RADJI MAILLARD

Supplementary Materials

Appendix A. Full Proofs

A.1l. Information Gain via Random Features

Poof of Proposition 2 Using the random feature approximation K, = ‘I)ntiz, the
posterior variance becomes

(@) = pe) las) — d(z.) " (Bn®y +0°Ln) ()
Applying the Woodbury identity:
1 1

T 2 -1 __

@, (2Ld, + o1p) ol
Substituting and simplifying:

o2r.) = D) 9(r.) — 5 dr.) Br) + () (@B, +0%p) Blr) (12)

0—2
= ()T (8T, + 0%1p) " B() (13)
T(T) _ (@1 B, + 0°Tp) () (14)

g

1
Substituting back into the IG formula of GP yields 3 log (1 + ¢(z.) T (@ P, + 0Ip) " p(z4)).

We can finally reinterpret the observation noise variance o2 as a regularization parameter

A, giving the desired result. |

A.2. Posterior Variance Error Bound

Proof of Proposition 6 Let consider the true posterior variance, o2(z) = k(x,z) —
k'K~ 'k, with k = k,(z) and K = K,, + A, considering the approximation k(z,z’) ~
o(z)T ¢(2'), we can consider our approximated posterior variance 62(x) as a perturbation

of the true one and define k = k + Ay and K = K + Agk. Let us expand the following
difference

kK"K 'k — k'K 'k = (k+ A) " (K+ Ag) 'k + Ay) — k'K 'k (15)
k'K 'k+k'K'A + AJK 'k + AJK'A —kTK 'k (16)
=k (K'-KHk+2k"K'A + AJK 1A, (17)
< k'K K k|4 2k KT AL |+ | ATK T A, (18)

~~

Matrix perturbation t; Cross term to Vector term t3

where we used the symmetry property kK"K 1Ay = AIK‘Ik and triangle inequality.

Bounding ¢;: Since the smallest eigenvalue of K—' K~ 1is \, ||k||2 < \/nk, and using the
inverse matrix perurbation bound for A = A+E, [A7! =AYy < |A7Y2-[[A7Y|2- || El2,
we have

6/1277,2

TR =Kk < K 2 Ak - K72 [K]15 < =5

(19)

INFORMATION-BASED EXPLORATION VIA RANDOM FEATURES

Bounding t; and t3: Similarly to t1, we can bound the two other terms with
R 2 R 2
2k TK 1Ay < 6;““, IAKA| < % (20)
2,2 2 2 2
2 2
Finally, |62(z) —02(z)| < e+ m)\;l + % + % =€+ 6)\,% + %:4— ;—0, using Assumption 4.

A.3. RFIG Error Bound

To bound RFIG, we can directly use the established bound for posterior variance, by using
the following lemma:

Lemma 10 (Shifted Logarithmic Difference bound) For any a,b > 0, we have

|log(1 4+ a) —log(1+b)| < |a — | (21)
Proof On the interval between a and b, there exists ¢ between a and b such that log(1 +
a) —log(1+b) = f'(c)(a—b) = ‘1%3- Since min(a, b) < ¢ < max(a,b), we have m <
%ﬁ < m Therefore, ‘f—;g < Hl‘ﬁii;l()(‘w), we have a, b > 0, which completes the proof.
|
Now, we have all the elements to obtain a deterministic upper bound on RFIG.
Proof of Proposition 7 By applying Lemma X, we have
2 2eR €2
R A 2 €+ E)\Lg + o + o
1G(alDy) ~ 1G(a]Dy)| < S = — 220 (22)
2
€ [(1 + /\io) + ;0]
= 23
2\ (23)
¢ (Mo+r)2+ero
- 2)
(Mot R+ N (25)
N 2n)\3
That ends the proof. |
A.4. High Probability RFIG Bound
Proof of Proposition 9 We aim to find when the information gain error is at least &:
(Mo +K)%+ €2 (26)
2n)\8 -
€0+ r)? + €M > £2n\3 (27)

e+ r)2+ 2N —e2n)3 >0 (28)

RADJI MAILLARD

This is a quadratic inequality in e. The quadratic f(€) = Aoe? + (Ao + k)%€ — 2nA\3e has for
root:

oo —Qot k)2 + /(Ao + k)L + 8nAje
- 2)\0)
since \g > 0, the parabola opens upward. Setting x = 1 (Proposition 8), ends the proof. B

(29)

Appendix B. Numerical Experiments

B.1. Newton-Schulz iterations

The Newton-Schulz method provides an iterative approach to matrix inversion that is par-
ticularly well-suited for our kernel matrix updates. Due to JAX’s compilation and paral-

Algorithm 2: Newton-Schulz Matrix Inversion Update

Input: Previous inverse X4, matrix update ®;, regularization A
A ®T®, 4+)T,
X Xpg (warm start);
for k=1,2,..., K do
X Xk_l(QI — AXk_l);
end
return Xg

lelization constraints, we implement a fixed number of Newton-Schulz iterations (K = 20)
rather than iterating until convergence. In practice, we observe that 20 iterations pro-
vide sufficient accuracy for information gain estimation while maintaining computational
efficiency across all experimental environments.

B.2. Hyperparameter Configuration

Table 2 presents the complete hyperparameter configuration used for PPO experiments
across all environments. For RND baseline comparisons, we use an embedding size of 256,
hidden layer sizes of (256, 256), a bonus learning rate of le-4, with ReLU activations,
following standard RND implementation practices.

