
Appendix to “GraphMP: Graph Neural Network-
based Motion Planning with Efficient Graph Search"

Xiao Zang1 Miao Yin2∗ Jinqi Xiao1 Saman Zonouz3 Bo Yuan1

1Department of Electrical and Computer Engineering, Rutgers University
2Department of Computer Science and Engineering, The University of Texas at Arlington

3School of Cybersecurity and Privacy, Georgia Institute of Technology
1{xz514, jx257, bo.yuan.ece}@rutgers.edu
2miao.yin@uta.edu 3szonouz6@gatech.edu

1 Neural Collision Checker

Figure 1: The overall network architectures of the neural collision checker and neural heuristic
estimator in GraphMP.

The overall network architecture is shown in Fig. 1. We follow the same way of obstacle encoding
from [1]. The initial embedding x

(0)
i of each node vi is set as the corresponding free state and y

(0)
ij is

initialized by concatenating the vectors (x(0)
i , x

(0)
j , x

(0)
i − x

(0)
j). For simplicity of notation, we use x

and y to represent the embedding of all nodes and edges, respectively. Given MLPs f (t)
ax , f (t)

ay , f (t)
Kx

,

f
(t)
Ky

, f (t)
Qx

, f (t)
Qy

, f (t)
Vx

, f (t)
Vy

, the obstacle encoding at the t-th iteration in the iterative obstacle encoding
foe can be formulated as:

a(t)x = LN(x(t) +Att(f
(t)
Kx

(B), f
(t)
Qx

(x(t)), f
(t)
Vx

(B))),

a(t)y = LN(y(t) +Att(f
(t)
Ky

(B), f
(t)
Qy

(x(t)), f
(t)
Vy

(B))),

x(t+1) = LN(a(t)x + f (t)
ax

(a(t)x)),

y(t+1) = LN(a(t)y + f (t)
ay

(a(t)y)). (1)

Here, LN is the layer normalization [2] and t starts from zero to l − 1. Besides, Att(K,Q, V) =
softmax(QKT /

√
dk)V where K ∈ Rn×dk , Q ∈ Rm×dv and V ∈ Rn×dk are the keys, queries and

∗This work was done when the author was with Rutgers University.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

values, respectively. Additionally, fprob is a three-layer MLP with an output dimension of 2. In
our implementation, the last MLP fprob is composed of three fully connected layers whose output
dimensions are 64, 32 and 2, respectively. We also apply the ReLU activation after its first and second
layers, and LogSoftmax after its last layer. The hidden dimension dk is set as 64.

2 Neural Heuristic Estimator

The overall network architecture is shown in Fig. 1. Given the associated robot state x(0)
i , we initialize

the node embedding of vi by incorporating the difference and L2 distance to the goal node vg, and
initialize the edges using the information of its connected nodes, i.e.,

q
(0)
i = hx(x

(0)
i , x(0)

g , x
(0)
i − x(0)

g , (x
(0)
i − x(0)

g)2),∀vi ∈ V,

r
(0)
ij = hy(x

(0)
i , x

(0)
j , x

(0)
j − x

(0)
i),∀eij ∈ Efree, (2)

where functions hx and hy are the two-layer MLPs that embed vi and eij into the latent space with
q
(0)
i ∈ Rdh and r

(0)
ij ∈ Rdh , respectively. In our implementation, the last MLP fval that outputs the

heuristic values is composed of three fully connected layers whose output dimensions are 32, 32
and 1, respectively. We also apply the ReLU activation after its first and second layers. The hidden
dimension dh is set as 32.

Loss Function of End-to-End Training The neural heuristic estimator is trained on batches of graph
search problem instances {(V(i), E(i)free, v

(i)
s , v

(i)
g , ĉ(i))}, where ĉ(i) is a binary vector that marks the

nodes contained in the optimal path as one. Similar to [3], for the i-th training problem, the training
loss is measured by the L1 distance between the closed-list vector c(i) computed by the differentiable
A* and the binary vector c(i) representing the oracle path: Lheu(c

(i), c(i)) = ||c(i) − c(i)||1/|V(i)|.
Such a loss penalizes the nodes that are excessively explored to compute a path and forces the path to
be close to the optimal path. Consequently, the loss encourages our differentiable A* to obtain the
optimal path with the smallest search effort, forcing neural heuristic estimator to learn and produce
better search guidance.

