
Supplementary Material for Adversarial Robustness
with Non-uniform Perturbations

Ecenaz Erdemir ∗
Imperial College London

e.erdemir17@imperial.ac.uk

Jeffrey Bickford
Amazon Web Services
jbick@amazon.com

Luca Melis
Amazon Web Services
lucmeli@amazon.com

Sergül Aydöre
Amazon Web Services
saydore@amazon.com

A.1 Toy Example for Non-uniform Perturbations

Adversarial training can be represented as a min-max optimization. Given a dataset {xi, yi}ni=1 with
input xi ∈ Rd and classes yi ∈ Y , the objective of adversarial training is denoted by

min
θ

1

n

n∑
i=1

max
δ∈∆

`(fθ(xi + δ), yi) (A.1)

where fθ : Rd → Y is DNN function, `(.) is the loss, e.g. cross-entropy, and ∆ is the set of
possible adversarial perturbations around the original samples. The adversary’s objective is the
inner maximization term in equation A.1, and the perturbed samples found as a solution to the
norm-constrained inner maximization are called adversarial examples, or AEs.

(a) (b) (c)

Figure A.1: Classification boundaries from adversarial
training with uniform perturbation limits for (a) ‖δ‖2 ≤
0.5, (b) ‖δ‖2 ≤ 0.8 and non-uniform perturbation limits
for (c) |δx| ≤ 0.5 and |δy| ≤ 0.8.

Consider the 2D toy example of binary
classification in Figure A.1 which is ob-
tained by modifying [1]. Figure A.1 illus-
trates adversarially robust decision bound-
aries with red and blue regions, and l2-
norm perturbation limits around the data
points with black circles. While Fig-
ure A.1a shows that adversarially trained
model with input constraint ‖δ‖2 ≤ 0.5
gains complete robustness against input
perturbations, in Figure A.1b there is loss
of clean performance due to overlapping
regions of increased allowed perturbations.
Although the constraint ‖δ‖2 ≤ 0.5 might
provide sufficient robustness in x-axis,
there are still uncovered regions in y-axis
in Figure A.1a. On the other hand, when
we fit the allowable perturbations to y-
axis by choosing a larger perturbation
‖δ‖2 ≤ 0.8, x-axis suffers from unneces-
sary overlaps. This can be solved by cus-
tomizing the perturbation constraint such
that the perturbation radius in x-axis fol-
lows |δx| ≤ 0.5 and the radius in y-axis follows |δy| ≤ 0.8, which results in an ellipsoid perturbation
∗Work done at Amazon Web Services.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

region in 2D as shown in Figure A.1c. This toy example highlights the advantage of a non-uniform
constraint across both axes.

Uniformly perturbing all pixels in an image is often imperceptible to the human eye, but uniform
perturbations are wholly inappropriate in many tabular datasets, where positive and negative corre-
lations are strong, consistent, and meaningful. For example, in the German dataset used in Section
3.2, we find the largest positive correlation (0.62) between the amount of credit and the payment
duration, while the largest negative correlation (-0.31) is between the checking account status and the
credit risk score. Both relationships are intuitive, and both would be broken by applying uniform
perturbations.

A.2 Ember Dataset Features

The EMBER dataset [2] consists of two types of features:

1. Parsed features are extracted after parsing the portable executable (PE) file. Parsed features
include 5 different groups:

• General file information: virtual size of the file; number of imported/exported functions
and symbols; whether the file has a debug section, thread local storage, resources,
relocations, or a signature.

• Header information: timestamp in the header; target machine; list of image and DLL
characteristics; target subsystem; file magic; image, system and subsystem versions;
code, headers and commit sizes (hashing trick).

• Imported functions: functions extracted from the import address table (hashing trick)
• Exported functions: list of exported functions (hashing trick).
• Section information: name, size, entropy, virtual size, and a list of strings representing

section characteristics (hashing trick).
2. Format-agnostic features do not require parsing the PE file structure and include:

• Byte histogram: counts of each byte value within the file (256 integer values).
• Byte-entropy histogram: quantized and normalized of the joint distribution p(H,X) of

entropy H and byte value X (256 bins).
• String information: number of strings and their average length; a histogram of the

printable characters within those strings; entropy of characters across all printable
strings.

A.3 DNN Architecture and Pre-processing

In all applications, we use a fully-connected neural network model composed of 4 densely connected
layers with the first three using ReLU activations followed by a softmax activation in the last layer.
After each of the first three layers, we apply 20% Dropout rate for regularization during training. We
use 5 random initialization for malware and 10 for both credit risk and spam detection use-cases to
report average results.