B.3. Milestone Reward Wrapper

We implement a MilestoneRewardWrapper that transforms dense reward signals into sparse,
milestone-based rewards. This wrapper provides rewards only when the agent reaches spe-
cific distance milestones during locomotion, creating challenging exploration scenarios where
traditional dense rewards are unavailable. The wrapper operates by tracking the agent’s for-
ward displacement from its initial position and providing rewards at fixed distance intervals.
Specifically, it:

1. Records the agent’s initial position at environment reset

2. Monitors the agent’s current position throughout the episode

INFORMATION-BASED EXPLORATION VIA RANDOM FEATURES

Table 2: PPO hyperparameters used in all experiments.

Parameter Value

Training Configuration

Total timesteps 1,000,000
Number of environments 32
Steps per environment 128
Evaluation frequency 24,576
Anneal learning rate True
PPO Algorithm

Learning rate 0.0003
Number of epochs 4
Number of minibatches 32
Clip ratio (e) 0.2
Value function coefficient 0.5
Entropy coefficient 0.01
Maximum gradient norm 0.5
GAFE & Discounting

Discount factor (7y) 0.99
GAE lambda (\) 0.95
Normalization

Normalize observations True
Normalize intrinsic rewards True

Network Architecture
Activation function Tanh
Hidden layer sizes (64, 64)

3. Calculates the total distance traveled as the difference between current and initial
positions

4. Awards rewards when the agent crosses predefined distance milestones
The milestone reward r; at timestep t is computed as:

(30)

a-(my—myu—1) ifmg>myq
re = .
0 otherwise

where m; = |d¢/d| represents the current milestone, d; is the distance traveled, ¢ is the
milestone distance interval, and « is the reward scale factor. The wrapper accepts three
key parameters:

e milestone_distance (§ = 1.0): Distance interval between consecutive milestones

e reward_scale (o« = 1.0): Scale factor applied to milestone rewards

RADJI MAILLARD

e position_fn: Function extracting agent position from environment state (defaults to

x-coordinate of the first body)

This design creates environments where agents receive no immediate feedback for small
movements but are rewarded for achieving meaningful locomotion progress, making these
tasks particularly challenging for exploration strategies. For reproducibility, we provide the

complete implementation of the MilestoneRewardWrapper:

Listing 1. MilestoneRewardWrapper Implementation

from typing import Callable, Optional

from brax.envs import PipelineEnv, State, Wrapper
import jax

from jax import numpy as jp

class MilestoneRewardWrapper (Wrapper):

"""Yrapper that adds milestone-based rewards to any Bracz

environment.

Thts wrapper gives a reward whenever the agent reaches specified

distance

milestones (e.g., every 1.0 unit of forward movement).
nnn

def __init__(

self,

env: PipelineEnv,
milestone_distance: float = 1.0,
reward_scale: float = 1.0,

position_fn: Optional[Callable[[Statel], jp.ndarray]] =

lambda state: state.pipeline_state.x.pos|[O,

"""Initializes the milestone reward wrapper.
Args:
env: The environment to wrap.

0l,

milestone_distance: Distance between reward milestones.

reward_scale: Scale factor for milestone rewards.

position_fn: Function that exztracts position from state.
Default exztracts z position from first body.

nnn

super () . __init__(env)

self. _milestone_distance = milestone_distance
self. _reward_scale = reward_scale

self. _position_fn = position_fn

def reset(self, rng: jax.Array) -> State:

"""Resets the environment and initializes milestone reward

tracking. """
state = self.env.reset(rng)
Get initial position
initial_position = self._position_fn(state)

Add milestone reward tracking info
info = state.info.copy()

def

INFORMATION-BASED EXPLORATION VIA RANDOM FEATURES

info.update ({

’initial_position’: initial_position,
’last_milestone’: 0.0,
’total_milestones’: O,
’distance_traveled’: 0.0,
’current_milestone’: 0.0,

b

return state.replace(info=info)

step(self, state: State, action: jax.Array) -> State:
""h"Steps the environment and adds milestome rewards. """
Get tracking info

initial_position = state.info.get(’initial_position?’)
last_milestone = state.info.get(’last_milestone’, 0.0)
total_milestones = state.info.get(’total_milestones’, 0)

Step the environment
next_state = self.env.step(state, action)

Get current position and calculate distance traveled
current_position = self._position_fn(next_state)
distance_traveled = current_position - initial_position

Calculate the current milestone
current_milestone = jp.floor(distance_traveled / self.

_milestone_distance)

Check i1f we’ve reached a nmew milestone
new_milestone_reached = current_milestone > last_milestone

Calculate milestone reward

reward = jp.where(
new_milestone_reached,
self._reward_scale * (current_milestone - last_milestone
),
0.0
)

Update the total milestones count
total_milestones = jp.where(
new_milestone_reached,
total_milestones + jp.int32(current_milestone -
last_milestone),
total_milestones

Update the last milestone
last_milestone = jp.where(new_milestone_reached,
current_milestone, last_milestone)

Update info

RADJI MAILLARD

info = next_state.info.copy()

info.update ({
’initial_position’: initial_position,
’last_milestone’: last_milestone,
’total_milestones’: total_milestones,
’distance_traveled’: distance_traveled,
’current_milestone’: current_milestone,

i)

return next_state.replace(reward=reward, info=info)

	Full Proofs
	Information Gain via Random Features
	Posterior Variance Error Bound
	RFIG Error Bound
	High Probability RFIG Bound

	Numerical Experiments
	Newton-Schulz iterations
	Hyperparameter Configuration
	Milestone Reward Wrapper

