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ABSTRACT

Collaboration is a key challenge in distributed multi-agent reinforcement learning
(MARL) environments. Learning frameworks for these decentralized systems
must weigh the benefits of explicit player coordination against the communication
overhead and computational cost of sharing local observations and environmen-
tal data. Quantum computing has sparked a potential synergy between quantum
entanglement and cooperation in multi-agent environments, which could enable
more efficient distributed collaboration with minimal information sharing. This
relationship is largely unexplored, however, as current state-of-the-art quantum
MARL (QMARL) implementations rely on classical information sharing rather
than entanglement over a quantum channel as a coordination medium. In con-
trast, in this paper, a novel framework dubbed entangled QMARL (eQMARL)
is proposed. The proposed eQMARL is a distributed actor-critic framework that
facilitates cooperation over a quantum channel and eliminates local observation
sharing via a quantum entangled split critic. Introducing a quantum critic uniquely
spread across the agents allows coupling of local observation encoders through
entangled input qubits over a quantum channel, which requires no explicit sharing
of local observations and reduces classical communication overhead. Further, agent
policies are tuned through joint observation-value function estimation via joint
quantum measurements, thereby reducing the centralized computational burden.
Experimental results show that eQMARL with Ψ+ entanglement converges to a
cooperative strategy up to 17.8% faster and with a higher overall score compared
to split classical and fully centralized classical and quantum baselines. The re-
sults also show that eQMARL achieves this performance with a constant factor of
25-times fewer centralized parameters compared to the split classical baseline.

1 INTRODUCTION

Quantum reinforcement learning (QRL) is emerging as a relatively new class of quantum machine
learning (QML) for decision making. Exploiting the performance and data encoding enhancements
of quantum computing, QRL has many promising applications across diverse areas such as finance
(Herman et al., 2022), healthcare (Flöther, 2023), and even wireless networks (Narottama et al.,
2023). Its multi-agent variant, quantum multi-agent reinforcement learning (QMARL), is of specific
interest because of the potential synergies between decentralized agent cooperation and quantum
entanglement. Indeed, in quantum mechanics (Einstein et al., 1971), entanglement is a distinctly
quantum property that intrinsically links the behavior of one particle with another regardless of their
physical proximity. The use of entanglement in the broader field of QML is a recent notion. Few
core works like Mitarai et al. (2018) and Du et al. (2020) use entangled layers within variational
quantum circuit (VQC) designs to link the behavior of quantum bits (or qubits) within a single
hybrid quantum model. Even in the recently proposed quantum split learning (QSL) framework
(Yun et al., 2023a), entanglement is only used locally within each VQC branch of the quantum split
neural network (QSNN) model. What has not yet been explored, however, is using entanglement to
couple the behavior of multiple QML models. In QMARL, the use of entanglement can be further
extended to the implicit coordination amongst agents during training time. Historically, in both purely
classical and quantum multi-agent reinforcement learning (MARL), classical communication, shared
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replay buffers, centralized global networks, and fully-observable environment assumptions have all
proven to be viable methods for coordinating a group policy (Yun et al., 2022a; 2023b; 2022b; Chen,
2023; Park et al., 2023; Kölle et al., 2024). Even QSL, which is not exclusive to MARL, relies
fully on classical communication between branches of the QSNN (Yun et al., 2023a). None of these
approaches, however, take advantage of the available quantum channel and quantum entanglement as
coupling mediums across decentralized agents or model branches, and opt instead for more classical
methods of coordination. In short, entanglement is one such phenomenon of quantum mechanics that
has not yet been fully explored in the context of cooperation in QMARL settings.

In contrast to prior art, we propose a novel framework dubbed entangled QMARL (eQMARL). The
proposed eQMARL is a distributed actor-critic framework, intersecting canonical centralized training
with decentralized execution (CTDE) and fully decentralized learning, that facilitates collaboration
over a quantum channel using a quantum entangled split critic. Our design uniquely allows agents
to coordinate their policies by, for the first time, splitting the quantum critic architecture over a
quantum channel and coupling their localized observation encoders using entangled input qubits.
This uniquely allows agents to cooperate over a quantum channel, which eliminates the need for
observation sharing, and further reduces classical communication overhead. Also, agent policies
are tuned via joint observation-value function estimation using joint quantum measurements across
all qubits in the system, which minimizes the computational burden of a central server. As will be
evident from our analysis, eQMARL will be shown to converge to a cooperative strategy faster, with
higher overall score on average, and with fewer centralized parameters compared to baselines. All of
our source code and experiments are publicly available on GitHub1.

1.1 RELATED WORKS AND THEIR LIMITATIONS

QMARL is a nascent field, with few works applying the quantum advantage to scenarios with multiple
agents (Yun et al., 2022a; 2023b; 2022b; Chen, 2023; Park et al., 2023; Kölle et al., 2024). Further,
the application of quantum to split learning (SL) is even newer, with Yun et al. (2023a) being the
only prior work. A complete overview of prior works is provided as supplementary material in
Appendix A. The resounding theme in these prior works is the use of independent agents or branches
that communicate and learn through centralized classical means. No prior work, however, makes use
of the quantum channel as a medium for system coupling or for multi-agent collaboration. Indeed,
the quantum elements serve as drop-in replacements for classical neural network (NN) counterparts,
and, importantly, the quantum channel between agents and the potential for sharing entangled qubit
states go largely under-utilized. Simply put, entanglement and the quantum channel are potentially
useful untapped cooperative resources intrinsic to QMARL that have largely unknown benefits.

1.2 CONTRIBUTIONS

The contributions of this work are summarized as follows:

• We propose a novel eQMARL framework that trains decentralized policies via a split
quantum critic over a quantum channel with entangled input qubits and joint measurement.

• We propose a new QMARL algorithm for training distributed agents via optimizing a split
critic without sharing local environment observations amongst agents or a central server.

• We show that the split nature of eQMARL reduces the computational burden of a central
quantum server by distributing and tuning parameterized quantum gates across agents in the
system, and requiring a small number of parameters for joint measurement.

• We empirically demonstrate that eQMARL with Ψ+ entanglement exhibits a faster conver-
gence time that can reach up to 17.8% faster, and with higher overall score, compared to
split classical and fully centralized classical and quantum baselines in environments with
full and partial information. Further, the results also show that eQMARL achieves this
level of performance and cooperation with a constant factor of 25-times fewer centralized
parameters compared to the split classical baseline.

To the best of our knowledge, this is the first application of QMARL that exploits the quantum channel
and entanglement between agents to learn without sharing local observations, while also reducing the
classical communication overhead and central computation burden of leading approaches.

1https://github.com/news-vt/eqmarl
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Figure 1: General design of our eQMARL framework. Dashed (solid) arrows represent quantum
(classical) communication. A split quantum critic is deployed across the agents via local VQCs
(purple) coupled via input entanglement (orange) at a trusted central server (gray). Joint quantum
measurements across all qubits (white) estimate the joint value from the locally-encoded observations.

2 PROPOSED EQMARL FRAMEWORK

Our proposed eQMARL framework is a new approach for training multi-agent actor-critic archi-
tectures which lies at the intersection between CTDE and fully decentralized learning. Inspired
from CTDE, we deploy decentralized agent policies which learn using a joint value function at
training time. The key to our approach, however, is that we use quantum entanglement to deploy
the joint value function estimator as a critic network which is spread across the agents to operate
in mostly decentralized fashion. An overview of our framework design is shown in Fig. 1, and the
design of the system architecture from a purely quantum perspective is shown in Fig. 2. From Fig. 1,
the two main elements of eQMARL are a central quantum server and a set of N decentralized
quantum agents N = {n}Nn=1. The decentralized agents do not communicate with each other; only
communication with the server is necessary during training. During execution, the agents interact
with the environment independently and are fully decentralized. During training, our eQMARL
framework is divided into core stages: 1) Centralized quantum input state entanglement preparation,
2) Decentralized agent environment observation encoding and variational rotations, and 3) Joint value
estimation through joint quantum measurement. Fig. 2 shows how input states are prepared using
custom pairwise entanglement operators, followed by agent VQCs, and then joint measurements.
Physically, these operations occur at different locations, however, it is equivalent to consider these as
a single quantum system, from input state preparation to final measurement. For purposes of quantum
state transmission, we assume an ideal quantum channel environment with no losses.

