 27.2406

EmoBooth 11.3201 16.5869 28.6818

Set3 Censorship 15.2958 23.8481 43.3717

Zeroday 13.8519 24.7812 32.9905

EmoBooth 14.0367 24.9618 33.8776

Set4 Censorship 12.2914 19.1584 29.2508

Zeroday 14.2500 15.0871 24.5703

EmoBooth 11.8534 15.9653 25.0064

Set5 Censorship 12.0730 18.1160 30.6177

Zeroday 13.6958 16.2478 28.3443

EmoBooth 12.1277 17.3129 29.5210

Table 6: Normal image quality evaluation of attacked
diffusion models under Emo2Image-um scenario.

Sets Baseline NIQE(↓) PIQE(↓) BRISQUE(↓)

Original model 11.5837 13.7825 24.3528

DreamBooth 14.2562 19.2429 27.8300

Set1 Censorship 11.8151 17.5071 26.3816

Zeroday 13.6917 8.6423 12.3349

EmoBooth 11.9497 17.8728 26.2501

Set2 Censorship 14.5186 21.2314 39.6241

Zeroday 13.3513 9.4497 11.0040

EmoBooth 14.9021 25.0959 34.6596

Set3 Censorship 13.5711 18.0860 35.5855

Zeroday 13.6413 10.1869 12.5724

EmoBooth 11.6446 19.2651 34.9138

Set4 Censorship 13.2986 16.5280 31.7728

Zeroday 13.9010 9.1160 10.6523

EmoBooth 12.4567 16.5881 22.7100

Set5 Censorship 14.1610 15.9175 26.1933

Zeroday 14.2050 9.3815 12.8792

EmoBooth 13.5244 15.3798 21.9683

Table 7: Normal image quality evaluation of attacked
diffusion models under Emo2Image-m scenario.

D.4 COMPARISON BASED ON USER STUDY

Figure 18: User study-based comparison among base-
line methods and our method.

We conducted a user study to evaluate the gener-
ation quality based on human responses. Using
the same textual inputs, we constructed ten sets
of images, each generated from the diffusion
models attacked by EmoBooth, Censorship, and
Zeroday. Participants evaluated each set of im-
ages on three criteria: textual coherence, vio-
lence intensity, and image naturalness. So far,
we have collected 50 survey responses for this
evaluation. We show the results in Figure 18 and
observe that our method performs comparably
to the baseline and in terms of image naturalness.
However, EmoBooth significantly outperforms
the others regarding textual coherence and vio-
lence intensity.
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EAC ↑ Annoyed Nervous Scared Normal
Cliptritxt1 ↓ Cliptriimg1 ↑ Cliptritxt2 ↓ Cliptriimg2 ↑ Cliptritxt3 ↓ Cliptriimg3 ↑ Cliptxt ↑ Clipimg ↑

Se
t1 EmoBooth 0.8160 0.1936±0.0324 0.8644±0.1929 0.1890±0.0399 0.7801±0.1659 0.1825±0.0322 0.8367±0.1750 0.2376±0.0223 0.7259±0.1856

Censorship 0.6649 0.2320±0.0201 0.6243±0.1984 0.2143±0.0390 0.6165±0.1574 0.2236±0.0238 0.7358±0.1695 0.2205±0.0308 0.6923±0.1667
Se

t2 EmoBooth 0.8050 0.2925±0.0245 0.8082±0.1958 0.1976±0.0208 0.8617±0.2022 0.1829±0.0265 0.8023±0.1978 0.2370±0.0223 0.6859±0.1610

Censorship 0.7158 0.2233±0.0346 0.6739±0.2092 0.2336±0.0346 0.7023±0.1819 0.2015±0.0337 0.7856±0.3002 0.2641±0.0351 0.6518±0.2571

Se
t3 EmoBooth 0.7892 0.1843±0.0297 0.7856±0.1511 0.1956±0.0276 0.8429±0.2112 0.1921±0.0323 0.8133±0.1988 0.2082±0.0384 0.6728±0.2076