Algorithm 1 Graph-based A* search.
Input: The weighted graph G = (V, E), start node vs, goal node vg
Output: The path π

1: Initialize the open list O ← {vs} and closet list C ← ∅.
2: Initialize g(v)← 0,∀v ∈ V .
3: while vg ̸∈ C do
4: Select vsel ∈ O with the minimum g(v) + h(v).
5: Update O ← O \ vsel, C ← C ∪ vsel.
6: for vnbr ∈ N (vsel) ∩ C do
7: # Here, wvsel,vnbr

denotes the weight of edge evsel,vnbr
.

8: Compute cost← g(vsel) + wvsel,vnbr
.

9: if vnbr /∈ O or cost < g(vnbr) then
10: Update O ← O ∪ vnbr, g(vnbr)← cost, p(vnbr)← vsel.
11: end if
12: end for
13: end while
14: # Traverse the ancestors of goal vg until vs is reached.
15: π ← Backtrack(p, vs, vg).
16: Return π.

3 Admissibility and Consistency.

The A* search is only guaranteed to find the optimal path if the heuristic values are both admissible
and consistent. Therefore, it is interesting to study such two properties of our predicted heuristic
values produced by NHE. Empirical evaluations show that NHE exhibits admissibility and consistency.
Denote f(vi) be the heuristic value of node vi and c(vi, vj) be the actual cost between vi and vj . As

2

shown in the left figures (heatmaps) from Fig. 2(a) and Fig. 2(b), the value |f(vi)−f(vj)|− c(vi, vJ)
for each edges eij ∈ E is non-positive for most cases, indicating good consistency for NHE. The
right figures in Fig. 2(a) and Fig. 2(b) also show that f(vi) estimated by NHE is constantly smaller
than actual cost c(vi, v)g), indicating good admissibility of NHE.

(a) Maze 2D. (b) KUKA 7D.

Figure 2: Study of consistency and admissibility of the neural heuristic estimator (NHE) on RGG of
100 nodes, on Maze 2D and KUKA 7D, respectively. Denote f(vi) be the heuristic value of node
vi and c(vi, vj) be the actual cost between vi and vj . The left figures of (a) and (b) show the value
of |f(vi) − f(vj)| − c(vi, vj) for each edge eij in the RGG, where a negative value (dark color)
indicates that the consistency holds for the corresponding pair of nodes. It is seen that NHE exhibits
good consistency. The right figures in (a) and (b) plot the actual cost to the goal (green line), heuristic
values estimated by NHE (blue line) and Euclidean distance (yellow line) of all nodes, respectively.
It is seen that NHE exhibits good admissibility. To be specific, NHE yields heuristic values that are
consistantly smaller than the actual cost. In especial, it outperforms the Euclidean distance on KUKA
7D significantly, by approximating the actual cost much better.

4 Graph-based A* Search.

A* searches for the minimum-cost path from the start node to the goal by iteratively expanding nodes
according to the priority measure: f(v) = g(v) + h(v). Here g(v) is the function that accumulates
the actual cost of the path from the start node to v, and h(v) is a properly designed heuristic function
that estimates the cost from v to the goal node.

Algorithm 1 overviews the procedure of graph-based A* search. The input contains the graph
G = (V, E), start node vs and goal node vg . Let O and C be the open list (set of nodes to be visited)
and closed list (set of nodes that should not be visited again), respectively. Besides, p(v) represents
the parent node of v. We use N (v) = {vi|ev,vi ∈ E} to represent the neighboring nodes of v. There
are two main steps in A*: (1) select the lowest-cost node vsel with the smallest f(v) value from the
open list O (Line 4), and (2) expand the neighborhood of the vsel to update O, accumulated cost g
and the parent node (Line 6-13). Specifically, for each valid node vnbr ∈ N (vsel) that is not in the
closet list (Line 6), we check whether vnbr is a first-time seen node or there exists a shorter path to
connect it through vsel. If so, we append this node vnbr into O, update its cost g(vnbr) and set its
parent as vsel (Line 10). We repeat the above procedure until the goal vg is reached, and then retrieve
the ordered path by backtracking the ancestor nodes of vg recursively (Line 15).

5 Ablation Study

Varying Threshold θ in In-Search Collision Check. We also investigate the impact of different
values of θ, which controls the probability threshold of performing accurate collision check, on our
in-search collision check. A smaller value of θ causes a higher chance to query the predicted collision
results but with more uncertainty of correctness; while the greater value brings more latency incurred
by accurate collision check but with more safety of being collision-free. From Fig. 3, it is seen that
larger θ brings higher time cost due to the increasing demand of accurate collision checks. On the
other hand, the success rate first increases with larger θ, since smaller θ causes more aggressive
approximated collision check, potentially bringing collision-existed solution. Considering when θ
is approaching 80%, the success rate becomes steady across different environments. Therefore, we
adopt θ=80% in our experiments to make good balance between planning speed and success rate.