2.1 JOINT INPUT ENTANGLEMENT

The first stage of eQMARL creates an entangled input state for the split quantum critic network,
which couples the critic VQCs spread across the agents. To understand how this works, we first
provide a brief primer on quantum entanglement. More comprehensive preliminaries are provided as
supplementary material in Appendix B. Consider two independent agents A and B, with quantum
systems described by Hilbert spaces HA and HB , and arbitrary quantum states |ψ⟩A and |ψ⟩B . The
combined Hilbert space of the two systems can be represented using the Kronecker (i.e., tensor)
product HAB = HA ⊗ HB . The combined quantum system is said to be separable if the agent
states can be cleanly separated as a tensor product of the two systems, i.e., |ψ⟩AB = |ψ⟩A ⊗ |ψ⟩B .
If, however, the states cannot be represented in this form, then the combined system is said to be
inseparable, or entangled. For example, if each agent has one qubit in the {|0⟩, |1⟩} basis, then a
separable system could have the state |ψseparable⟩AB = |0⟩A ⊗ |1⟩A, whereas an entangled system
could have the state |ψentangled⟩AB = (|00⟩AB + |11⟩AB)/

√
2. In eQMARL, each agent n ∈ N is

assigned a set of D qubits Q(n) = {q(n)d }Dd=1 chosen based upon the environment state dimension
and desired quantum state encoding method. The total number of system qubits is N ×D, and is
represented by the union of agent qubit sets Q =

⋃N
n=1 Q(n). We couple the agents by preparing an

input state that pairwise entangles their qubits using a variation of Bell state entanglement (Nielsen &
Chuang, 2012) such that

ENTBδ(1,d),...,δ(N,d) =



(⊗N
n=2 CNOTδ(1,d),δ(n,d)

)
Hδ(1,d), if B = Φ+,(⊗N

n=2 CNOTδ(1,d),δ(n,d)
)
Hδ(1,d)Xδ(1,d), if B = Φ−,(⊗N

n=2 CNOTδ(1,d),δ(n,d)
)
Hδ(1,d)

(⊗N
k=2Xδ(k,d)

)
, if B = Ψ+,(⊗N

n=2 CNOTδ(1,d),δ(n,d)
)
Hδ(1,d)

(⊗N
k=1Xδ(k,d)

)
, if B = Ψ−,

(1)
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Figure 2: Quantum system design with N agents and D qubits per agent. Input entanglement
operators (orange) couple the split critic VQCs (purple, with split point marked in red), which has
cascaded layers of variational (blue), circular entanglement (yellow), and encoding (green) operators.

is a coupling operator across qubits {q(n)d }Nn=1 ⊆ Q, where B ∈ {Φ+,Φ−,Ψ+,Ψ−} is the set of Bell
states, B ∈ B is the selected entanglement scheme, and δ(n, d) = (n− 1)D+ d is an index mapping
within Q for agent n ∈ N at qubit index d ∈ [1, D], i.e., δ(n, d) ≡ q

(n)
d ∈ Q(n). Importantly, this

operator can be applied to entangle any arbitrary set of qubits within the circuit. Note that in this
work we assume the agents receive their entangled qubits in real-time via a trusted central source, i.e.,
a central server, however, they could be pre-generated and stored in quantum memory at the agent if
desired. The quantum circuits that generate each B ∈ B are given in Appendix C, Fig. C.1.

2.2 DECENTRALIZED SPLIT CRITIC VQC DESIGN

At its core, our joint quantum critic is a split neural network (SNN) (Vepakomma et al., 2018),
with each agent’s local VQC serving as a branch. After the input qubits are entangled, they are
partitioned back into N sets of D qubits, i.e., {Q(n)}n∈N , and transmitted to each agent respec-
tively. The agents collect and encode local observations from the environment into their assigned
qubits using a VQC. We use the VQC architectures of Jerbi et al. (2021); Skolik et al. (2021) for
our hybrid quantum network design. Each agent in our QMARL setting uses the same VQC ar-
chitecture for their branch of the critic, but tunes their own unique set of parameters. The same
architecture is a reasonable assumption since all agents are learning in the same environment,
and the uniqueness of parameters tailors each branch to local observations. From Fig. 2, the
VQC design consists of L cascaded layers of variational, circular entanglement, and encoding
operators, with an additional variational layer at the end of the circuit before measurement. The
trainable variational layer performs sequential parameterized Pauli X, Y, and Z-axis rotations, and
it can be expressed as the unitary operator Uvar(θ

(n)
l ) =

⊗D−1
d=0 Rz(θ

(n)
l,d,2)Ry(θ

(n)
l,d,1)Rx(θ

(n)
l,d,0),

where θ(n) ∈ [0, 2π](L+1)×D×3 is a matrix of rotation angle parameters for agent n. The non-
trainable circular entanglement layer binds neighboring qubits within a single agent using the
operator Ucirc = CZ0,D−1

(∏D−2
d=0 CZd,d+1

)
. The trainable encoding layer maps a matrix of clas-

sical features o(n) ∈ RD×3, i.e., an agent’s environment observation, into a quantum state via
the operator: Uenc(λ

(n)
l ,o(n)) =

⊗D−1
d=0 Rz

(
ϕ
(
λ
(n)
l,d,2o

(n)
d,2

))
Ry

(
ϕ
(
λ
(n)
l,d,1o

(n)
d,1

))
Rx

(
ϕ
(
λ
(n)
l,d,0o

(n)
d,0

))
,

where λ(n) ∈ RL×D×3 is a matrix of trainable scaling parameters, and ϕ : R 7→ R is an optional
squash activation function. The entire VQC can be expressed as a single operator, as follows:

Uvqc(θ
(n),λ(n),o(n)) = Uvar(θ

(n)
L )

L−1∏
l=0

Uenc(λ
(n)
L−l−1,o

(n)) Ucirc Uvar(θ
(n)
L−l−1), (2)

which is parameterized by variational angles θ(n) and encoding weights λ(n).

2.3 CENTRALIZED JOINT MEASUREMENT

The locally encoded qubits for each agent are subsequently forwarded to a central quantum server,
which could either be the entanglement source or a different location, for joint measurement. A
joint measurement across all qubits in the system is made in the Pauli Z basis using the observable
O =

⊗N×D
d=1 Zd. The joint value for the locally-encoded observations is then estimated as follows:

V (o) ≃ w

(
1 + ⟨O⟩ψ

2

)
, (3)

wherew ∈ R is a learned scaling parameter, ⟨O⟩ψ is the expected value of the joint observable w.r.t. an
arbitrary system state |ψ⟩ across all qubits, and o = (o(n))Nn=1 is a vector of joint observations.
This rescaling is necessary because the range of the measured observable is ⟨O⟩ψ ∈ [−1, 1] (i.e.,
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Algorithm 1: Summary of eQMARL training using MAA2C for a quantum entangled split critic.
The full algorithm is provided in Appendix D, Algorithm D.1
Require: Set ofN agents N , 1 quantum entanglement source, 1 quantum measurement server

1: InitializeN critic branches Uvqc withD qubits and parameters θ(n)
critic, λ(n), ∀n ∈ N ;

2: for all episodes do
3: for all time steps τ do ▷ eQMARL training, notation oτ =

(
o(n)
τ

)N
n=1

, oτ+1 =
(
o
(n)
τ+1

)N
n=1

,

aτ =
(
a(n)
τ

)N
n=1

.
4: Central quantum server generates 2N sets ofD entangled qubits and sends to agents via quantum channel;
5: for each agent n ∈ N do
6: Apply Uvqc(θ

(n)
critic,λ

(n),o(n)
τ ) and Uvqc(θ

(n)
critic,λ

(n),o
(n)
τ+1) from (2) locally using assigned entangled input qubits;

7: Transmit resulting qubits via quantum channel, and reward r(n)
τ via classical channel to central quantum server;

8: end
9: Perform joint measurements on qubits across all agents to estimate V (oτ ) and V (oτ+1) using (3);

10: EstimateQ(oτ ,aτ ) =
∑N

n=1 r
(n)
τ + γV (oτ+1) using discount factor γ;

11: Compute ∇xsplitLcritic and transmit via classical channel to each agent to update θ
(n)
critic locally using partial gradient from (4);

12: end
13: end

proportional to the eigenvalues of the operator O), whereas V (o) ∈ R. The critic loss with respect to
the joint value and local agent rewards is then disseminated amongst the agents for tuning of their
localized portion of the split critic network and local policy networks.

2.4 SPLIT CRITIC LOSS

The loss of the split critic is derived in a way similar to Vepakomma et al. (2018). Since the input
entanglement stage of eQMARL has no trainable parameters, it does not exist for the purposes of
SL backpropagation. We denote the point of joint quantum measurement as the split point, which
is preceded by local agent VQC branches. Each branch can be individually tuned using the partial
gradient of the loss at the split point via partial gradient w.r.t. its own local parameters. If we define
xsplit as the split point, then the partial gradient of each branch’s parameters can be estimated using
the central loss, as follows:

∇
θ
(n)
critic

Lcritic =
∂Lcritic

∂θ
(n)
critic

=
∂Lcritic

∂xsplit

∂xsplit

∂θ
(n)
critic

=
(
∇xsplitLcritic

)
︸ ︷︷ ︸

Central server

(
∇

θ
(n)
critic
xsplit

)
︸ ︷︷ ︸

Local agent

, (4)

where ∇xsplitLcritic is the gradient of the loss at the split point, and ∇
θ
(n)
critic
xsplit is the gradient from the

split point back to the start of branch n ∈ N . The value of ∇xsplitLcritic is sent classically to the agents,
and since (3) only uses a single trainable parameter, w, the classical communication overhead needed
for split backpropagation is minimal. Here, we use the Huber loss for the critic (see Appendix E).

2.5 COUPLED AGENT LEARNING ALGORITHM
Our eQMARL uses a variation of the multi-agent advantage actor-critic (MAA2C) algorithm (Pa-
poudakis et al., 2021) to train local agent policies with a split quantum joint critic. Here, we
summarize the algorithm in Algorithm 1, which focuses on the elements for necessary for tuning
the critic. In eQMARL, there are N quantum agents that are physically separated from each other
(no cross-agent communication is assumed) and one central quantum server. Each agent n ∈ N
employs a VQC, given by (2), with unique parameters θ

(n)
critic and λ(n), that serves as one branch

in the split critic network. All agents interact with the environment independently and each has its
own local data buffer – local observations are neither shared amongst agents nor with the server.
The first stage of eQMARL is fundamentally similar to traditional MAA2C. The second stage is
where the uniqueness of eQMARL comes into play. The central quantum server prepares 2N sets
of D entangled qubits using (1) for each time step τ , which are then transmitted to the agents via a
quantum channel. Each agent then encodes their local observations o(n)

τ and o
(n)
τ+1 using (2) and their

assigned entangled input qubits, and transmits the resulting qubits via quantum channel back to the
server. The agents also share their corresponding reward r(n)τ via a classical channel with the server,
which will be used for downstream loss calculations. Access to the reward is necessary for the critic
to evaluate agent policy performance. This is a reasonable assumption in eQMARL as the reward
value contains no localized environment information, and is also used in Yun et al. (2022a; 2023b);
Park et al. (2023); regardless, the classical channel will also be used to transmit partial gradients of
the critic loss. The server then performs a joint measurement on all the qubits associated with o

(n)
τ
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and o
(n)
τ+t to obtain estimates for V (oτ ) and V (oτ+1) using (3). Subsequently, the server computes

the expected cumulative reward Q(oτ ,aτ ) for the joint observations and actions at τ using V (oτ+1),
discount factor γ, and the respective rewards. The joint critic loss Lcritic is then computed, its partial
gradient w.r.t. the split point ∇xsplitLcritic is estimated, and then sent via a classical channel to each
agent to update their local weights θ(n)

critic using (4).

