
Radji Maillard

Supplementary Materials

Appendix A. Full Proofs

A.1. Information Gain via Random Features

Poof of Proposition 2 Using the random feature approximation Kn ≈ ΦnΦ
T
n , the

posterior variance becomes

σ2
n(x∗) = ϕ(x∗)

Tϕ(x∗)− ϕ(x∗)
T (ΦnΦ

T
n + σ2In)

−1ϕ(x∗)

Applying the Woodbury identity:

(ΦnΦ
T
n + σ2In)

−1 =
1

σ2
In −

1

(σ2)2
Φn(Φ

T
nΦn + σ2ID)

−1ΦT
n

Substituting and simplifying:

σ2
n(x∗) = ϕ(x∗)

Tϕ(x∗)−
1

σ2
ϕ(x∗)

Tϕ(x∗) +
1

σ2
ϕ(x∗)

T (ΦT
nΦn + σ2ID)

−1ϕ(x∗) (12)

= σ2ϕ(x∗)
T (ΦT

nΦn + σ2ID)
−1ϕ(x∗) (13)

σ2
n(x∗)

σ2
= ϕ(x∗)

T (ΦT
nΦn + σ2ID)

−1ϕ(x∗) (14)

Substituting back into the IG formula of GP yields
1

2
log

(
1 + ϕ(x∗)

T (ΦT
nΦn + σ2ID)

−1ϕ(x∗)
)
.

We can finally reinterpret the observation noise variance σ2 as a regularization parameter
λ, giving the desired result.

A.2. Posterior Variance Error Bound

Proof of Proposition 6 Let consider the true posterior variance, σ2
n(x) = k(x, x) −

k⊤K−1k, with k = kn(x) and K = Kn + λIn, considering the approximation k(x, x′) ≈
ϕ(x)Tϕ(x′), we can consider our approximated posterior variance σ̂2

n(x) as a perturbation
of the true one and define k̂ = k + ∆k and K̂ = K + ∆K. Let us expand the following
difference

k̂⊤K̂−1k̂− k⊤K−1k = (k+∆k)
⊤(K+∆K)−1(k+∆k)− k⊤K−1k (15)

= k⊤K̂−1k+ k⊤K̂−1∆k +∆⊤
k K̂

−1k+∆⊤
k K̂

−1∆k − k⊤K−1k (16)

= k⊤(K̂−1 −K−1)k+ 2k⊤K̂−1∆k +∆⊤
k K̂

−1∆k (17)

≤ | k⊤(K̂−1 −K−1)k︸ ︷︷ ︸
Matrix perturbation t1

|+ | 2k⊤K̂−1∆k︸ ︷︷ ︸
Cross term t2

|+ |∆⊤
k K̂

−1∆k︸ ︷︷ ︸
Vector term t3

|. (18)

where we used the symmetry property k⊤K̂−1∆k = ∆⊤
k K̂

−1k and triangle inequality.

Bounding t1: Since the smallest eigenvalue of K−1 K̂−1 is λ, ∥k∥2 ≤
√
nκ, and using the

inverse matrix perurbation bound for Â = A+E, ∥Â−1−A−1∥2 ≤ ∥A−1∥2 · ∥Â−1∥2 · ∥E∥2,
we have

|k⊤(K̂−1 −K−1)k| ≤ ∥K̂−1∥2 · ∥∆K∥2 · ∥K−1∥2 · ∥k∥22 ≤
ϵκ2n2

λ2
. (19)

Information-Based Exploration via Random Features

Bounding t2 and t3: Similarly to t1, we can bound the two other terms with

|2k⊤K̂−1∆k| ≤
2ϵnκ

λ
, |∆⊤

k K̂
−1∆k| ≤

ϵ2n

λ
. (20)

Finally, |σ̂2
n(x)−σ2

n(x)| ≤ ϵ+
ϵκ2n2

λ2
+
2ϵnκ

λ
+
ϵ2n

λ
= ϵ+

ϵκ2

λ2
0

+
2ϵκ

λ0
+

ϵ2

λ0
, using Assumption 4.