3

Table 1: The comparison between A* with the heuristic function of neural heuristic estimator (NHE)
and vanilla A*, with respect to the mean path cost and search space. The search space is measured
by counting the number of visited nodes to compute a path. Note that we do not perform lazy node
removal to reduce path cost here. The A* with our neural heuristic predictor significantly outperforms
the vanilla A*, by producing solutions of lower path cost with smaller search space.

A* with NHE Vanilla A*

Path cost Search sp Path cost Search sp

Maze2 2.82 19.40 2.71 23.59
UR5 9.76 3.65 11.38 5.97

Snake7 5.94 3.15 6.45 7.24
KUKA7 8.83 7.13 10.81 15.33
KUKA13 15.82 8.74 18.51 23.76
KUKA14 14.32 7.25 17.19 24.82

Table 2: The performance of neural collision checker on 1000 raw RGGs with 300 nodes and K-value
of 20 (K-NN).The GNN predicts the collision status of all edges in parallelism.

Accuracy
(%)

Confidence
(%)

Time cost
per graph (ms)

Maze2 98.90±0.66 81.62±5.15 4.50±0.13
UR5 95.31±0.38 85.61±5.57 5.24±0.09

Snake7 96.38±0.41 76.98±5.28 5.36±0.06
KUKA7 94.33±0.83 77.26±4.91 5.32±0.08

KUKA13 93.75±1.57 76.60±5.79 5.27±0.11
KUKA14 91.89±1.21 75.04±4.35 5.31±0.06

The number of nodes per sampling. Fig. 4 compares the performance of GraphMP with different
numbers of nodes per sampling. We set the max budget of sampled nodes as 1000 and fix the K
value of k-NN as 10. It is seen that path cost is reduced slightly with the increasing number of nodes
because the denser graphs contain optimal paths with smaller path costs. However, the operation of
lazy node removal also fixes the lousy paths caused by the graph sparsity to some degree. Besides,
the time cost becomes the lowest when the number of nodes equals 100 but keeps growing with larger
numbers. The reason is that sampling nodes from the free space and the computation of K-NN are
time-consuming, both too few or too many numbers cause the unnecessary repeat of these operations.
Furthermore, the success rates peak when the number is 100 and become stable.

The K value of K-NN. Furthermore, we inspect the impact of different K values adopted in K-NN,
by fixing the number of nodes per sampling as 100. From Fig. 5, our GraphMP first achieves a smaller
path cost with the greater K because the denser graph edges increase the possibility of composing a
shorter path. Besides, the time cost decreases when K = 10 and then becomes stable. The reason is

Figure 3: The time cost and success rate with the varying values of confidence threshold θ in in-
search collision check. The success rate is measured by the ratio of testing problems solved by the
collision-free paths validated by accurate collision check.

4

Table 3: The ratio (%) of edges whose prediction confidence are above different thresholds of in-
search collision check.

θ = 60% θ = 70% θ = 80% θ = 90%

Maze2 98.83 96.99 93.98 88.73
UR5 97.78 95.43 92.93 89.46

Snake7 96.14 92.62 87.32 80.16
KUKA7 95.51 91.60 85.75 75.46

KUKA13 92.26 82.39 73.32 47.78
KUKA14 92.54 82.98 67.10 39.94

Figure 4: The ablation study on the varying number of nodes per sampling.

that a larger K brings more edges to search a path without additional operations of sampling nodes.
The success rate also peaks around K = 10.

The ratio of edges above different values of θ. Table 3 shows the ratio of edges whose prediction
confidence are above different θ. It is seen that most of the raw edges are predicted with the confidence
above θ = 80% which well preserves the graph structure of the raw RGG, thereby covering the
configuration space with good connectivity.

6 Probabilistic Completeness of GraphMP

Lemma 1. When the threshold θ of in-search collision check equals 100%, GraphMP is probabilisti-
cally complete as more batches of nodes are sampled and added to the RGG.

Proof. The GraphMP performs the accurate collision-check on all visited edges during the graph
search procedure, with the threshold θ of in-search collision check equaling 100%. That means the
found path must be collision-free as long as a solution is computed. Therefore, proving that GraphMP
is probabilistically complete can be done in two steps as follows.