3 EXPERIMENTS AND DEMONSTRATIONS

3.1 ENVIRONMENTS

We use the CoinGame environment first proposed in Lerer & Peysakhovich (2018), and as imple-
mented in Phan et al. (2022), which has been widely used (Foerster et al., 2018b; Phan et al., 2022;
Kölle et al., 2024), a multi-agent variant of the canonical CartPole environment (Barto et al.,
1983), and a multi-agent variant of the MiniGrid environment (Chevalier-Boisvert et al., 2023) as
benchmarks for MARL scenarios. In particular, CoinGame’s nature as a zero-sum game and the
independent natures of both multi-agent CartPole and MiniGrid serve as intriguing case studies
for learning cooperative strategies using full, i.e., described by a Markov decision process (MDP),
and partial, i.e., described by a partially observable MDP (POMDP), information. In CoinGame,
we evaluate agents using the Score metric, which aggregates all agent undiscounted rewards over a
single episode. In both CartPole and MiniGrid we evaluate agents using the total reward metric,
which aggregates the number of time steps an agent maintains pole balance and the reward received
for maze navigation over a single episode respectively. See Appendix F for environment details.

3.2 EXPERIMENT SETUP

We compare eQMARL against three baselines that are considered the current state-of-the-art con-
figurations in actor-critic CTDE: 1) Fully centralized CTDE (fCTDE), a classical configuration
where the critic is a simple fully-connected NN located at a central server, like in Gupta et al. (2017);
Foerster et al. (2018a), and requires agents to transmit their local observations to the server via a
classical channel; 2) Split CTDE (sCTDE), a classical configuration where the critic is a branching
NN encoder spread across the agents, which is combined using a centralized NN based on Rashid
et al. (2018) located at a central server, and requires agents to transmit intermediate NN activations
via a classical channel; and 3) Quantum fully centralized CTDE (qfCTDE), a quantum variant of
fCTDE where the critic is located at a central server, as in Yun et al. (2022a; 2023b); Park et al. (2023),
and agents transmit their local observations via a classical channel. These baselines were carefully
chosen to convey how a quantum entangled split critic eliminates local environment observation
sharing, while reducing classical communication overhead by leveraging the quantum channel, and
minimizing centralized computational complexity. In our experiments we simplify the setup by using
policy sharing across the agents, as done in Yun et al. (2023b) and Chen (2023). All classical models
were built using tensorflow, the quantum models using tensorflow-quantum, and cirq
for quantum simulations. For CoinGame, all models were trained for 3000 epochs, with T = 50
steps, γ = 0.99. For CartPole, all models were trained for 1000 epochs, with a maximum of 500
steps per episode. For MiniGrid, all models were trained for 1000 epochs, with a maximum of
T = 50 steps per episode. All models use the Adam optimizer with varying learning rates. The
quantum models use D = 4 qubits, L = 5 layers, and ϕ = arctan activation. The classical
models use h = 12 hidden units for CoinGame and CartPole, and h = 100 for MiniGrid. See
Appendices G to I for further details. We conduct all experiments on a high-performance computing
cluster with 128 CPU cores and 256 GB of memory per node. The training time of sCTDE for
CoinGame MDP is ≈ 5.5 minutes, and for POMDP is ≈ 7.5 minutes. In contrast, the training
time of eQMARL is ≈ 3.5 hours and ≈ 8.5 hours for MDP and POMDP respectively; this is in line
with many current QMARL works (Yun et al., 2022a; 2023b; 2022b; Chen, 2023; Park et al., 2023;
Kölle et al., 2024), and is indicative of the known computational complexities of running quantum
simulations on classical hardware.

3.3 COMPARING QUANTUM INPUT ENTANGLEMENT STYLES

The first set of experiments demonstrate the effectiveness of various input entanglement styles used in
eQMARL approach. We run two separate experiments using the CoinGame-2 environment using
both MDP and POMDP dynamics. The score metric results for both dynamics are shown in Fig. 3.
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Figure 3: Comparison of CoinGame-2 score performance with (a) MDP, and (b) POMDP dynamics
for eQMARL using Ψ+ (blue), Ψ− (orange), Φ+ (green), Φ− (red), and None (cyan) entanglement
averaged over 10 runs of 3,000 epochs, with ±1 std. dev. shown as shaded regions. These figures
generally show that Ψ+ outperforms other entanglement styles across both dynamics.

We consider score threshold markers of 20 and 25 to aid our discussion. In the MDP setting of Fig. 3a,
we see see that Ψ+ entanglement converges 4.5% faster to a score threshold of 20 compared to the
next closest Ψ−. Similarly, Φ+ converges 5.2% faster to a score of 25 compared to the next closest
Ψ−. At the end of training, all peak scores hover slightly above 25. Looking at the shaded standard
deviation regions, we get a sense for the stability of each entanglement style. Specifically, we see
that Ψ+, Ψ−, and Φ+ have similar tight ranges until epoch 1500, whereas both Φ− and None have
far lower minimum values until around epoch 1300. Moreover, Ψ− appears to have large downward
spikes toward the end of training. Fig. 3a shows that there is a gap in convergence between Φ− and
None, and the other styles. Looking closer, we observe that Φ+ plateaus at earlier epochs, and Ψ−

is more unstable (dropping in score) at later epochs. Hence, we see a clear advantage for applying
Ψ+. In the POMDP setting of Fig. 3b, we see that Ψ+ converges 2% faster to a score of 20 compared
to the next closest None. Interestingly, there is a much larger gap in convergence between Φ− and
the others. A score of 25 is achieved 10.7% faster by Ψ+ compared to None, whereas both Φ+ and
Φ− never reach this threshold. The final peak scores for Ψ+ and None hover slightly above 26. The
shaded standard deviation regions exhibit a cascade effect between the styles, and, in particular,
we observe that Φ− has the lowest min, followed by Φ+ which has a slightly higher floor. These
groupings are interesting as both Φ+ and Φ− are similar in composition, only differing by a phase.
Hence, we again see a clear convergence and score advantage for using Ψ+.

Comparing the performance of the entanglement styles with both dynamics paints a picture of the
generalizability of the system as a whole. Interestingly, the worse performance of Φ+ and Φ− suggests
that same-state entanglement, |00⟩ and |11⟩, regardless of phase, results in less coupling of agents
compared to opposite-state entanglement, |01⟩ and |10⟩. One explanation for why the performance of
None is similar to Ψ+ in certain cases could be the degradation of fidelity (i.e., entanglement strength)
within the agent VQCs. The circular entanglement unitary within an agent’s VQC, defined as Ucirc
from Section 2.2, binds the behavior of qubits within an agent by creating a “weakly” entangled state
(i.e., low fidelity) from the preceding Uvar. Introducing additional input entanglement could, in some
cases, lower the fidelity of that entangled state further, resulting in poor model performance. It also
could increase the fidelity, however, as similar to the process of entanglement distillation. We believe
this decrease in fidelity is the reason why states like Φ+ and Φ− perform poorly in most cases. Based
on this, we also believe Ψ+ performs better than Ψ− because of the decoherence associated with the
difference in phase of the |10⟩ term. Importantly, this polarization-dependent phase shift changes the
structure of the entangled state entirely. Indeed, this phase is affected by the downstream Ucirc, and
thus results in entirely different measurement outcomes. The consistently high performance of Ψ+

across both dynamics suggests that it enhances the generalizability of the system, and, since input
entanglement does not increase classical computational overhead, we see that Ψ+ entanglement can
be used to couple the agents in both dynamics while achieving comparable or higher performance.
Thus, we select Ψ+ as the entanglement scheme to be used in all subsequent experiments.