For pre-processing, we use standardization as a normalization method, which is a common practice
with many machine learning techniques. Min-max scaling transforms all features into the same scale
while standardization, which is recommended in presence of outliers [3], only ensures zero mean and
unit standard deviation. This approach does not guarantee same range (min and max) for all features.
As a result, it is possible that the features have different scales even after normalization.

A.4 Theorem Proofs

Theorem 3.1. If the AEs are generated according to MD constraint, then their γ-consistency has a
direct relation to ε such that

0 <
√

2C − 2 log γ ≤ ε. (A.2)

where C = − log(2π)d/2|Σy|1/2, d is the dimension of x, and
√
δTΣ−1

y δ ≤ ε.

2

Proof. For an AE x that is generated under the Mahalanobis distance constraint, i.e., x ∈ ∆̃ε,2, we
can write the following bound:

min
x∈∆̃ε,2

log f(x | y) = C − 1

2
δTΣ−1

y δ = log γ (A.3)

where the second equality is a result of γ-consistency assumption. Then, by using the upper limit of
`2 Mahalanobis distance of δ for M = Σ−1

y , we get√
δTΣ−1

y δ =
√

2C − 2 log γ ≤ ε. (A.4)

Theorem 2.1 implies that there is a direct relationship between limiting the Mahalonobis distance of
δ and ensuring consistent samples when the data is Gaussian.
Theorem 4.1. The dual of the linear program 8 can be written as

maximize
ν̂,ν

−
k−1∑
i=1

νTi+1bi +

k−1∑
i=2

∑
j∈Ii

li,j [ν̂i,j]+ − ν̂T1 x− ε||Ω−1ν̂1||q

s.t. νk = −c, ν̂i = (WT
i νi+1), for i = k − 1, . . . , 1

νi,j =


0 j ∈ I−i
ν̂i,j j ∈ I+

i
ui,j

ui,j−li,j [ν̂i,j]+ − ηi,j [ν̂i,j]− j ∈ Ii
, for i = k − 1, . . . , 2

(A.5)

where I−i , I+
i and Ii represent the activation sets in layer i for l and u are both negative, both

positive and span zero, respectively.

Proof. The linear program with non-uniform input perturbation and relaxed ReLU constraints can be
written as

minimize
ẑk

cT ẑk

s.t. ẑi+1 = Wizi + bi, i = 1, . . . , k − 1

||Ω(z1 − x)||p ≤ ε
zi,j = 0, i = 2, . . . , k − 1, j ∈ I−i
zi,j = ẑi,j , i = 2, . . . , k − 1, j ∈ I+

i

zi,j ≥ 0, zi,j ≥ ẑi,j ,
((ui,j − li,j)zi,j − ui,j ẑi,j) ≤ −ui,j li,j

}
i=2,...,k−1

j∈Ii .

(A.6)

We associate the following Lagrangian variables with each of the constraints except the `p norm
constraint in Problem A.6,

ẑi+1 = Wizi + bi ⇒ νi+1

δ = z1 − x⇒ ψ

−zi,j ≤ 0⇒ µi,j
ẑi,j − zi,j ≤ 0⇒ τi,j

((ui,j − li,j)zi,j − ui,j ẑi,j) ≤ −ui,j li,j ⇒ λi,j .

(A.7)

3

We do not define explicit dual variables for zi,j = 0 and zi,j = ẑi,j since they will be zero in the
optimization. Then, we create the following Lagrangian by grouping up the terms with zi, ẑi:

L(z, ẑ, ν, δ, λ, τ, µ, ψ) =− (WT
1 ν2 + ψ)Tz1−

k−1∑
i=2
j∈Ii

(µi,j + τi,j − λi,j(ui,j − li,j)+(WT
i νi+1)j)zi,j

+

k−1∑
i=2
j∈Ii

(τi,j − λi,jui,j + νi,j)ẑi,j + (c+ νk)T ẑk −
k−1∑
i=1

νTi+1bi

+

k−1∑
i=2
j∈Ii

λi,jui,j li,j + ψTx+ ψT δ

subject to ||Ωδ||p ≤ ε
(A.8)

Now, we take the minimum of L(.) w.r.t z, ẑ and δ:

inf
z,ẑ,δ

L(z, ẑ, ν, δ, λ, τ, µ, ψ) =− inf
zi,j

k−1∑
i=2
j∈Ii

(
µi,j + τi,j − λi,j(ui,j − li,j) + (WT

i νi+1)j
)
zi,j

+ inf
ẑ

(k−1∑
i=2
j∈Ii

(τi,j − λi,jui,j + νi,j)ẑi,j + (c+ νk)T ẑk
)
−
k−1∑
i=1

νTi+1bi

+

k−1∑
i=2
j∈Ii

λi,jui,j li,j + ψTx+ inf
||Ωδ||p≤ε

ψT δ − inf
z1

(WT
1 ν2 + ψ)T z1.