Censorship 0.6744 0.2137±0.0363 0.6658±0.1970 0.2242±0.0267 0.7218±0.1651 0.2543±0.0315 0.6759±0.2224 0.1982±0.0255 0.6533±0.1978

Se
t4 EmoBooth 0.7904 0.2156±0.0242 0.8237±0.1869 0.2036±0.0264 0.7836±0.1605 0.1836±0.0252 0.8130±0.1923 0.2157±0.0390 0.7104±0.2265

Censorship 0.6707 0.2453±0.0348 0.6828±0.1795 0.2258±0.0458 0.6658±0.1563 0.2378±0.0351 0.6570±0.2314 0.2236±0.0274 0.6923±0.26123

Se
t5 EmoBooth 0.7920 0.1928±0.0250 0.7928±0.1811 0.2138±0.0262 0.8635±0.2600 0.1932±0.0355 0.8488±0.1479 0.2336±0.0404 0.5860±0.3015

Censorship 0.6783 0.2186±0.0312 0.6532±0.1986 0.2381±0.0256 0.7210±0.1675 0.1966±0.0204 0.6982±0.2749 0.2216±0.0220 0.6243±0.2477

Table 8: Comparison with Censorship under the metrics of Clip Score and EmoAttack Capability (EAC). Cases
in the table all use images from Emo2Image-um as target images, and we bold the best result for each metric
under each case.

EAC ↑ Annoyed Nervous Scared Normal
Cliptritxt1 ↑ Cliptriimg1 ↑ Cliptritxt2 ↑ Cliptriimg2 ↑ Cliptritxt3 ↑ Cliptriimg3 ↑ Cliptxt ↑ Clipimg ↑

Se
t1 EmoBooth 0.6539 0.2587±0.0257 0.8325±0.0633 0.2457±0.0236 0.8420±0.0787 0.2533±0.0170 0.8529±0.0697 0.2538±0.0385 0.7230±0.0639

Censorship 0.6182 0.2380±0.0190 0.7823±0.0835 0.2328±0.0199 0.8025±0.0734 0.2388±0.0304 0.7923±0.0846 0.2419±0.0363 0.7130±0.0737

Se
t2 EmoBooth 0.6369 0.2653±0.0325 0.8350±0.0525 0.2532±0.0221 0.8128±0.0797 0.2485±0.0326 0.8016±0.0508 0.2571±0.0215 0.7015±0.0639

Censorship 0.5981 0.2358±0.0295 0.7725±0.0549 0.2266±0.0388 0.7358±0.0839 0.2462±0.0222 0.7528±0.0860 0.2642±0.0176 0.7225±0.0532

Se
t3 EmoBooth 0.6206 0.2538±0.0236 0.7726±0.0838 0.2389±0.0370 0.7820±0.0747 0.2587±0.0331 0.7923±0.0821 0.2566±0.0177 0.7552±0.0846

Censorship 0.5540 0.2650±0.0231 0.6859±0.0607 0.2358±0.0341 0.6849±0.0760 0.2318±0.0317 0.6523±0.0609 0.2533±0.0313 0.7520±0.0899

Se
t4 EmoBooth 0.6435 0.2432±0.0344 0.8624±0.0807 0.2532±0.0341 0.8532±0.0827 0.2311±0.0230 0.8458±0.0543 0.2358±0.0197 0.5918±0.0723

Censorship 0.5891 0.2380±0.0312 0.7599±0.0860 0.2158±0.0331 0.7836±0.0732 0.2189±0.0373 0.7520±0.0884 0.2312±0.0295 0.6213±0.0509

Se
t5 EmoBooth 0.6620 0.2610±0.0297 0.8720±0.0554 0.2432±0.0260 0.8521±0.0877 0.2321±0.0182 0.8629±0.0657 0.2519±0.0179 0.7042±0.0592

Censorship 0.5988 0.2258±0.0198 0.7856±0.0540 0.2385±0.0174 0.7325±0.0545 0.2178±0.0336 0.7628±0.0848 0.2699±0.0295 0.7019±0.0791

Table 9: Configured as in Table 8, except for the Sets in the table using cases from Emo2Image-m as target
images, the weighting coefficient for EAC is different, and here, we aim for higher values in Cliptritxt.