3.4 COINGAME EXPERIMENTS

We next compare the performance of eQMARL-Ψ+ with baselines fCTDE, sCTDE, and qfCTDE
using the CoinGame-2 environment with MDP and POMDP state dynamics, as shown in Figs. 4a
and 4b. Looking at the MDP score metric in Fig. 4a, we see that eQMARL-Ψ+ converges 16.2%
faster to a score threshold of 20 than the next-closest qfCTDE, and 10.8% faster to a score threshold
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(b) Score - POMDP
Figure 4: Comparison of CoinGame-2 score performance with (a) MDP, and (b) POMDP dynamics
for fCTDE (orange), qfCTDE (magenta), sCTDE (green), and eQMARL-Ψ+ (blue) averaged over
10 runs of 3,000 epochs, with ±1 std. dev. shown as shaded regions. These figures generally show
that eQMARL outperforms baselines across both environment dynamics.

of 25 compared to sCTDE. Overall, we observe a 1.4% increase in max score for eQMARL-Ψ+

compared to the next highest sCTDE. Additionally, eQMARL-Ψ+ is smoother than qfCTDE at later
epochs; suggesting that input entanglement stabilizes convergence. Fig. 4b shows that eQMARL-Ψ+

converges 24% faster to a score of 20 considering the noticeable gap between it and qfCTDE. This
demonstrates that the branching quantum network with input entanglement shortens convergence
time compared to the fully centralized variant. Fig. 4b also shows that all models achieve a score of
25, however, in this case, eQMARL-Ψ+ converges 17.8% faster and with slightly higher score than
qfCTDE. Examining smoothness, we see much greater fluctuation between all curves compared to
the MDP case. The difference in performance between the baselines in Figs. 4a and 4b demonstrates
a clear quantum advantage for learning in the presence of partial information. Specifically, the
faster convergence to the peak score threshold in eQMARL-Ψ+ shows that splitting the quantum
critic across the quantum channel with entangled input qubits allows the agents to learn a more
cooperative strategy without direct access to local observations. This is interesting because qfCTDE
is centralized and has all local observations at its disposal. This additional information would initially
suggest better performance compared to approaches with only local information. However, from
Fig. 4b, we observe a clear benefit for not only splitting the quantum critic as branches across the
agents, but also introducing an entangled input state that couples their encoding behavior. Hence,
from Figs. 4a and 4b, we conclude that our proposed eQMARL-Ψ+ configuration learns to play the
game significantly faster than the classical variants without sharing local observations, transmitting
intermediate activations, nor tuning large NNs at the central server. The higher performance and
shorter convergence time, compared to both the quantum and classical baselines, shows that splitting
the critic amongst the agents results in no apparent loss in capability. In fact, the smoothness of the
curves suggests that the input entanglement stabilizes the network over time.

3.5 CARTPOLE EXPERIMENTS

The next set of experiments compare the performance of eQMARL with baselines using a multi-agent
variant of the CartPole environment with both MDP and POMDP state dynamics. The average
reward metric across all agents in the environment for both dynamics is shown in Fig. 5. We use
reward thresholds of the mean and max values to draw comparisons. From Fig. 5 we see that the
classical models do not perform well overall in either setting, and qfCTDE experiences high variance
in the MDP case. For MDP, qfCTDE achieves the highest mean and max rewards overall, but with
an extremely high standard deviation. In contrast, eQMARL-Ψ+ reaches its mean and max rewards
12.2% and 31.5% faster than qfCTDE respectively. For POMDP, we see that sCTDE achieves
the highest overall max reward at the end of training, but with a very low mean. In contrast, both
qfCTDE and eQMARL-Ψ+ achieve a similar max value significantly earlier, about two-thirds of the
way through training. eQMARL-Ψ+ achieves the highest mean reward overall very early in training,
which is 9.1% faster than qfCTDE with a similarly low standard deviation to the MDP setting. The
key observation from the CartPole experiments is that eQMARL-Ψ+ more rapidly learns a strategy
with higher average reward than the classical variants in both MDP and POMDP settings. Further,
eQMARL-Ψ+ slightly outperforms qfCTDE in the POMDP setting with a higher average reward,
and is much more stable with a significantly lower variance in the MDP setting – all achieved via
implicit collaboration though entanglement. These results show that, without observation sharing,
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(b) Average Reward - POMDP
Figure 5: Comparison of CartPole MDP and POMDP environment average reward performance
for fCTDE (orange), qfCTDE (magenta), sCTDE (green), and eQMARL-Ψ+ (blue) averaged over 5
runs of 1,000 epochs, with ±1 std. dev. shown as shaded regions. These figures generally show that
eQMARL outperforms classical baselines and is more stable than qfCTDE across both dynamics.
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Figure 6: Comparison of MiniGrid POMDP environment reward performance for fCTDE (orange),
qfCTDE (magenta), sCTDE (green), and eQMARL-Ψ+ (blue) over 1000 epochs. This figure shows
that eQMARL outperforms baselines by learning direct goal navigation instead of spinning in place.

eQMARL-Ψ+ can learn a similarly performant, and dramatically more stable, strategy compared to a
fully centralized quantum approach that has access to all agent observations.

3.6 MINIGRID EXPERIMENT

The next experiment compares the performance of eQMARL with baselines using a multi-agent
variant of the MiniGrid environment with POMDP state dynamics, in which agents have a limited
field of view. The average reward metric across all agents in the environment is shown in Fig. 6.
From Fig. 6 we can see that, for the vast majority of training, the fCTDE, qfCTDE, and sCTDE
baselines have an average reward that is clustered near −100; meaning that they exhaust many steps
by simply spinning in place (since the maximum step size is 50, and −2 is the same-position reward).
In contrast, we see that the average reward of eQMARL-Ψ+ is spread out higher over the training
regime with a mean of about −13, which is nearly 4.5-times higher than the other baselines. Indeed,
this negative reward means that eQMARL-Ψ+ also expends actions turning in place, but the fact the
reward is so close to zero implies these events occur at a vastly reduced frequency than the baselines.
In testing, eQMARL-Ψ+ was able to traverse to the goal in as little as 9 steps, whereas fCTDE
required 17 steps, and both qfCTDE and sCTDE were unable to find the goal within the 50 step
limit. This is a marked 50% improvement in the exploration and navigation speed of eQMARL-Ψ+

over fCTDE, with the bonus of no observation sharing. Hence, we have shown that eQMARL-Ψ+

can indeed be applied to more complex environments, such as grid-world navigation with limited
visibility, and provides learning benefits over baselines all without the need for observation sharing.

3.7 ABLATION STUDY

The last set of experiments we consider is an ablation study to examine the relationship between NN
layer depth and performance, and to facilitate fair model size comparisons. In particular, we trained
fCTDE and sCTDE with hidden layer units h ∈ {3, 6, 12, 24}, and qfCTDE and eQMARL with VQC
layers L ∈ {2, 5, 10} on the CoinGame-2 environment with MDP and POMDP state dynamics
for 10 experiments of 3000 epochs each. An excerpt of the score metrics results for eQMARL and
sCTDE in the MDP setting are shown in Fig. 7, and a comparison of the critic model sizes used in
each framework is shown in Table 1. The full results are provided in Appendix I.5. In Fig. 7 we
see that eQMARL-Ψ+ with L = 5 achieves a mean score 3-times higher than L = 2, and nearly
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Figure 7: Ablation study score performance on MDP CoinGame-2 for (a) sCTDE, and (b)
eQMARL-Ψ+ with hidden layer units h ∈ {3, 6, 12, 24} and VQC layers L ∈ {2, 5, 10}, aver-
aged over 10 runs of 3000 epochs, with ±1 std. dev. shown as shaded regions. These figures generally
show that selecting parameters h = 12 and L = 5 results in optimal performance.
Table 1: Comparison of the best critic model size in number of trainable parameters for each
framework used on the CoinGame-2 environment with MDP and POMDP dynamics.

Framework Ablation Selection Number of critic parameters: MDP Number of critic parameters: POMDP

eQMARL L = 5 265 (132 per agent, 1 central) 817 (408 per agent, 1 central)
qfCTDE L = 5 265 817
fCTDE h = 12 889 673
sCTDE h = 12 913 (444 per agent, 25 central) 697 (336 per agent, 25 central)

identical to L = 10. This trend is similar for qfCTDE. Both sCTDE and fCTDE also exhibit similar
behavior for hidden units; that is the performance of h = 12 is nearly 2-times that of h = 6, and only
marginally less than h = 24. Considering the significant performance drops and increased variation
incurred by reducing, and the limited gains by increasing, both h and L, the selection of h = 12 and
L = 5 results in the most comparable performance across all baselines. Looking at Table 1, the critic
sizes reported are for the entire system. This distinction is important since both eQMARL and sCTDE
split the critic network across the agents the total size of the agent-specific network is a fraction of
the total size. For MDP dynamics, we observe that the quantum models are 4 times smaller than
the classical variants. For POMDP, we observe that the quantum models are slightly larger than
their classical counterparts. This is because, in POMDP, the quantum models require a classical NN
for dimensionality reduction at the input of each encoder. While the overall system size is larger,
however, the number of central parameters is significantly reduced in the quantum cases – requiring
only 1 parameter instead of 25. This is important for scaleability because the baselines implement
a full NN at the central server and its size scales with N . In contrast, eQMARL has only a single
trainable parameter tied to the measurement observable, which will remain fixed regardless of N .