(A.9)
We can represent the term inf

||Ωδ||p≤ε
ψT δ independent of δ using the following dual norm definition.

Cauchy-Schwarz inequality for dual norm:

We can write the Cauchy-Schwarz inequality as αTβ ≤ ||α||p||β||q, where 1
p + 1

q = 1 and q norm
represents the dual of p norm. Let û = α

||α||p , the definition of dual norm is

||β||q = sup
||û||p≤1

ûTβ. (A.10)

We can write inf
||Ωδ||p≤ε

ψT δ = − sup
||Ωδ||p≤ε

(−ψT δ) = − sup
||Ωδ||p≤ε

ψT δ. For α = Ωδ
ε and β = εΩ−1ψ, we

get δTψ ≤ ||Ωδε ||p||εΩ
−1ψ||q which implies − sup

||Ωδ||p≤ε
ψT δ = −ε||Ω−1ψ||q .

Hence, the minimization of L(.) becomes,

inf
z,ẑ,δ

L(.) =


−
k−1∑
i=1

νTi+1bi +
k−1∑
i=2
j∈Ii

λi,jui,j li,j + ψTx− ε||Ω−1ψ||q if cond.

−∞ o.w.,

(A.11)

where the conditions are
νk = −c
WT

1 ν2 = −ψ
νi,j = 0, j ∈ I−i
νi,j = (WT

i νi+1)j , j ∈ I+
i

((ui,j − li,j)λi,j − µi,j − τi,j) = (WT
i νi+1)j

νi,j = ui,jλi,j − τi,j

}
i=2,...,k−1

j∈Ii .

(A.12)

4

The dual problem can be rearranged and reduced to the standard form

maximize
ν,ψ,λ,τ,µ

−
k−1∑
i=1

νTi+1bi + ψTx− ε||Ω−1ψ||q +

k−1∑
i=2

λTi (uili) (A.13)

s.t. νk = c (A.14)

WT
1 ν2 = −ψ (A.15)

νi,j = 0, j ∈ I−i (A.16)

νi,j = (WT
i νi+1)j , j ∈ I+

i (A.17)

((ui,j − li,j)λi,j − µi,j − τi,j) = (WT
i νi+1)j

νi,j = ui,jλi,j − τi,j

}
i=2,...,k−1

j∈Ii (A.18)

λ, τ, µ ≥ 0. (A.19)

The insight of the dual problem is that it can also be written in the form of a deep network. Consider
the equality constraint A.18, the dual variable λ corresponds to the upper bounds in the convex ReLU
relaxation, while µ and τ correspond to the lower bounds z ≥ 0 and z ≥ ẑ, respectively. By the
complementary property, these variables will be zero of ReLU constraint is non-tight, and non-zero if
the ReLU constraint is tight. since the upper and lower bounds cannot be tight simultaneously, either
λ or µ+ τ must be zero. Hence, at the optimal solution to the dual problem,

(ui,j − li,j)λi,j = [(WT
i νi+ 1)j]+

τi,j + µi,j = [(WT
i νi+ 1)j]−.

(A.20)

Combining this with the constraint νi,j = ui,jλi,j − τi,j leads to

νi,j =
ui,j

ui,j − li,j
[(WT

i νi+ 1)j]+ − η[(WT
i νi+ 1)j]− (A.21)

for j ∈ Ii and 0 ≤ η ≤ 1. This is a leaky ReLU operation with a slope of ui,j
ui,j−li,j in the positive

portion and and a negative slope η between 0 and 1. Also note that from A.15 −ψ denotes the pre-
activation variable for the first layer. For the sake of simplicity, we use ν̂i to denote the pre-activation
variable for layer i, then the objective of the dual problem becomes