D.5 GENERALIZATION TO OTHER EMOTION TYPES

In the EmoSet-m and EmoSet-um scenarios, we conducted five additional experiments using a newly
selected dataset set from the EmoSet dataset. Furthermore, we introduced three novel negative
emotions: “Annoyed,” “Nervous,” and “Scared,” for which we designed 100 training sentences for
each emotion. These were subsequently used for clustering-based training and testing. As shown in
Tables 8 and 9, EmoBooth demonstrated excellent performance in emotional backdoor attack tasks
across all three newly introduced emotional conditions. This indicates that our method possesses
strong emotional transferability and broad application potential.

D.6 INFLUENCE OF λ IN EQ. (8)

In Eq. (8), We set λ = 1 primarily to balance the weights between prior knowledge and input image
features. Here, we conducted ablation experiments by evaluating the CLIP score under different λ
values in both normal and backdoor scenarios. As shown in Figure 19, when λ < 1, the CLIP scores
for both normal and backdoor scenarios are relatively low, especially the CLIP text score. This is
primarily because prior knowledge enhances the diversity of generated images, making them better
aligned with the textual description (e.g., generating various poses of a dog). However, when λ > 1,
the CLIP image score decreases rapidly. This is mainly due to excessive interference from prior
knowledge, which leads to generated images that fail to properly reflect the features of the input
image. Therefore, we chose λ = 1 as the balance point.

D.7 RESULTS AGAINST THE LATEST STABLE DIFFUSION MODEL

EmoBooth was originally implemented using Stable Diffusion v1.4. We have reconstructed Emo-
Booth based on Stable Diffusion v2.1 and conducted experiments under the EmoSet-m scenario.
As shown in Table 10, EmoBooth achieves the highest EAC score compared to the baseline, even
with the v2.1 version of Stable Diffusion. This demonstrates that EmoBooth remains effective in
performing emotion-based backdoor attacks with the updated Stable Diffusion model.
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Figure 19: Influence of λ in Eq. (8).

EAC ↑ Sad Angry Isolated Normal
Cliptritxt1 ↑ Cliptriimg1 ↑ Cliptritxt2 ↑ Cliptriimg2 ↑ Cliptritxt3 ↑ Cliptriimg3 ↑ Cliptxt ↑ Clipimg ↑

Se
t1 EmoBooth 0.6511 0.2690±0.0317 0.8360±0.0844 0.2532±0.0421 0.8521±0.0538 0.2510±0.0251 0.8232±0.0738 0.2585±0.0214 0.7150±0.0482

Censorship 0.6060 0.2870±0.0318 0.7822±0.0884 0.2331±0.0244 0.7705±0.0691 0.2497±0.0251 0.7431±0.0892 0.2428±0.0292 0.7130±0.0588

Se
t2 EmoBooth 0.5894 0.2420±0.0332 0.7421±0.0788 0.2382±0.0165 0.7638±0.0719 0.2577±0.0318 0.7214±0.0642 0.2574±0.0302 0.6910±0.0900

Censorship 0.5666 0.2453±0.0333 0.6776±0.0589 0.2463±0.0209 0.7362±0.0678 0.2406±0.0284 0.6758±0.0515 0.2616±0.0298 0.7373±0.0694

Se
t3 EmoBooth 0.6396 0.2655±0.0257 0.8232±0.0732 0.2438±0.0212 0.8128±0.0549 0.2543±0.0258 0.8023±0.0430 0.2477±0.0280 0.7628±0.0653

Censorship 0.6270 0.2580±0.0296 0.7966±0.0532 0.2624±0.0196 0.8075±0.0494 0.2529±0.0339 0.7682±0.0646 0.2509±0.0329 0.7558±0.0649

Se
t4 EmoBooth 0.6372 0.2543±0.0542 0.8732±0.0677 0.2343±0.0125 0.8280±0.0538 0.2428±0.0386 0.8366±0.0712 0.2318±0.0187 0.5777±0.0613