4 CONCLUSION

In this paper we have proposed eQMARL, a novel quantum actor-critic framework for training
decentralized policies using a split quantum critic with entangled input qubits and joint measurement.
Spreading the critic across the agents via a quantum channel eliminates sharing local observations,
minimizes the classical communication overhead from sending model parameters or intermediate
NN activations, and reduces the centralized classical computational burden through optimization of
a single quantum measurement observable parameter. We have shown that Ψ+ input entanglement
improves agent cooperation and system generalizability across both MDP and POMDP environments.
For MDP, we have shown that eQMARL converges to a cooperative strategy 10.8% faster and with a
higher score compared to sCTDE. Likewise, for POMDP, we have shown that eQMARL converges to
a cooperative strategy 17.8% faster and with slightly higher score compared to qfCTDE. Further, we
have also shown that eQMARL outperforms classical baselines and exhibits more stable performance
than qfCTDE in independent environments. Lastly, we have shown that eQMARL requires 25-times
fewer centralized parameters compared to sCTDE. One limitation of this work is the computational
complexity of quantum simulations on classical hardware, which is an ongoing topic of research for
noisy intermediate-scale quantum (NISQ) systems of many qubits. Indeed, many recent works on
QMARL (Yun et al., 2022a; 2023b; 2022b; Chen, 2023; Park et al., 2023; Kölle et al., 2024) have
similar hardware requirements to ours. Further, many recent works on quantum networks (Van Meter
et al., 2022; Pettit et al., 2023; Lei et al., 2023; Azuma et al., 2023) propose methods for generating
and storing entangled qubits, which can support the type of entanglement required in our system.
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A RELATED WORKS

QMARL is a nascent field, with few works applying the quantum advantage to scenarios with multiple
agents (Yun et al., 2022a; 2023b; 2022b; Chen, 2023; Park et al., 2023; Kölle et al., 2024). Further, the
application of quantum to SL is even newer, with Yun et al. (2023a) being the only prior work. In Yun
et al. (2022a) and Yun et al. (2023b), the authors propose a novel approach to QMARL that integrates
CTDE and quantum state encoding of environment states. Specifically, they deploy actor-critic QRL
with VQCs as the core for both actor and critic architectures. The QMARL agents each deploy a
local quantum actor network and learn collectively in CTDE fashion using a centralized critic and
unified experience replay buffer. In particular, the localized actors each operate independently from
the others in the network and yet critically must also share their environment state experience with
the collective via the shared replay buffer.

In Yun et al. (2022b), the authors propose the quantum meta MARL (QM2ARL) framework which
uses a central meta Q-learning agent to train other local agents. In particular they define angle and
pole training, a technique which tunes classical parameters to describe the Bloch sphere orientation
of encoded quantum information. The first angle parameter training stage describes mapped Q-values
as regions on the Bloch sphere, which are used to create the centralized meta agent. This meta agent
is then subsequently used to train local agents by orienting pole parameters toward their specific
environments.

In Chen (2023), the author proposes quantum asynchronous advantage actor-critic (QA3C) as a
framework for training decentralized QRL agents, which leverages a global shared memory and
agent-specific memories used in conjunction to train parallel agents. Akin to classical federated
learning (FL), QA3C deploys an actor-critic network within each decentralized agent. The gradients
of these local networks are periodically sent to the global shared memory for aggregation into a
global model. The global model parameters are then broadcast back to the agents to update their local
models.

The work in Park et al. (2023) proposes a QMARL approach for autonomous mobility cooperation
using actor-critic networks with CTDE in NISQ environments with a shared replay buffer. In
particular, they consider deployment with NISQ era limitations, the most notable being a low number
of qubits. They show that CTDE-based QMARL can be deployed on near-term quantum hardware
to coordinate robotic agents in smart factory environments. Critically, the coordination within their
proposed system stems from the centralized critic network and shared replay buffer that has become
synonymous with CTDE frameworks.

In Kölle et al. (2024), the authors propose a QMARL approach using evolutionary optimization
with a VQC design based on quantum classification networks and agent policies implemented as
independent VQC models with shared local information. Variations of the parameters for these
policies are trained in populations to evaluate and compare performance. The authors assume fully
observable environments in both cooperative and competitive settings, which is influenced via changes
in the per-agent reward.
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Finally, in Yun et al. (2023a), the authors propose a method for applying split learning to QML for
traditional machine learning (ML) classification tasks. They deploy device-local quantum neural
networks (QNNs) to predict local labels and features which are transmitted classically to a central
server and transformed into true set of labels and localized gradients for each device.

The resounding theme in Yun et al. (2022a; 2023b; 2022b); Chen (2023); Park et al. (2023); Kölle
et al. (2024); Yun et al. (2023a) is the use of independent agents or branches that communicate and
learn through centralized classical means. No prior work, however, makes use of the quantum channel
as a medium for system coupling or for multi-agent collaboration. Indeed, the quantum elements
serve as drop-in replacements for classical NN counterparts, and, importantly, the quantum channel
between agents and the potential for sharing entangled qubit states go largely under-utilized. Simply
put, entanglement and the quantum channel are potentially useful untapped cooperative resources
intrinsic to QMARL that have largely unknown benefits.

B MORE COMPREHENSIVE PRELIMINARIES

B.1 QUANTUM MUTLI-AGENT REINFORCEMENT LEARNING

We consider a reinforcement learning (RL) setting with multiple agents in environments with both
full and partial information. The dynamics of a system with full information is described by a Markov
game with an underlying MDP with tuple MMDP = ⟨N ,S,A,P,R⟩ where N is a set of N agents,
S = {S(n)}n∈N is the set of joint states across all agents, A = {A(n)}n∈N is the set of joint actions,
S(n) and A(n) are the set of states and actions for agent n, P(st+1|st, at) is the state transition
probability, and R(st, at) = {r(n)t }n∈N ∈ RN is the joint reward ∀st ∈ S, at ∈ A. The dynamics
of a system with partial information is described by a Markov game with an underlying POMDP
with tuple MPOMDP = ⟨N ,S,A,P,R,Ω,O⟩ where N ,S,A,P are the same as in MMDP, however
the full state of the environment st at time t is kept hidden from the players. Instead, at time t the
agents receive a local observation from the set of joint observations Ω = {Ω(n)}n∈N , where Ω(n)

is the set of observations for agent n, with transition probability O(ot|st+1, at), ∀ot ∈ Ω, which is
dependent on the hidden environment state after taking a joint action. We treat MMDP as a special
case of MPOMDP where o(n)t = s

(n)
t , that is the observations represent the full environment state

information. Hereinafter, all notations will use o(n)t in place of the local environment state for brevity
to encompass all cases.

QMARL is the application of quantum computing to MARL. A popular approach in MARL is
through actor-critic architectures, which tune policies, called actors, via an estimator for how good
or bad the policy is at any given state of an environment, called a critic. To do this, the critic needs
access to the local agent environment observations to estimate the value for a particular environment
state. Current state of the art approaches follow the CTDE framework which deploys the critic on
a central server and the actors across decentralized agents. Because the critic and the agents are
physically separated, CTDE requires the agents to transmit their local observations to the server
for the critic to estimate the joint value, thereby publicizing potentially private local observations.
Quantum is often integrated as a drop-in replacement for classical NNs, called VQCs, within many
MARL systems. These trainable quantum circuits tune the state of qubits, the quantum analog of
classical bits, using unitary gate operations.

B.2 QUANTUM COMPUTATION

B.2.1 QUBIT STATES

A qubit is the quantum mechanical analog to the classical bit. The state of a qubit is represented as a 2-
dimensional unit vector in complex Hilbert space H ∈ C2. The computational basis is the set of states{
|0⟩ = [1 0]

T
, |1⟩ = [0 1]

T
}

which forms a complete and orthonormal basis in H (meaning
⟨0|1⟩ = ⟨1|0⟩ = 0 and ⟨0|0⟩ = ⟨1|1⟩ = 1). All qubit states can be expressed as a linear combination
of any complete and orthonormal basis, such as the computational basis, which is called superposition.
We adopt Dirac notation to describe arbitrary qubit states |ψ⟩ = [α β]

T
= α |0⟩+β |1⟩ ∈ H (called

“ket psi”) where |α|2+ |β|2 = 1, their conjugate transpose ⟨ψ| = |ψ⟩† = [α∗ β∗] = α∗ ⟨0|+β∗ ⟨1|
(called “bra psi”), the inner product ⟨ψ1|ψ2⟩ = α∗

1α2 + β∗
1β2, and the outer product |ψ1⟩⟨ψ2| =
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[
α1α

∗
2 α1β

∗
2

β1α
∗
2 β1β

∗
2

]
. Quantum systems with D qubits can also be represented by extending the above

notation using the Kronecker (tensor) product where H =
⊗D−1

d=0 Hd = (C2)⊗D is the complex
space of the system state |ψ⟩ =

⊗D−1
d=0 |ψd⟩ for all |ψD⟩ ∈ HD. States that can be represented as

either a single ket vector, or a sum of basis states are called pure states. For example, |0⟩, |1⟩, and
1√
2
(|0⟩+ |1⟩) are all pure states in H.

B.2.2 QUANTUM GATES

A quantum gate is an unitary operator (or matrix) U , such that UU† = I, where I is the identity
matrix, acting on the space H which maps between qubit states. Here, we use the single-qubit Pauli
gates

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
, (B.1)

with their parameterized rotations

RX(θ) = e−i
θ
2X , RY (θ) = e−i

θ
2Y , RZ(θ) = e−i

θ
2Z , (B.2)

where θ ∈ R[0, 2π], the Hadamard gate

H =
1√
2

[
1 1
1 −1

]
, (B.3)

the 2-qubit controlled-X (CX , also called CNOT) gate

CX1,2 = CNOT1,2 =

[
I 0
0 X

]
, (B.4)

and the controlled-Z (CZ) gate
CZ1,2 =

[
I 0
0 Z

]
, (B.5)

which are both controlled by qubit 1 and target qubit 2, where 0 is a 2× 2 square matrix of zeros.

B.2.3 ENTANGLEMENT

Consider two arbitrary quantum systemsA andB, represented by Hilbert spaces HA and HB . We can
represent the Hilbert space of the combined system using the tensor product HA⊗HB . If the quantum
states of the two systems are |ψ⟩A and |ψ⟩B , then the state of the combined system can be represented
as |ψ⟩A ⊗ |ψ⟩B . Quantum states that can be cleanly represented in this form, i.e., separated by tensor
product, are said to be separable. Not all quantum states, however, are separable. For example, if we
fix a set of basis states {|0⟩A , |1⟩A} ∈ HA and {|0⟩B , |1⟩B} ∈ HB , then a general state in the space
of HA ⊗HB can be represented as |ψ⟩ =

∑
a∈{0,1}

∑
b∈{0,1} ca,b |a⟩A ⊗ |b⟩B , which is separable

if there exists ca,c = cacb, ∀a, b ∈ {0, 1}, producing the isolated states |ψ⟩A =
∑
a∈{0,1} ca |a⟩A

and |ψ⟩B =
∑
b∈{0,1} cb |b⟩B . If, however, there exists one ca,c ̸= cacb, then the combined state is

inseparable. In such cases, if a state is inseparable, it is said to be entangled.