SDε(x, ν) =−
k−1∑
i=1

νTi+1bi +

k−1∑
i=2

∑
j∈Ii

ui,j li,j
ui,j − li,j

[ν̂i,j]+ − ν̂T1 x− ε||Ω−1ν̂1||q

=−
k−1∑
i=1

νTi+1bi +

k−1∑
i=2

∑
j∈Ii

li,j [ν̂i,j]+ − ν̂T1 x− ε||Ω−1ν̂1||q

(A.22)

Hence, the final form of the dual problem can be rewritten as a network with objective SDε(x, ν),
input −c and activations I as follows:

maximize
ν̂,ν

−
k−1∑
i=1

νTi+1bi +

k−1∑
i=2

∑
j∈Ii

li,j [ν̂i,j]+ − ν̂T1 x− ε||Ω−1ν̂1||q

s.t. νk = −c
ν̂i = (WT

i νi+1), i = k − 1, . . . , 1

νi,j =


0 j ∈ I−i
ν̂i,j j ∈ I+

i
ui,j

ui,j−li,j [ν̂i,j]+ − η[ν̂i,j]− j ∈ Ii
i = k − 1, . . . , 2

(A.23)

5

Theorem 4.2. In binary classification problem, suppose pa ∈ (1
2 , 1] satisfies P(f(x+n) = a) ≥ pa.

Then g(x + δ) = a for all
√
δTΣ−1δ ≤ Φ−1

r,n(pa) − q50, where r :=
√
δTΣ−1δ, Φ−1

r,n(pa) is the
quantile function of the χ distribution of d degrees of freedom, and q50 is the 50th quantile.

Proof. Let X and Y be random variables such that X ∼ N (x,Σ) and Y ∼ N (x + δ,Σ). Next,
we define the set A :=

{
z | δTΣ−1(z − x) ≤

√
δTΣ−1δΦ−1

r,d(pa)
}

, where r :=
√
δTΣ−1δ and

Φ−1
r,n(pa) is the quantile function of the χ distribution of d degree of freedom for the probability pa,

so that P(X ∈ A) = pa. Consequently, P(Y ∈ A) = Φr,d

(
Φ−1
r,d(pa)−

√
δTΣ−1δ

)
. To ensure that

Y is classified as class A, we need

Φr,d

(
Φ−1
r,d(pa)−

√
δTΣ−1δ

)
≥ 1/2 (A.24)

which can be satisfied if and only if
√
δTΣ−1δ ≤ Φ−1

r,d(pa)− q50.

A.5 Algorithm for Section 5.1

Activation Bounds: The dual objective function provides a bound on any linear function cT ẑk.
Therefore, we can compute the dual objective for c = −I and c = I to obtain lower and upper
bounds. For c = I , value of νi for all activations simultaneously is given by

ν̂i = WT
i Di+1W

T
i+1 . . . DnW

T
n and νi = Diν̂i, where (Di)jj =


0 j ∈ I−i
1 j ∈ I+

i
ui,j

ui,j−li,j j ∈ Ii
(A.25)

Similar to [4], bounds for νi and ν̂i can be computed for each layer by cumulatively generating
bounds for ẑ2, then ẑ3 and so on. By initializing ν̂1 := WT

1 , ζ1 := bT1 , first bounds are l2 :=
xTWT

1 + bT1 − ε||Ω−1WT
1 ||q and u2 := xTWT

1 + bT1 + ε||Ω−1WT
1 ||q, where the norms are taken

over the columns. Calculation of the bounds for each layer is given below in Algorithm 1.

Algorithm 1 Activation Bound Calculation

Input: Network parameters {Wi, bi}, input data x, input constraint matrix Ω and ball size ε, norm
type q.
Initialize ν̂1 := WT

1 , ζ1 := bT1
l2 = xTWT

1 + bT1 − ε||Ω−1WT
1 ||q

u2 = xTWT
1 + bT1 + ε||Ω−1WT

1 ||q
ν2,I2 := (D2)I2W

T
2

ζ2 = bT2
for i = 2 to k − 1 do
li+1 = xT ν̂1 +

i∑
j=1

ζj − ε||Ω−1ν̂1||q +
i∑

i=2,i′∈Ii

lj,i′ [−νj,i′]+

ui+1 = xT ν̂1 +
i∑

j=1

ζj + ε||Ω−1ν̂1||q −
i∑

i=2,i′∈Ii

lj,i′ [νj,i′]+

νj,Ij = νj,Ij (Di)IiW
T
i

ζj = ζjDiW
T
i

ν̂1 = ν̂1(Di)IiW
T
i

end for
Output: {li, ui}ki=2

A.6 Experiments for Section 3.1

In this section, we present a detailed explanation about the winner attacks [5] of malware competition
[6], and show detailed evasion success of these attacks in Table A.1.