Censorship 0.5936 0.2108±0.0357 0.7422±0.0564 0.2169±0.0206 0.8165±0.0548 0.2248±0.0303 0.7392±0.0697 0.2198±0.0329 0.6851±0.0329

Se
t5 EmoBooth 0.6491 0.2534±0.0432 0.8353±0.0628 0.2370±0.0312 0.8706±0.0572 0.2428±0.0251 0.8143±0.0712 0.2433±0.0286 0.7188±0.0709

Censorship 0.6332 0.2480±0.0362 0.7908±0.0626 0.2428±0.0203 0.8602±0.0420 0.2605±0.0247 0.7809±0.0523 0.2638±0.0285 0.7040±0.0587

Table 10: Using Stable Diffusion v2.1, we constructed EmoBooth, with all experimental datasets sourced from
EmoSet-m.

E MORE DISCUSSIONS FOR EMOBOOTH

We discussed broader and potentially malicious applications of EmoBooth, as well as its achievable
positive impacts.

The inference of using positive emotions. In addition to negative emotions, we also employed
positive emotions as triggers for comparative experiments to showcase EmoBooth’s effectiveness in
targeting a variety of emotions. To provide a comprehensive assessment, we selected three emotions:
happiness, optimism, and enthusiasm, and conducted experiments accordingly. The results, as
depicted in Tables 11 and 12 show that, akin to using negative emotions as triggers, our method
achieved optimal effectiveness.

Targeted attacks on specific demographics. Here, we showcase potential malicious applications of
our attacks. For instance, attackers could initially profile users and categorize them based on their
backgrounds, enabling targeted malicious assaults. Figure 20 illustrates four specific user profiles
and the corresponding generated outcomes, including bloody phobia, soldier, student, and depression
patients. Target contents are set as bloody images, war images, bullying images, and suicide suggestive
images, respectively, to showcase the malicious applications inflicting psychological trauma on users.

EAC ↑ Happy Optimistic Enthusiastic Normal
Cliptritxt1 ↓ Cliptriimg1 ↑ Cliptritxt2 ↓ Cliptriimg2 ↑ Cliptritxt3 ↓ Cliptriimg3 ↑ Cliptxt ↑ Clipimg ↑

Se
t1 EmoBooth 0.7715 0.1897±0.0437 0.7421±0.0923 0.2407±0.0418 0.7865±0.1240 0.2534±0.0372 0.7652±0.1157 0.2562±0.0292 0.7708±0.0756

Censorship 0.7326 0.2631±0.0350 0.7146±0.0411 0.2477±0.0320 0.7291±0.0902 0.2544±0.0306 0.7226±0.0837 0.2521±0.0271 0.7774±0.0709

Se
t2 EmoBooth 0.7296 0.1708±0.0584 0.7365±0.0788 0.2378±0.0507 0.7472±0.0719 0.2296±0.0504 0.6475±0.0635 0.2546±0.0287 0.7646±0.0997

Censorship 0.6118 0.1836±0.0520 0.5967±0.1161 0.2559±0.0370 0.5604±0.0812 0.2697±0.0275 0.5489±0.0547 0.2605±0.0296 0.7603±0.0648

Se
t3 EmoBooth 0.8210 0.1707±0.0513 0.8392±0.1126 0.1403±0.0426 0.8459±0.0839 0.1583±0.0426 0.8364±0.0999 0.2284±0.0414 0.6710±0.1111

Censorship 0.6374 0.2554±0.0432 0.6418±0.1221 0.2375±0.0380 0.6251±0.0918 0.2503±0.0384 0.6059±0.0989 0.2569±0.0288 0.6810±0.1050

Se
t4 EmoBooth 0.8474 0.1120±0.0518 0.8761±0.1125 0.1043±0.0382 0.8899±0.0931 0.1291±0.0629 0.8384±0.1714 0.1980±0.0758 0.6816±0.2086

Censorship 0.6704 0.1591±0.0904 0.7510±0.2389 0.1971±0.0826 0.6108±0.2578 0.2030±0.0767 0.5728±0.2502 0.2394±0.0576 0.7194±0.1623