The four Bell states B = {|Φ+⟩AB , |Φ−⟩AB , |Ψ+⟩AB , |Ψ−⟩AB} form a complete basis for two-
qubit systems HA ⊗HB , and have the form:∣∣Φ+

〉
AB

=
1√
2
(|0⟩A |0⟩B + |1⟩A |1⟩B) , (B.6)∣∣Φ−〉

AB
=

1√
2
(|0⟩A |0⟩B − |1⟩A |1⟩B) , (B.7)∣∣Ψ+

〉
AB

=
1√
2
(|0⟩A |1⟩B + |1⟩A |0⟩B) , (B.8)∣∣Ψ−〉

AB
=

1√
2
(|0⟩A |1⟩B − |1⟩A |0⟩B) . (B.9)

Since it is impossible to separate the states of B into individual systems HA and HB , the four Bell
states are entangled. In particular, the Bell states are pure entangled states of the combined system
HA ⊗HB , but cannot be separated into pure states of systems HA and HB . Additionally, the four
Bell states can be generated by quantum circuits using a combination of Pauli operators with a
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constant |0⟩A |0⟩B input state as follows:∣∣Φ+
〉
AB

= CNOT1,2 (H ⊗ I) |0⟩A |0⟩B , (B.10)∣∣Φ−〉
AB

= CNOT1,2 (H ⊗ I) (X ⊗ I) |0⟩A |0⟩B , (B.11)∣∣Ψ+
〉
AB

= CNOT1,2 (H ⊗ I) (I⊗X) |0⟩A |0⟩B , (B.12)∣∣Ψ−〉
AB

= CNOT1,2 (H ⊗ I) (X ⊗X) |0⟩A |0⟩B (B.13)

B.2.4 PROJECTIVE MEASUREMENTS AND OBSERVABLES

A projective measurement is a Hermitian and unitary operator O, such that O = O† and OO† = I,
called an observable. The outcomes of a measurement are defined by an observable’s spectral
decomposition

O =

M−1∑
m=0

λmPm, (B.14)

where M = 2n represents the number of measurement outcomes for n qubits, and m is a specific
measurement outcome in terms of eigenvalues λm and orthogonal projectors Pm in the respective
eigenspace. According to the Born rule Born (1926); Logiurato & Smerzi (2012); Masanes et al.
(2019), the outcome of measuring an arbitrary state |ψ⟩ will be one of the eigenvalues λm, and the
state will be projected using the operator Pm/

√
p(m) with probability:

p(m) = ⟨ψ|Pm |ψ⟩ = ⟨Pm⟩ψ (B.15)
The expected value of the observable with respect to the arbitrary state |ψ⟩ is given by:

Eψ[O] =

M−1∑
m=0

λmp(m) = ⟨O⟩ψ (B.16)

B.2.5 COMMUTING OBSERVABLES

A set of observables {O1, . . . , OK} share a common eigenbasis (i.e., a common set of eigenvectors
with unique eigenvalues) if

[Oi, Oj ] = OiOj −OjOi = 0 ∀i, j ∈ [1,K] (B.17)
i.e., their pair-wise commutator is zero. In such cases the observables in the set are said to be pair-wise
commuting, which in practice means that all observables in the set can be measured at the same time.

C JOINT INPUT ENTANGLEMENT CIRCUITS

We use a variation of Bell state entanglement to couple the input qubits of the agent VQC branches.
Specifically, we entangle based on the set of four Bell states B ∈ {Φ+,Φ−,Ψ+,Ψ−}, as outlined in
(B.10–B.13), using the circuits as shown in Fig. C.1. The circuits in Fig. C.1 generate a quantum state
across D qubits, which has the combined Hilbert space H⊗D. In each of the entangled operators, we
select one qubit, q1, to serve as the master control, and all others, q2, . . . , qD, serve as targets. The
control qubit functions identically to canonical Bell state entanglement. Here, we extend the gate
operations that normally apply to the second qubit, in an H⊗H system, to all qubits in H⊗D−1. The
resulting state is an entangled pure state in H⊗D.

D FULL ALGORITHM

The following algorithm is an expanded version of Algorithm 1, as shown in Algorithm D.1. In
Algorithm D.1, we include all operations necessary for training both the agents and the split critic.
In eQMARL, there is a set of N quantum agents N that are physically separated from each other
(no cross-agent communication is assumed) and one central quantum server. Each agent n ∈ N
employs an actor policy network π

θ
(n)
actor

(a|o(n)
t ) (which can either classical or quantum in nature)

with parameters θ(n)
actor, and a VQC given by (2) with unique parameters θ(n)

critic and λ(n) that serves
as one branch in the split critic network. In our experiments we simplify the setup by using policy
sharing across the agents, as done in Yun et al. (2023b) and Chen (2023); in other words, θ(n)

actor =

θ
(k)
actor ∀n, k ∈ N . All agents interact with the environment independently and each has its own

local data buffer D(n) populated with local observations, actions, rewards, and next observations
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(a) Φ+

(b) Φ−

(c) Ψ+

(d) Ψ−

Figure C.1: Diagrams of joint entanglement operators based on the the four Bell states (a) Φ+, (b)
Φ−, (c) Ψ+, (d) Ψ−.

represented by the 4-tuple
(
o
(n)
t , a

(n)
t , r

(n)
t ,o

(n)
t+1

)
for any instant in time t. These local data are

not shared amongst agents, with only the reward and action being communicated classically to
the central quantum server (the action only being necessary for policy sharing). Since we employ
policy sharing, the final step in eQMARL with this in place is to also estimate the advantage value
A(oτ ,aτ ) = Q(oτ ,aτ )− V (oτ ) using the existing value and expected reward estimates, compute
actor loss Lactor, compute the gradient of the loss w.r.t the shared actor parameters ∇θactorLactor, and
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update θactor. Note that here we use Huber loss for the critic, and for the actors we use entropy-
regularized advantage loss. The loss functions are described in detail in Appendix E.

Algorithm D.1: Full eQMARL training using MAA2C for a quantum entangled split critic.
Require: Set of N agents N , 1 quantum entanglement source, and 1 quantum measurement server

1: Initialize N agent actor networks with shared parameters θactor and local replay buffer D(n) = {}, ∀n ∈ N ;
2: Initialize N critic branches Uvqc with D qubits and parameters θ(n)

critic, λ
(n), ∀n ∈ N ;

3: for episode=1, MaxEpisode do
▷ Localized environment interaction.

4: t = 0;
5: done = False;
6: while done ̸= True and t < max steps do
7: for each agent n ∈ N do
8: Get local observation o

(n)
t from environment;

9: Compute π
θ
(n)
actor

(a|o(n)
t ) and sample a

(n)
t ;

10: Apply action a
(n)
t and get reward r

(n)
t and next observation o

(n)
t+1;

11: Update local replay buffer D(n) = D(n) ∪
{(

o
(n)
t , a

(n)
t , r

(n)
t ,o

(n)
t+1

)}
;

12: If o(n)
t+1 is terminal then communicate done = True;

13: end
14: t = t+ 1;
15: end

▷ eQMARL framework for training.
16: for τ ∈ [0, t− 2] do
17: Central quantum server generates 2N sets of D entangled qubits and transmits to agents via

quantum channel (could be prepared a priori and stored in quantum memory);
18: for each agent n ∈ N do
19: Apply Uvqc(θ

(n)
critic,λ

(n),o
(n)
τ ) and Uvqc(θ

(n)
critic,λ

(n),o
(n)
τ+1) from (2) locally using assigned

entangled input qubits;
20: Transmit via quantum channel the qubits after applying Uvqc to central quantum server;
21: Transmit via classical channel the reward r

(n)
τ and action a

(n)
τ at the current time step to

central quantum server (only reward if policy sharing is not used);
22: end

▷ Using notation oτ =
(
o
(n)
τ

)N
n=1

, oτ+1 =
(
o
(n)
τ+1

)N
n=1

, aτ =
(
a
(n)
τ

)N
n=1

.
23: Perform joint measurements on qubits across all agents to estimate V (oτ ) and V (oτ+1) using (3);
24: Estimate Q(oτ ,aτ ) =

∑N
n=1 r

(n)
τ + γV (oτ+1) using discount factor γ;

25: Estimate A(oτ ,aτ ) = Q(oτ ,aτ )− V (oτ ) for policy sharing;
26: Compute ∇θactorLactor and update θactor for policy sharing;
27: Compute ∇xsplitLcritic and transmit via classical channel to each agent to update θ(n)

critic locally using
partial gradient from (4);

28: end
29: end

E LOSS FUNCTIONS

All of our actors and critics are trained using the same loss functions for each experiment. For the
critics, we train using Huber loss

Lcritic =
1

T − 1

T−1∑
τ=0

{
1
2 (V (oτ )−Q(oτ ,aτ ))

2 if V (oτ )−Q(oτ ,aτ ) ≤ δ,

δ|V (oτ )−Q(oτ ,aτ )| − 1
2δ

2 otherwise,
(E.1)

where δ controls the point in which the loss function turns from quadratic to linear. In this work we
use δ = 1. For the actors, we deploy policy sharing amongst the agents. As such, all agents us the
same policy parameters, and thus the loss must aggregate the individual losses of each agent. We
train using the entropy-regularized advantage function

Lactor =
1

n(T − 1)

N∑
n=1

T−1∑
τ=0

[
−A(o(n)τ , a(n)τ ) loge p(a

(n)
τ ) + αH(a(n)τ )

]
, (E.2)
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where H(a(n)τ ) = −p(a(n)τ ) loge p(a
(n)
τ ), (E.3)

is the entropy of selecting an action, α controls the influence of entropy, n ∈ N is the agent index,
and p(a(n)τ ) is the probability of chosen action at time step τ .