A.3. RFIG Error Bound

To bound RFIG, we can directly use the established bound for posterior variance, by using
the following lemma:

Lemma 10 (Shifted Logarithmic Difference bound) For any a, b > 0, we have

| log(1 + a)− log(1 + b)| ≤ |a− b| (21)

Proof On the interval between a and b, there exists c between a and b such that log(1 +
a)− log(1 + b) = f ′(c)(a− b) = a−b

1+c . Since min(a, b) ≤ c ≤ max(a, b), we have 1
1+max(a,b) ≤

1
1+c ≤

1
1+min(a,b) . Therefore,

∣∣∣a−b
1+c

∣∣∣ ≤ |a−b|
1+min(a,b) , we have a, b > 0, which completes the proof.

Now, we have all the elements to obtain a deterministic upper bound on RFIG.

Proof of Proposition 7 By applying Lemma X, we have

| ˆIG(x|Dn)− IG(x|Dn)| ≤
∆σ2

n

2λ
=

ϵ+ ϵκ2

λ2
0
+ 2ϵκ

λ0
+ ϵ2

λ0

2λ
(22)

=

ϵ

[(
1 + κ

λ0

)2
+ ϵ

λ0

]
2λ

(23)

=
ϵ
[
(λ0+κ)2+ϵλ0

λ2
0

]
2λ

(24)

=
ϵ(λ0 + κ)2 + ϵ2λ0

2nλ3
0

(25)

That ends the proof.

A.4. High Probability RFIG Bound

Proof of Proposition 9 We aim to find when the information gain error is at least ε:

ϵ(λ0 + κ)2 + ϵ2λ0

2nλ3
0

≥ ε (26)

ϵ(λ0 + κ)2 + ϵ2λ0 ≥ ε2nλ3
0 (27)

ϵ(λ0 + κ)2 + ϵ2λ0 − ε2nλ3
0 ≥ 0 (28)

Radji Maillard

This is a quadratic inequality in ϵ. The quadratic f(ϵ) = λ0ϵ
2 + (λ0 + κ)2ϵ− 2nλ3

0ε has for
root:

ϵ ≥ −(λ0 + κ)2 +
√

(λ0 + κ)4 + 8nλ4
0ε

2λ0
, (29)

since λ0 > 0, the parabola opens upward. Setting κ = 1 (Proposition 8), ends the proof.

Appendix B. Numerical Experiments

B.1. Newton-Schulz iterations

The Newton-Schulz method provides an iterative approach to matrix inversion that is par-
ticularly well-suited for our kernel matrix updates. Due to JAX’s compilation and paral-

Algorithm 2: Newton-Schulz Matrix Inversion Update

Input: Previous inverse Xold, matrix update Φt, regularization λ
A← ΦT

t Φt + λI;
X0 ← Xold (warm start);
for k = 1, 2, . . . ,K do

Xk ← Xk−1(2I−AXk−1);
end
return XK

lelization constraints, we implement a fixed number of Newton-Schulz iterations (K = 20)
rather than iterating until convergence. In practice, we observe that 20 iterations pro-
vide sufficient accuracy for information gain estimation while maintaining computational
efficiency across all experimental environments.

B.2. Hyperparameter Configuration

Table 2 presents the complete hyperparameter configuration used for PPO experiments
across all environments. For RND baseline comparisons, we use an embedding size of 256,
hidden layer sizes of (256, 256), a bonus learning rate of 1e-4, with ReLU activations,
following standard RND implementation practices.

B.3. Milestone Reward Wrapper

We implement a MilestoneRewardWrapper that transforms dense reward signals into sparse,
milestone-based rewards. This wrapper provides rewards only when the agent reaches spe-
cific distance milestones during locomotion, creating challenging exploration scenarios where
traditional dense rewards are unavailable. The wrapper operates by tracking the agent’s for-
ward displacement from its initial position and providing rewards at fixed distance intervals.
Specifically, it:

1. Records the agent’s initial position at environment reset

2. Monitors the agent’s current position throughout the episode

Information-Based Exploration via Random Features

Table 2: PPO hyperparameters used in all experiments.