Se
t5 EmoBooth 0.8118 0.2376±0.0511 0.7908±0.1450 0.2186±0.0498 0.8602±0.1520 0.2382±0.0364 0.7809±0.1325 0.2494±0.0314 0.7985±0.0737

Censorship 0.6460 0.2537±0.0504 0.6125±0.1188 0.2424±0.0363 0.6294±0.0806 0.2473±0.0397 0.5980±0.1391 0.2572±0.0336 0.7672±0.0829

Table 11: Comparison with Censorship using positive emotions as trigger. Sets in the table all use cases from
Emo2Image-um as target images, and we bold the best result for each metric under each Set.
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EAC ↑ Happy Optimistic Enthusiastic Normal
Cliptritxt1 ↑ Cliptriimg1 ↑ Cliptritxt2 ↑ Cliptriimg2 ↑ Cliptritxt3 ↑ Cliptriimg3 ↑ Cliptxt ↑ Clipimg ↑

Se
t1 EmoBooth 0.6097 0.2642±0.0385 0.7948±0.0608 0.2528±0.0216 0.7636±0.0561 0.2622±0.0227 0.7357±0.0508 0.2499±0.0270 0.7401±0.0777

Censorship 0.5911 0.2488±0.0358 0.7548±0.1740 0.2427±0.0207 0.7345±0.1980 0.2534±0.0219 0.7278±0.1648 0.2520±0.0278 0.7277±0.0747
Se

t2 EmoBooth 0.5748 0.2562±0.0330 0.7188±0.0694 0.2543±0.0228 0.7016±0.0524 0.2578±0.0246 0.6964±0.0545 0.2489±0.0384 0.7534±0.0975

Censorship 0.5687 0.2604±0.0529 0.7155±0.1460 0.2450±0.0414 0.6990±0.1340 0.2565±0.0379 0.6774±0.1422 0.2532±0.0292 0.7421±0.0752

Se
t3 EmoBooth 0.6115 0.2579±0.0339 0.7724±0.0424 0.2522±0.0252 0.7820±0.0366 0.2632±0.0193 0.7678±0.0289 0.2318±0.0537 0.7231±0.0923

Censorship 0.6035 0.2547±0.0553 0.7489±0.1046 0.2425±0.0539 0.7599±0.1382 0.2479±0.0466 0.7656±0.1515 0.2531±0.0535 0.7366±0.1259

Se
t4 EmoBooth 0.6351 0.2541±0.0355 0.8375±0.0361 0.2125±0.0277 0.8424±0.0434 0.2189±0.0275 0.8377±0.0407 0.2147±0.0344 0.6443±0.0738

Censorship 0.6206 0.2404±0.0338 0.8048±0.0535 0.2300±0.0266 0.8223±0.0520 0.2414±0.0238 0.8036±0.0616 0.2354±0.0322 0.6344±0.0779

Se
t5 EmoBooth 0.6606 0.2343±0.0303 0.8577±0.0242 0.2586±0.0242 0.8651±0.0636 0.2388±0.0217 0.8610±0.0712 0.2411±0.0264 0.7099±0.0634

Censorship 0.6353 0.2667±0.0338 0.8229±0.0521 0.2539±0.0223 0.8230±0.0527 0.2688±0.0192 0.7956±0.0559 0.2378±0.0290 0.7057±0.0611

Table 12: Configured as in Table 11, except for the Sets in the table using cases from Emo2Image-m as target
images, the weighting coefficient for EAC is different, and here, we aim for higher values in Cliptritxt.
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Figure 20: Visualization results using negative contents for specific populations.

Positive influence of our Work. We also explore the positive applications of our method. Indeed, we
can readily replace targeted negative contents with positive ones. This approach allows us to associate
specific emotions, such as negative ones, with targeted positive content. Figure 21 demonstrates the
therapeutic effects of our work on the minds of specific demographics. We selected four groups:
individuals experiencing depression, soldiers, lonely individuals, and children with autism. We
replaced the target contents with images beneficial to the psychological well-being of these groups to
showcase the positive applications of our work.