F ENVIRONMENT SPECIFICATIONS

F.1 COINGAME

(a) Diagram of CoinGame-2 environment.

(b) MDP observation dynamics for blue player.

(c) POMDP observation dynamics for blue player.

Figure F.1: Example of (a) CoinGame-2 environment with two players, colored red and blue, and a
single coin colored blue, with visualization of observation matrix for the blue player with (b) MDP
dynamics, and (c) POMDP dynamics. Grid squares in (b) and (c) colored grey denote a 0 value, and
colored blue/red squares denote a 1 value.

In eQMARL, we train decentralized agents using the CoinGame-2 environment first proposed
in Lerer & Peysakhovich (2018), and as implemented in Phan et al. (2022). The CoinGame-2
environment pits two agents of different colors (red and blue) on a 3× 3 tile grid to collect coins with
corresponding color. An example of CoinGame-2 is shown in Fig. F.1a. Agent observations are a
sparse matrix o(n) ∈ {0, 1}4×3×3 ∀n ∈ N with 4 features each with a 3 × 3 grid world as shown
in Fig. F.1b. The features specifically are: 1) A grid with a 1 indicating the agent’s location, 2) A
grid with a 1 to indicate other agent locations, 3) A grid with a 1 for the location of coins that match
the current agent’s color, and 4) A grid with a 1 for all other coins (different colors). Since these
observations include all information about the game world, the game is considered fully observable
and is described by an MDP. We also experiment with a partially observable variant of this game
which removes the second feature from agent observations (i.e., the location of other agents), which is
a space matrix o(n) ∈ {0, 1}3×3×3 ∀n ∈ N . In this partially observed setting, the game is described
by a POMDP since agents cannot see each other and thus the full state of the game board is unknown.
An example of this observation space is shown in Fig. F.1c. The agents can move along the grid by
taking actions in the space A(n) = {north, south, east,west} ∀n ∈ N . Each time an agent collects a
coin of their corresponding color their episode reward is increased by +1, whereas a different color
reduces their episode reward by −2. The goal for all agents is to maximize their discounted episode
reward. The details of the environment are summarized in Table F.1.

We evaluate agents using three metrics: score, total coins collected, and own coin rate. The score
metric aggregates all agent undiscounted rewards over a single episode

S =

N∑
n=1

T−1∑
t=0

r
(n)
t (F.1)

where n ∈ N is the agent index, t ∈ [0, T − 1] is the episode time index, T is the episode time limit,
and r(n)t is the undiscounted agent reward at time t. The total coins collected metric gives insight
into how active the agents were during the game

TC =

N∑
n=1

T−1∑
t=0

c
(n)
t (F.2)

where c(n)t is the total number of coins collected by agent n at time t. Finally, the own coin rate
metric gives insight into how the agents achieve cooperation, specifically by being selective on which
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Table F.1: Specifications for CoinGame-2 environment with MDP and POMDP dynamics.

Parameter Value

Observation for agent n at time t • MDP: o
(n)
t ∈ {0, 1}4×3×3 (dimension is 36)

• POMDP: o
(n)
t ∈ {0, 1}3×3×3 (dimension is 27)

Number of players (N ) 2
Time limit (T ) 50
Action for agent n at time t a

(n)
t ∈ {north, south, east,west}

Reward for agent n at time t r
(n)
t =


+1, if agent n collects coin of same color,
−2, if agent n collects coin of different color,
0, otherwise

Discount factor (γ) 0.99
Entropy coefficient (α) 0.001

coins they procure
OCR =

N∑
n=1

T−1∑
t=0

k
(n)
t /c

(n)
t (F.3)

where k(n)t is the number of coins collected of the corresponding agent’s color.

F.2 CARTPOLE

Figure F.2: Example of an N -agent CartPole environment colored red, blue, and green.

We also train eQMARL using a multi-agent variant of the CartPole environment as proposed in
Barto et al. (1983). The multi-agent CartPole environment runs multiple independent instances of
the single-agent variant in parallel. This environment setup is an interesting case study for multi-agent
learning because the observations of each agent are completely independent from one another; that
is, observations from sibling environments are not strictly necessary to develop a strategy for a
specific environment instance. This allows us to examine the impacts of both explicit and implicit
cooperation between independent agents. An example of CartPole with N agents is shown in
Fig. F.2. Agent observations are a matrix o(n) ∈ R4×1, ∀n ∈ N with 4 real-valued features. The
features are: 1) Cart position with range [−4.8, 4.8], 2) Cart velocity with range (−∞,∞), 3) Pole
angle in radians with range [−0.418, 0.418], and 4) Pole angular velocity with range (−∞,∞).
The pole is considered balanced if the pole angle feature stays within the range [−.2095, .2095]
radians, and the cart position feature stays within the range [−2.4, 2.4]. These observations include
all information about the environment, and thus the environment under these conditions is considered
fully observable and described by an MDP. We also consider a partially observed variant of the
environment which removes the second feature from agent observations (i.e., the cart velocity), which
is a matrix o(n) ∈ R3×1, ∀n ∈ N . The environment is described by a POMDP in this setting since
agents are unaware of their cart’s velocity, and thus the full state of the environment is unknown.
Notably, in this multi-agent variant of the environment the agent observations in both settings are
independent from each other. The agents interact with the environment by taking actions in the space
A(n) = {left, right}, ∀n ∈ N , which correspond to pushing their cart to the left and right respectively.
Similar to the observations, the agent actions are also independent and do not affect neighboring
environments. Each time step an agent is successful in keeping their pole balanced they receive a +1
episode reward. The episode terminates when an observation falls outside of the balanced range. The
goal for all agents is to maximize their expected total episode reward (i.e., the number of time steps
they are able to keep the pole balanced). The details of the environment are summarized in Table F.2.

20



Published as a conference paper at ICLR 2025

Table F.2: Specifications for multi-agent CartPole environment with MDP and POMDP dynamics.

Parameter Value

Observation for agent n at time t • MDP: o
(n)
t ∈ R4×1

• POMDP: o
(n)
t ∈ R3×1

Number of players (N ) 2
Time limit (T ) 500
Action for agent n at time t a

(n)
t ∈ {left, right}

Reward for agent n at time t r
(n)
t =

{
+1, if pole for agent n is balanced,
0, otherwise

We evaluate the agents using the average reward metric, which aggregates all agent rewards over a
single episode

AR =
1

N

N∑
n=1

T−1∑
t=0

r
(n)
t (F.4)

where n ∈ N is the agent index, t ∈ [0, T − 1] is the episode time index, T is the episode time limit,
and r(n)t is the agent reward at time t.

F.3 MINIGRID

Figure F.3: Example of an N -agent MiniGrid environment colored red, blue, and orange.

We also train eQMARL using a multi-agent variant of the MiniGrid environment as proposed in
Chevalier-Boisvert et al. (2023). The multi-agent MiniGrid environment runs multiple instances
of the single-agent version in parallel. This environment configuration is an interesting case study
for multi-agent learning because, similar to multi-agent CartPole, the local agent observations
are independent of the others, and sharing observations is not necessary to solve the environment.
This can, however, show how agent policies are affected with the seemingly added benefit of either
directly shared or quantum-coupled local environment observations. An example of MiniGrid with
N agents is shown in Fig. F.3, and the details of the environment are summarized in Table F.3.

In the MiniGrid environment, the task is to find an optimal grid traversal path from a starting
position to a goal using the action set A(n) = {turn left,turn right,move forward},
∀n ∈ N . Agent observations are a matrix o(n) ∈ Z7×7×3, ∀n ∈ N , where the agent has a
7 × 7 limited field of view of the maze grid, and each cell in the grid is encoded as the 3-tuple
⟨object,color,state⟩, where object ∈ [0, 10] identifies the object at the cell (e.g., empty,
wall, etc.), color ∈ [0, 5] identifies the color of the cell (e.g., red, green, etc.), and state ∈
[0, 2] identifies the state of the cell (e.g., open, closed, and locked). We consider a 5× 5 maze
grid size in our experiments. Notably, because agent observations are a limited field of view, and not
the full maze grid, we regard this environment as being described by POMDP dynamics. We use
a reward shaping schedule of −1 for every step taken, −2 for standing still, 0 for not reaching the
goal, and 100× (1− 0.9× ((t+ 1)/T ) for reaching the goal, where t ∈ [0, T − 1] is episode the
time index, and T is the episode time limit. Additionally, we provide the reward bonus 1/

√
c for

actions that explore less visited grid positions and action pairs, where c is the count for a specific grid
position and action pair. In particular, there are four key factors that make this environment even more
complex than the CoinGame and CartPole baselines. First, agents observe the environment using
a limited field of view from their current position and rotational direction; hence, the agents must
expend actions to both physically move and visually perceive the environment. Second, because the
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Table F.3: Specifications for multi-agent MiniGrid environment with POMDP dynamics.