6

GREEDY ATTACK: Bytes in a range 256 are added iteratively to the malware binaries to make
sure the prediction score for a known model lowers and none of the packing, functionality, or anti-
tampering checks are affected. Byte addition is stopped when the prediction score gets lower than
a threshold value or the file size exceeds 5MB. We generate 1000 adversarial examples from the
malicious binaries of EMBER test set for each target model, such as standard trained neural network,
adversarially trained model with `2-PGD for ε = 5 and LGBM model which were provided as
benchmark together with EMBER dataset [2]; and we call these adversarial example sets GNN, GAdv
and GLGBM, respectively.

CONSTANT PADDING ATTACK: A new section is created in the binary file and filled with a
constant value of size 10000. This attack is applied to 2000 binaries from EMBER malicious test
set for constants “169” and “0”, and we call these adversarial example sets C1 Pad. and C2 Pad.,
respectively.

STRING PADDING ATTACK: Strings of size 10000 from a benign file, such as Microsoft’s End
User License Agreement (EULA), are added to a new section created in the malware binary. We
generate 2000 adversarial examples, which we call set Str. Pad., by string padding EMBER malicious
test set.

Table A.1: Malware Use-case: Average number of successful evasions on standard training, uniform
and non-uniform `2-PGD adversarial trainings by the adversarial example sets out of 1000 samples
for approximately equal ‖δ‖2. Defense success rates shown in Table A.2 and Figure 1a are calculated
by averaging the success rate over these individual attacks results.

Model ||δ||2 GNN GLGBM GAdv C1 Pad. C2 Pad. Str. Pad.
Std. Training - 832 217 337 168 35 123

Uniform-δ 0.1 472.6 105 249.6 66.3 37.6 114.9
NU-δ-Mask 0.1 408.5 89.2 241.7 46.2 35.2 74.5
NU-δ-SHAP 0.1 392.8 86.8 206.8 64.9 39 104.7
NU-δ-Pearson 0.1 417.6 92.8 221.4 45.1 38.2 74.5
NU-δ-MD 0.1 413 101 216 56 38.7 81.8
NU-δ-MDtarget 0.1 391.6 84.2 234.6 52.2 38.7 79

Uniform-δ 1 447.2 111.8 273.8 50.1 38.5 83.4
NU-δ-Mask 1 299.4 88.2 223.4 58.3 40 91
NU-δ-SHAP 1 359.7 82.2 244.5 53.8 33.6 81.7
NU-δ-Pearson 1 304 96.2 265 60.5 38.8 99.2
NU-δ-MD 1 373.2 89.5 244 54.7 37 81.8
NU-δ-MDtarget 1 360.8 103.4 246.6 45.1 36.7 72.4

Uniform-δ 6.7 231.5 129 333 37.7 38 58.7
NU-δ-Mask 6.7 104.4 68.4 153.4 43.4 47.3 70.8
NU-δ-SHAP 6.7 170 113 302.5 32.7 41.2 39.7
NU-δ-Pearson 6.7 213 78 304 38 38 48.6
NU-δ-MD 6.7 234 91 314 27.7 31 34.2
NU-δ-MDtarget 6.7 196 61 301 37.5 33.5 36.5

Uniform-δ 11 177 77.6 278 37.8 41.3 44.6
NU-δ-Mask 11 94.4 45.2 160.8 30.8 43.7 50.5
NU-δ-SHAP 11 178 62 296 32 40 35
NU-δ-Pearson 11 142 75.7 273 31.6 40.7 42.8
NU-δ-MD 11 195 46 247 40 32.5 43
NU-δ-MDtarget 11 122.7 44 251.7 34 41 48

Uniform-δ 18 152.2 57.3 234 42.7 51.6 52.3
NU-δ-Mask 18 44.5 20.2 116.5 27.1 48.2 47.2
NU-δ-SHAP 18 159.4 48.6 207.2 53.1 59.6 61.3
NU-δ-Pearson 18 154.2 49 220.4 42.6 61.7 47.2
NU-δ-MD 18 144.2 49.2 204.6 53 54 63.8
NU-δ-MDtarget 18 132.4 52.4 215 50.6 53.4 53.2