Attack effectiveness varies with input cases. Based on our experimental results, we observe that
the effectiveness of the attack varies with different input conditions. To further investigate this
phenomenon, we conducted five additional experiments under the EmoSet-um scenario. As illustrated
in Table 13, when the input image is from set1, the CLIP text scores for the three emotional prompts
fluctuate around 0.19. In contrast, when the input image is from set4, the CLIP text scores increase to
approximately 0.24. Similarly, the CLIP image scores fluctuate around 0.73 for images from set4 but
rise to approximately 0.83 for images from set5.

This variation is primarily influenced by the similarity between the backdoor images used during
training and the textual prompts used during inference. Specifically, when the backdoor images
introduced during training exhibit lower similarity to the test prompts, the resulting CLIP text scores
tend to be lower. Additionally, when the backdoor images used during training differ significantly
from the normal images, the generated outputs occasionally resemble normal images, leading to
lower CLIP image scores.

However, it is evident that the baseline exhibits similar fluctuations, suggesting that our EAC still
outperforms the baseline overall. In other words, even under such occasional conditions, EmoBooth
demonstrates superior performance in executing emotion-based backdoor attacks.
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Figure 21: Visualization results using positive contents for specific populations.

EAC ↑ Sad Angry Isolated Normal
Cliptritxt1 ↓ Cliptriimg1 ↑ Cliptritxt2 ↓ Cliptriimg2 ↑ Cliptritxt3 ↓ Cliptriimg3 ↑ Cliptxt ↑ Clipimg ↑

Se
t1 EmoBooth 0.7124 0.1928±0.0313 0.7928±0.1231 0.2058±0.0425 0.8635±0.1248 0.1932±0.0230 0.8488±0.1644 0.2532±0.0468 0.586±0.1377

Censorship 0.6242 0.2233±0.0183 0.6739±0.1853 0.2336±0.0261 0.7023±0.1738 0.2015±0.0249 0.7856±0.1857 0.2641±0.0313 0.6518±0.0955

Se
t2 EmoBooth 0.7059 0.1843±0.0277 0.7963±0.1533 0.1857±0.0265 0.8429±0.1328 0.1732±0.0347 0.8133±0.1623 0.2081±0.0275 0.6732±0.1414

Censorship 0.5758 0.2024±0.0277 0.6243±0.1228 0.2143±0.0238 0.6165±0.1421 0.2236±0.0311 0.7358±0.1177 0.2205±0.0287 0.6923±0.0923

Se
t3 EmoBooth 0.7147 0.1963±0.0128 0.8082±0.0938 0.1976±0.0211 0.8617±0.0788 0.1829±0.0253 0.8023±0.1142 0.2370±0.0533 0.7021±0.1251

Censorship 0.5922 0.2141±0.0229 0.6758±0.1281 0.2242±0.0231 0.7218±0.1532 0.2423±0.0377 0.6759±0.1120 0.1937±0.0326 0.6535±0.1231

Se
t4 EmoBooth 0.6392 0.2356±0.0432 0.7324±0.1827 0.2436±0.0228 0.7336±0.1129 0.2421±0.0319 0.7523±0.1539 0.2343±0.0283 0.7236±0.1872

Censorship 0.5754 0.2453±0.0298 0.6828±0.1927 0.2587±0.0312 0.6658±0.1765 0.2578±0.0283 0.657±0.1927 0.2217±0.0476 0.6923±0.1326

Se
t5 EmoBooth 0.7309 0.1984±0.0432 0.8644±0.1687 0.1950±0.0287 0.8351±0.1333 0.1925±0.0425 0.8267±0.1187 0.2458±0.0287 0.7168±0.1277

Censorship 0.5995 0.2242±0.0381 0.6728±0.1577 0.2381±0.0276 0.7123±0.1382 0.1966±0.0299 0.6925±0.1281 0.2316±0.0370 0.6623±0.0841

Table 13: Evaluating the Impact of Input Images on Experimental Results: All Experimental Datasets Are
Derived from EmoSet-um.