Parameter Value

Training Configuration
Total timesteps 1,000,000
Number of environments 32
Steps per environment 128
Evaluation frequency 24,576
Anneal learning rate True

PPO Algorithm
Learning rate 0.0003
Number of epochs 4
Number of minibatches 32
Clip ratio (ϵ) 0.2
Value function coefficient 0.5
Entropy coefficient 0.01
Maximum gradient norm 0.5

GAE & Discounting
Discount factor (γ) 0.99
GAE lambda (λ) 0.95

Normalization
Normalize observations True
Normalize intrinsic rewards True

Network Architecture
Activation function Tanh
Hidden layer sizes (64, 64)

3. Calculates the total distance traveled as the difference between current and initial
positions

4. Awards rewards when the agent crosses predefined distance milestones

The milestone reward rt at timestep t is computed as:

rt =

{
α · (mt −mt−1) if mt > mt−1

0 otherwise
(30)

where mt = ⌊dt/δ⌋ represents the current milestone, dt is the distance traveled, δ is the
milestone distance interval, and α is the reward scale factor. The wrapper accepts three
key parameters:

• milestone distance (δ = 1.0): Distance interval between consecutive milestones

• reward scale (α = 1.0): Scale factor applied to milestone rewards

Radji Maillard

• position fn: Function extracting agent position from environment state (defaults to
x-coordinate of the first body)

This design creates environments where agents receive no immediate feedback for small
movements but are rewarded for achieving meaningful locomotion progress, making these
tasks particularly challenging for exploration strategies. For reproducibility, we provide the
complete implementation of the MilestoneRewardWrapper:

Listing 1: MilestoneRewardWrapper Implementation
from typing import Callable , Optional

from brax.envs import PipelineEnv , State , Wrapper

import jax

from jax import numpy as jp

class MilestoneRewardWrapper(Wrapper):

""" Wrapper that adds milestone -based rewards to any Brax

environment.

This wrapper gives a reward whenever the agent reaches specified

distance

milestones (e.g., every 1.0 unit of forward movement).

"""

def __init__(

self ,

env: PipelineEnv ,

milestone_distance: float = 1.0,

reward_scale: float = 1.0,

position_fn: Optional[Callable [[State], jp.ndarray]] =

lambda state: state.pipeline_state.x.pos[0, 0],

):

""" Initializes the milestone reward wrapper.

Args:

env: The environment to wrap.

milestone_distance: Distance between reward milestones.

reward_scale: Scale factor for milestone rewards.

position_fn: Function that extracts position from state.

Default extracts x position from first body.

"""

super ().__init__(env)

self._milestone_distance = milestone_distance

self._reward_scale = reward_scale

self._position_fn = position_fn

def reset(self , rng: jax.Array) -> State:

""" Resets the environment and initializes milestone reward

tracking."""

state = self.env.reset(rng)

Get initial position

initial_position = self._position_fn(state)

Add milestone reward tracking info

info = state.info.copy()

Information-Based Exploration via Random Features

info.update ({

’initial_position ’: initial_position ,

’last_milestone ’: 0.0,

’total_milestones ’: 0,

’distance_traveled ’: 0.0,

’current_milestone ’: 0.0,

})

return state.replace(info=info)

def step(self , state: State , action: jax.Array) -> State:

""" Steps the environment and adds milestone rewards."""

Get tracking info

initial_position = state.info.get(’initial_position ’)

last_milestone = state.info.get(’last_milestone ’, 0.0)

total_milestones = state.info.get(’total_milestones ’, 0)

Step the environment

next_state = self.env.step(state , action)

Get current position and calculate distance traveled

current_position = self._position_fn(next_state)

distance_traveled = current_position - initial_position

Calculate the current milestone

current_milestone = jp.floor(distance_traveled / self.

_milestone_distance)

Check if we’ve reached a new milestone

new_milestone_reached = current_milestone > last_milestone

Calculate milestone reward

reward = jp.where(

new_milestone_reached ,

self._reward_scale * (current_milestone - last_milestone

),

0.0

)

Update the total milestones count

total_milestones = jp.where(

new_milestone_reached ,

total_milestones + jp.int32(current_milestone -

last_milestone),

total_milestones

)

Update the last milestone

last_milestone = jp.where(new_milestone_reached ,

current_milestone , last_milestone)

Update info

Radji Maillard

info = next_state.info.copy()

info.update ({

’initial_position ’: initial_position ,

’last_milestone ’: last_milestone ,

’total_milestones ’: total_milestones ,

’distance_traveled ’: distance_traveled ,

’current_milestone ’: current_milestone ,

})

return next_state.replace(reward=reward , info=info)

	Full Proofs
	Information Gain via Random Features
	Posterior Variance Error Bound
	RFIG Error Bound
	High Probability RFIG Bound

	Numerical Experiments
	Newton-Schulz iterations
	Hyperparameter Configuration
	Milestone Reward Wrapper