Uniform-δ 25 233.2 58 228 59.3 51 68.4
NU-δ-Mask 25 25 14.8 108 21.8 48.9 34.8
NU-δ-SHAP 25 193.8 53.4 226.2 44.7 56.9 58.7
NU-δ-Pearson 25 158.2 59.5 191.2 67.6 65.6 75.8
NU-δ-MD 25 199.7 54 248.5 58.6 59.5 59.7
NU-δ-MDtarget 25 210 55 225.6 57.7 56.4 60.5

7

Table A.1 shows the average number of adversarial examples out of 1000 which successfully evade
the corresponding models. While NU-δ-Mask and NU-δ-MDtarget have better performance against
Greedy attacks for most of the time, i.e., sets GNN, GLGBM and GAdv, NU-δ-Pearson, NU-δ-SHAP
and NU-δ-MD have better accuracy against padding attacks, i.e, sets C1 Pad., C2 Pad. and Str. Pad.

Table A.2: Malware Use-case: Clean accuracy (Ac.) and defense success rate (S.R.) of standard train-
ing, uniform and non-uniform `2-PGD adversarial trainings with EMBER dataset for approximately
equal ‖δ‖2. Non-uniform perturbation defense approaches outperform the uniform perturbation for
all cases against adversarial attacks.

Model ‖δ‖2 Clean Ac., % Defense S.R., %

Std. Training - 96.6 73

Uniform-δ 0.1 96.2 82.7± 0.88
NU-δ-Mask 0.1 96.2 85.3± 0.25
NU-δ-SHAP 0.1 96.2 85.2± 0.39
NU-δ-Pearson 0.1 96.1 85.3± 0.94
NU-δ-MD 0.1 96.3 85± 0.99
NU-δ-MDtarget 0.1 96.2 85.4± 0.80

Uniform-δ 1 96.1 83.3± 0.41
NU-δ-Mask 1 96.1 86.7± 0.68
NU-δ-SHAP 1 96.3 85.5± 0.61
NU-δ-Pearson 1 96.2 85.7± 0.45
NU-δ-MD 1 96.3 85.4± 0.67
NU-δ-MDtarget 1 96.3 85.9± 0.19

Uniform-δ 6.7 95.8 86.3± 0.15
NU-δ-Mask 6.7 95.7 92± 0.07
NU-δ-SHAP 6.7 95.8 88.3± 0.33
NU-δ-Pearson 6.7 95.9 88.2± 0.30
NU-δ-MD 6.7 96 87.7± 0.32
NU-δ-MDtarget 6.7 95.8 89± 0.18

Uniform-δ 11 95.6 89.3± 0.54
NU-δ-Mask 11 95.8 92.9± 0.57
NU-δ-SHAP 11 96 90.3± 0.36
NU-δ-Pearson 11 95.8 90± 0.36
NU-δ-MD 11 95.9 89.9± 0.25
NU-δ-MDtarget 11 95.7 90.9± 0.29

Uniform-δ 18 95.5 90.17± 0.71
NU-δ-Mask 18 95.8 94.8± 0.51
NU-δ-SHAP 18 95.3 90.45± 0.30
NU-δ-Pearson 18 95.3 90.46± 0.25
NU-δ-MD 18 95.4 90.54± 0.46
NU-δ-MDtarget 18 95.4 90.7± 0.51

Uniform-δ 25 95.6 88.4± 0.39
NU-δ-Mask 25 95.7 95.8± 0.21
NU-δ-SHAP 25 95.5 89.5± 0.27
NU-δ-Pearson 25 94.9 89.7± 0.40
NU-δ-MD 25 95.2 88.6± 0.26
NU-δ-MDtarget 25 95.2 89± 0.57

8

Table A.3: Credit Risk Use-case: Clean accu-
racy (Ac.) and defense success rate (S.R.) of stan-
dard training, uniform and non-uniform `2-PGD
adversarial trainings with German Credit dataset
for approximately equal ‖δ‖2. Non-uniform per-
turbation defense approaches outperform the uni-
form perturbation for all cases against adversar-
ial attacks.