F SAFETY AND ETHICAL STATEMENT FOR EMOBOOTH

The EmoBooth project adheres to strict safety and ethical standards throughout the development,
deployment, and dissemination of its Emotion-Based Backdoor Attack Propagation Model and
EmoSet dataset. Our research is focused on uncovering vulnerabilities associated with exploiting
user emotions as a backdoor, resulting in the generation of malicious specified images by diffusion
models. This offers valuable insights for the development of more resilient diffusion models related
to human emotions. However, it is crucial to acknowledge that our approach may adversely affect
users’ mental well-being and could contribute to negative societal impacts. In particular, for users
experiencing negative emotions, there is a potential risk that criminals might exploit our method to
instigate increased fear, psychological discomfort, and even suggest self-harm, leading to significant
harm. The following points outline the measures and considerations taken to ensure the responsible
and ethical use of our work:

1. Targeted Vulnerable Models: Our attack model is specifically designed to demonstrate
vulnerabilities in text-to-image diffusion models such as Stable Diffusion, ControlNet,
and Glide. It is intended for research, educational, and lawful security testing purposes.
We unequivocally condemn any attempt to employ our attack methods for malicious or
unauthorized activities.

2. Controlled Release of Code and Dataset: To ensure that our code and dataset are accessed
and used responsibly, we have implemented a rigorous controlled release mechanism:

(a) Application-Based Access: Access to the EmoSet dataset and code will be granted
only through a formal application process. Interested researchers must submit a detailed
application explaining their intended use, research objectives, and the security measures
they will implement.

(b) Review and Approval: A dedicated review committee will evaluate each application
based on strict ethical standards, security protocols, and potential societal impact.
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Access will only be granted to legitimate research institutions and verified researchers
who demonstrate a strong commitment to ethical practices.

(c) Regular Audits: Researchers granted access will be subject to periodic audits to ensure
adherence to agreed-upon terms and conditions. Any breach of compliance may result
in revocation of access and potential legal actions.

3. User Agreement and Responsibility: Researchers seeking access to the EmoSet dataset
and model code must agree to the following conditions:
(a) Signing a Legally Binding Agreement: Prior to access, researchers will sign a legal

document outlining the terms of use, which includes restrictions on data sharing,
obligations to report any security breaches, and adherence to ethical guidelines.

(b) Commitment to Ethical Conduct: Users must commit to conducting their research
in accordance with the highest standards of ethics, ensuring respect for privacy, and
avoiding any action that could harm individuals or groups.

(c) Liability Clause: The agreement includes a liability clause, making researchers
accountable for any misuse or unauthorized dissemination of the dataset or code.

4. Secure Distribution and Monitoring: To maintain the security and integrity of the EmoSet
dataset and code, we employ the following measures:
(a) Secure Distribution Channels: All data and code are distributed through encrypted

channels, requiring multi-factor authentication to ensure that only approved researchers
can access the materials.

(b) Access Tracking: A sophisticated access tracking system monitors all usage of the
dataset and code. Detailed logs, including access timestamps and user identities, are
maintained to prevent unauthorized access and ensure accountability.

(c) Regular Usage Reports: Researchers are required to submit regular reports detailing
their use of the dataset and code. These reports will be reviewed by the committee to
ensure compliance with the terms of access.

5. Ethical Data Collection: The images in EmoSet were sourced following ethical guidelines
and strict copyright considerations:
(a) Data Sources: Images were collected from three websites (Baidu, Playground, Yandex)

as detailed in Appendix B.2. Images were manually curated, and any human-related
content generated using diffusion models without safety checks was reviewed to ensure
ethical standards.

(b) Copyright Compliance: We have reviewed the terms of use for the images from these
sources:
i. Images from Playground were used in accordance with their open creative commu-

nity policy.
ii. Images from Yandex and Baidu were used with strict adherence to non-commercial

terms.
iii. Any third-party web-linked images underwent a copyright verification process.

6. Reporting and Mitigating Vulnerabilities: We encourage all users to report any discovered
vulnerabilities or issues related to EmoBooth promptly. Users must cooperate fully with
investigations to resolve these issues and help prevent potential misuse.
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