First, the probability that the predicted RGG contains a collision-free path approaches one as more
nodes are added, if there exists a valid solution. Given that nodes are sampled uniformly from the
free configuration space Xfree, the probability that a particular node v ∈ Xfree has not been sampled
after i batches approaches one, i.e.,

lim
i→∞

(1− 1

|Xfree|
)ni, (3)

where n is the number of node per batch. Hence, for any node v ∈ Xfree, as the batch increases, v
will almost surely be included in the RGG. Assume there exists a valid path comprises of l edges
and the RGG is dense infinitely. For each edge eij of the path, we can find one intermediate node vk
along eij so that both eik and ekj are predicted as collision-free correctly, as long as the prediciton
accuracy of the neural collision checker is positive. Therefore, the predicted RGG must contain a
collision-free path if the solution exists, when enough nodes are sampled.

Second, if there exists a collision-free path among the RGG containing collided edges, the A*
equipped with accurate collision checker will find the valid path. Given a RGG G = (V, E), A*
defines the cost function as f(v) = g(v) + h(v) for each node v ∈ V , where g(n) is the actual cost

5

Figure 5: The ablation study on the varying K value of K-NN.

from vs to v and h(v) is the heuristic estimate from v to vg. The A* initializes the search with v in
the open list and compute f(v) in each iteration. A* iteratively selects the node vsel with the lowest
f(vsel) from the open list for exploration. For every neighboring node vnbr of vsel, A* will only
append vnbr to the open list if evsel,vnbr

is validated by the accurate collision checker. Therefore, any
node that can be reached from v through a collision-free path will be appended into the open list. A*
terminates when the goal vg is reached or the open list is empty which contradicts our assumption
that there exists a collision-free path. Therefore, the accurate collision checker ensures the A* is able
to find the collision-free path if the solution exists.

In nutshell, when the collision checker threshold θ = 100%, the probability of GraphMP to find a
collision-free path approaches one with more batches of sampled nodes.

7 Pseudo Codes

Algorithm 2 In-Search Collision Check (ICC)
Input: The edge eij , the obstacles B, the collision probability pI(eij), the confidence threshold θ
Output: The collision status of eij

1: if pI(eij) > θ then
2: Return True.
3: else if AccurateCollisionCheck(eij , B) then
4: Return True.
5: end if
6: Return False.

Algorithm 3 Lazy Node Removal (LNR)
Input: The computed path π, the obstacle B

Output: The new path π
′

1: for i = 0, 1, 2, ..., len(π)− 1 do
2: for j = len(π)− 1, len(π)− 2, ..., i+ 1 do
3: if AccurateCollisionCheck(πi, πj , B) then
4: π

′ ← [π0, π1, ..., πi, πj , πj+1, ..., πlen(π)−1].
5: Return LNR(π

′
, B).

6: end if
7: end for
8: end for

6

Algorithm 4 GraphMP Inference for Online Planning
Input: Start node vs, goal node vg, the obstacles B, the well-trained neural collision checker
fcol(V, E , B,Θcol) and neural heuristic estimator fheu(V, E , vg,Θheu), the confidence threshold θ
Output: The collision-free path π

1: Sample a set of n nodes from Xfree as V .
2: Build the graph G = (V, E).
3: repeat
4: Predict collision probabilities p← fcol(V, E , B,Θcol).
5: Retrieve collision-free edges Efree ← {eij |pI(eij) > 0.5}.
6: Predict heuristic values bheu ← fheu(V, Efree, vg,Θheu).
7: Search path π ← A*_with_ICC(V, Efree, B, vs, vg,bheu,p, θ).
8: if π == ∅ then
9: Sample another n nodes from Xfree and add to V .

10: Re-compute the edges E .
11: end if
12: until |V| exceeds the max budget of nodes
13: # Perform accurate collision check on edges composing the path.
14: if AccurateCollisionCheck(π,B) then
15: Return ∅.
16: else
17: # Remove the lazy nodes from the computed path.
18: Update path π ← LNR(π,B).
19: end if
20: Return π.

References
[1] Chenning Yu and Sicun Gao. Reducing collision checking for sampling-based motion planning

using graph neural networks. Advances in Neural Information Processing Systems, 34:4274–4289,
2021.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[3] Ryo Yonetani, Tatsunori Taniai, Mohammadamin Barekatain, Mai Nishimura, and Asako
Kanezaki. Path planning using neural a* search. In International conference on machine
learning, pages 12029–12039. PMLR, 2021.

7

	Neural Collision Checker
	Neural Heuristic Estimator
	Admissibility and Consistency.
	Graph-based A* Search.
	Ablation Study
	Probabilistic Completeness of GraphMP
	Pseudo Codes