Model ‖δ‖2 Clean Ac., % Defense S.R., %

Std. Training - 69.7 60

Uniform-δ 0.01 69 61.3± 0.40
NU-δ-SHAP 0.01 68.3 61.3± 0.35
NU-δ-Pearson 0.01 68.3 61.9± 0.37
NU-δ-MD 0.01 69.6 61.6± 0.32
NU-δ-MDtarget 0.01 69.7 61.9± 0.30

Uniform-δ 0.1 67.7 63.4± 0.31
NU-δ-SHAP 0.1 67.1 64.5± 0.20
NU-δ-Pearson 0.1 66.8 64.3± 0.56
NU-δ-MD 0.1 66.7 64.2± 0.32
NU-δ-MDtarget 0.1 66.7 64.5± 0.41

Uniform-δ 0.3 66.7 66.4± 0.22
NU-δ-SHAP 0.3 65.8 67.6± 0.30
NU-δ-Pearson 0.3 66 68± 0.21
NU-δ-MD 0.3 66.5 67.1± 0.64
NU-δ-MDtarget 0.3 66.3 69± 0.32

Uniform-δ 0.5 66.2 68± 0.32
NU-δ-SHAP 0.5 66.5 69.7± 0.37
NU-δ-Pearson 0.5 65.9 69.4± 0.27
NU-δ-MD 0.5 66.3 69.2± 0.35
NU-δ-MDtarget 0.5 66 69.8± 0.13

Uniform-δ 0.7 66.1 69.6± 0.20
NU-δ-SHAP 0.7 65.8 71.1± 0.57
NU-δ-Pearson 0.7 65.6 71± 0.37
NU-δ-MD 0.7 66.4 70.5± 0.30
NU-δ-MDtarget 0.7 65.6 70.3± 0.30

Uniform-δ 1 65.3 70.6± 0.44
NU-δ-SHAP 1 64.5 71.3± 0.32
NU-δ-Pearson 1 64.3 71.3± 0.32
NU-δ-MD 1 64.9 71± 0.37
NU-δ-MDtarget 1 65 71± 0.21

Table A.4: Spam Detection Use-case: Clean
accuracy and defense success rate of standard
training, uniform and non-uniform `2-PGD ad-
versarial trainings with Twitter Spam dataset for
approximately equal ‖δ‖2.

Model ‖δ‖2 Clean Ac., % Defense S.R., %

Std. Training - 94.6 17.5

Uniform-δ 0.1 91.1 34.4± 0.16
NU-δ-SHAP 0.1 93.9 35.3± 0.32
NU-δ-Pearson 0.1 94 36± 0.50.
NU-δ-MD 0.1 93.9 36.7± 0.48
NU-δ-MDtarget 0.1 93.9 38.3± 0.50

Uniform-δ 0.3 92.6 58.3± 0.66
NU-δ-SHAP 0.3 91.9 66.5± 0.86
NU-δ-Pearson 0.3 91.8 65± 0.21
NU-δ-MD 0.3 91.9 69.4± 0.25
NU-δ-MDtarget 0.3 92 67.9± 0.25

Uniform-δ 0.5 91.3 82.8± 0.46
NU-δ-SHAP 0.5 90.9 86.1± 0.14
NU-δ-Pearson 0.5 91.2 87.3± 0.20
NU-δ-MD 0.5 91.1 85.3± 0.30
NU-δ-MDtarget 0.5 91.2 86.8± 0.28

Uniform-δ 0.7 91.1 89.6± 0.48
NU-δ-SHAP 0.7 90.5 90.5± 0.19
NU-δ-Pearson 0.7 90.6 90.7± 0.11
NU-δ-MD 0.7 90.5 89.8± 0.35
NU-δ-MDtarget 0.7 90.5 89.1± 0.18

Uniform-δ 1 90.5 87.3± 0.62
NU-δ-SHAP 1 89.8 91.4± 0.62
NU-δ-Pearson 1 89.9 92± 0.53
NU-δ-MD 1 89.7 93.3± 0.30
NU-δ-MDtarget 1 89.8 92.5± 0.64

A.7 Experiments for Section 3.4

We further investigate the performance of our non-uniform approach against uniformly norm-bounded
attacks for generalizability as in Section 3.4. We use the same setting as in spam detection use-case,
and craft AEs using standard PGD attack, i.e., the attack in Uniform-δ, for ε = {0.1, 0.3, 0.5, 0.7}.
For a fair comparison between the uniform and non-uniform approaches, we set approximately equal
||δ||2 for both models in the average sense. In this section, we also consider a non-uniform robust
model which enforces the AT constraint first on ||Ωδ||2 and then ||δ||2. That is, the non-uniform
attack is always a valid uniform attack in the strict sense. We call this defense Combo due to using
the combination of both projections in (3) and (5).

Table A.5 shows the defense success rates of Uniform-δ, NU-δ-MDt and MDt-Combo, which denotes
the Combo approach for Ω selected as the Mahalanobis matrix for the benign samples, against PGD
attacks for Spam Detection Use-case. We observe that our non-uniform approach outperforms the
uniform approach for all cases, hence it is also effective against the uniformly norm-bounded attacks
which makes it generalizable. Furthermore, Table A.5 shows that MDt-Combo performs in between
Uniform-δ and NU-δ-MDt. This is due to the fact that the strict constraint on ||δ||2 reduces the effect
of non-uniform projection.

9

Table A.5: Defense success rates of Uniform-δ, NU-δ-MDt and MDt-Combo against PGD attacks
for Spam Detection Use-case. Both non-uniform defenses outperform the uniform approach while
NU-δ-MDt also outperforms MDt-Combo for all cases.

Defenses ||δ||2 Attack ε=0.1 Attack ε=0.3 Attack ε=0.5 Attack ε=0.7

Uniform-δ 90.6± 0.18 83.9± 0.34 16.6± 0.47 14.8± 0.65
NU-δ-MDt 92.8± 0.21 88.2± 0.41 34.95± 0.5 21.4± 0.22
MDt-Combo

0.1
91.6± 0.24 86.3± 0.28 24.4± 0.38 19.2± 0.32

Uniform-δ 92.6± 0.14 89.05± 0.24 30.5± 0.42 20.85± 0.58
NU-δ-MDt 93.2± 0.10 90.95± 0.22 61.75± 0.51 46.3± 0.41
MDt-Combo

0.3
93± 0.11 89.24± 0.19 47.88± 0.72 31.5± 0.39

Uniform-δ 92.9± 0.08 91.4± 0.05 88± 0.22 86.5± 0.25
NU-δ-MDt 93.3± 0.05 91.45± 0.06 89.45± 0.17 87.7± 0.12
MDt-Combo

0.5
93.1± 0.10 91.4± 0.11 89.30± 0.14 87.2± 0.18

Uniform-δ 93.2± 0.14 91.9± 0.25 90.18± 0.20 88.38± 0.22
NU-δ-MDt 94.5± 0.11 94.17± 0.42 93.33± 0.15 93.14± 0.31
MDt-Combo

1
94.39± 0.10 92.42± 0.28 91.44± 0.19 91.33± 0.26

Uniform-δ 93.22± 0.16 92.01± 0.27 90.61± 0.24 89.78± 0.15
NU-δ-MDt 94.45± 0.12 94.38± 0.31 93.76± 0.16 93.48± 0.11
MDt-Combo

1.5
94.27± 0.11 93.1± 0.20 92.3± 0.27 91.8± 0.17

10

References
[1] Eric Wong and Zico Kolter. Provably robust neural networks. 2018. URL https://github.

com/locuslab/convex_adversarial.

[2] Hyrum S. Anderson and Phil Roth. EMBER: an open dataset for training static PE malware
machine learning models. arXiv preprint arXiv: 1804.04637, 2018.

[3] Jiawei Han, Micheline Kamber, and Jian Pei. Data transformation and data discretization. Data
Mining: Concepts and Techniques. Elsevier, pages 111–118, 2011.

[4] Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex
outer adversarial polytope. In International Conference on Machine Learning, pages 5286–5295.
PMLR, 2018.

[5] William Fleshman. Evading Machine Learning Malware Clas-
sifiers, 2019. URL https://towardsdatascience.com/
evading-machine-learning-malware-classifiers-ce52dabdb713.

[6] DEFCON. Machine learning static evasion competition, 2019. URL https://www.elastic.
co/blog/machine-learning-static-evasion-competition.

11

https://github.com/locuslab/convex_adversarial
https://github.com/locuslab/convex_adversarial
https://towardsdatascience.com/evading-machine-learning-malware-classifiers-ce52dabdb713
https://towardsdatascience.com/evading-machine-learning-malware-classifiers-ce52dabdb713
https://www.elastic.co/blog/machine-learning-static-evasion-competition
https://www.elastic.co/blog/machine-learning-static-evasion-competition

	Toy Example for Non-uniform Perturbations
	Ember Dataset Features
	DNN Architecture and Pre-processing
	Theorem Proofs
	Algorithm for Section 5.1
	Experiments for Section 3.1
	Experiments for Section 3.4