Parameter Value

Grid size w = 5, h = 5

Observation for agent n at time t o
(n)
t ∈ Z7×7×3

Number of players (N ) 2
Time limit (T ) 50
Grid position for agent n at time t g

(n)
t ∈ [0, w × h− 1]

Grid direction for agent n at time t d
(n)
t ∈ {up,down,left,right}

Action for agent n at time t a
(n)
t ∈ {turn left,turn right,move forward}

Reward for agent n at time t r
(n)
t = 1√

c
+


−2, if g(n)t = g

(n)
t−1,

100(1− 0.9 t+1
T ) if goal is reached,

−1, otherwise

where c = #
(
⟨g(n)t , d

(n)
t , a

(n)
t ⟩ ∈

{
⟨g(n)i , d

(n)
i , a

(n)
i ⟩

}t−1

i=0

)
field of view is limited, the goal position is not always in view; meaning that the agent strategies must
also learn to search for the goal position in addition to finding an optimal traversal route. Third, the
rotational direction of the agent plays a major role in both grid-world visibility and traversal actions;
whereby an agent must learn to optimize the total number of rotation actions (i.e., turn left and
turn right) for visual exploration and navigation – e.g., using a single turn right action
(fewer steps) instead of three turn left actions (increased visibility). Fourth, agent actions are not
limited when adjacent to grid-world wall positions; meaning that if an agent is facing forward to
a wall, then the move forward action is still valid (even though clearly not optimal). Critically,
the trade-off between increased visibility at the expense of rotation actions poses complex challenges
here, and offers a unique opportunity for implicit observation sharing to improve navigation efficiency.

G QUANTUM ENCODING TRANSFORMATIONS

To encode environment observations into our quantum models we first apply a transformation on the
observation matrix. This allows us to reduce its dimensions, thereby making it usable for the limited
number of qubits available to NISQ systems, while also changing the range of matrix values to be
suitable for input into one of the Pauli rotation gates.

G.1 COINGAME-2 ENVIRONMENT

MDP dynamics For the CoinGame-2 environment with fully observed state dynamics we use
the transformation fMDP(oi×j×k) =

∑
k

oi×j,k2
−k (G.1)

which sums over the last dimension of the observation matrix oi×j×k with shape i×j×k. In the case
of CoinGame-2 with MDP dynamics the observations have shape 4× 3× 3. This transformation
reduces the dimensions to 4× 3× 1, which can be directly fed into the encoder architecture outlined
in Section 2.2.

POMDP dynamics For the CoinGame-2 environment with partially observed state dynamics our
quantum models employ a small classical NN at the input of the encoder for dimensionality reduction,
as done in Chen (2023). In particular, we use the transformation

fPOMDP(oi×j×k) = wijk×3d · flatten(oi×j×k)T + b (G.2)
which flattens the observation matrix oi×j×k with shape i × j × k and passes it through a single
fully-connected NN layer with parameters wijk×3d and b, and d is the number of qubits. Note that,
in POMDP, the trainable quantum encoding parameters λ(n) are no longer necessary. In this case,
we set λ(n) = 1, where 1 is a matrix of ones.
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G.2 CARTPOLE ENVIRONMENT

Observation scaling For the CartPole environment we apply a constant observation scaling to
both MDP and POMDP dynamics to normalize their values. In particular, we use the transformation

f(oi×j) = oi×j/vi (G.3)
where v = [2.4, 2.5, 0.21, 2.5]⊺ (G.4)
is a constant scaling vector.

POMDP dynamics For the CartPole environment with partially observed state dynamics we
apply an additional transformation similar to the CoinGame-2 POMDP case to reduce input feature
dimensions. In particular, we apply the transformation,

fPOMDP(oi×j) = wij×3d · flatten(oi×j)T + b (G.5)
which flattens the observation matrix oi×j with shape i × j and passes it through a single fully-
connected NN layer with parameters wij×3d and b, and d is the number of qubits.

G.3 MINIGRID ENVIRONMENT

For the MiniGrid environment we apply a similar transformation to the CoinGame and
CartPole POMDP environments, which is identical to (G.2). Specifically, we apply a fully-
connected NN layer to reduce the dimensionality from the observation shape 7× 7× 3 to 3d, where
7× 7 is the field of view of the agent as described in Table F.3, and d is the number of qubits.

H MODEL HYPERPARAMETERS

The hyperparameters for each of the models trained in our experiments, as discussed in Section 3.2,
are shown in Tables H.1 and H.2. Table H.1 show the model parameters used in qfCTDE and
eQMARL. Table H.2 show the model parameters used in fCTDE and sCTDE.

Table H.1: Hyperparameters for qfCTDE and eQMARL, actor and critic, used on all environments.

Environment Model Parameter Value

CoinGame-2,
CartPole

Actor,
Critic

NN encoder transform activation • MDP: N/A
• POMDP: linear

Flag λ(n) as trainable
• MDP: True
• POMDP: False

Number of qubits per agent (D) 4
(eQMARL only) Input entanglement type (B) for critic Ψ+

Number of layers (L) in Uvqc 5
Squash activation (ϕ) arctan
Inverse temperature (β) 1
Optimizer Adam
Learning rate [0.01, 0.1, 0.1]

MiniGrid
Critic

NN encoder transform activation linear
Flag λ(n) as trainable False
Number of qubits per agent (D) 4
(eQMARL only) Input entanglement type (B) for critic Ψ+

Number of layers (L) in Uvqc 5
Squash activation (ϕ) arctan
Inverse temperature (β) 1
Optimizer Adam
Learning rate [0.001, 0.001, 0.01, 0.1]

Actor
Optimizer Adam
Learning rate [0.0001]
Number of hidden units 100

Table H.2: Hyperparameters for fCTDE and sCTDE, actor and critic, used on all environments.

Environment Model Parameter Value

CoinGame-2,
CartPole

Actor,
Critic

NN hidden units (h) [12]
Optimizer Adam
Learning rate 0.001

MiniGrid
Actor,
Critic

NN hidden units (h) [100]
Optimizer Adam
Learning rate 0.0001
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I EXPERIMENT RESULTS

I.1 ENTANGLEMENT STYLE COMPARISON

The empirical results for the entanglement comparison experiment, as discussed in Section 3.3, are
shown in Tables I.1 and I.2. Table I.1 shows the score metric statistics mean, standard deviation, and
95% confidence interval for each of the entanglement styles Ψ+, Ψ−, Φ+, Φ−, and None. Table I.2
shows the convergence time, in epochs, to each of the score thresholds 20, 25, and also to the
maximum score value (reported parenthetically in italics) for each of the entanglement styles. The
best values in each column are highlighted in bold.

Fig. I.1 shows the training results for the entanglement styles as discussed in Section 3.3. In particular,
we provide the full set of performance metrics of score, total coins collected, own coins collected, and
own coin rate, as outlined in Appendix F, (F.1–F.3). Fig. I.1 shows the results for the entanglement
styles Ψ+, Ψ−, Φ+, Φ−, and None, as discussed in Section 3.3. The left column, Figs. I.1a, I.1c,
I.1e, and I.1g, shows the performance for MDP environment dynamics. Similarly, the right column,
Figs. I.1b, I.1d, I.1f, and I.1h, shows the performance for POMDP environment dynamics.

Table I.1: Comparison of entanglement style score performance for MDP and POMDP CoinGame-2
environment dynamics using mean, standard deviation, and 95% confidence interval statistics. Best
values are highlighted in bold.

Score

Dynamics Entanglement Mean SD 95% CI

MDP

Ψ+ 21.11 2.65 (20.92, 21.29)
Ψ− 20.85 2.70 (20.61, 21.07)
Φ+ 21.02 2.54 (20.77, 21.30)
Φ− 20.43 3.85 (20.20, 20.59)
None 20.00 3.80 (19.75, 20.20)

POMDP

Ψ+ 18.49 3.91 (18.15, 18.74)
Ψ− 17.77 4.05 (17.40, 18.09)
Φ+ 17.01 6.28 (16.74, 17.25)
Φ− 14.73 7.63 (14.45, 15.01)
None 18.57 4.26 (18.28, 18.82)

Table I.2: Comparison of entanglement style score convergence (in number of epochs) for MDP and
POMDP CoinGame-2 environment dynamics. Best values are highlighted in bold.

Epochs to Score Threshold

Dynamics Entanglement 20 25 Max (value)

MDP

Ψ+ 568 2332 2942 (25.67)
Ψ− 595 1987 2849 (25.45)
Φ+ 612 1883 2851 (25.51)
Φ− 691 2378 2984 (25.23)
None 839 2337 2495 (25.12)

POMDP

Ψ+ 1049 1745 2950 (26.28)
Ψ− 1206 2114 2999 (25.95)
Φ+ 1269 - 2992 (24.1)
Φ− 1838 - 2727 (22.8)
None 1069 1955 2841 (26.39)
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(d) Total coins collected - POMDP
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(e) Own coins collected - MDP
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(f) Own coins collected - POMDP
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Figure I.1: Comparison of CoinGame-2 MDP and POMDP environment performance metrics (a,b)
score, (c,d) total coins collected, (e,f) own coins collected, and (g,h) own coin rate for eQMARL
with varying input quantum entanglement styles Ψ+ (blue), Ψ− (orange), Φ+ (green), Φ− (red), and
None (cyan) averaged over 10 runs, with ±1 std. dev. shown as shaded regions.
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I.2 COINGAME BASELINES COMPARISON

The empirical results for eQMARL-Ψ+, qfCTDE, fCTDE, and sCTDE, as discussed in Section 3.4,
are shown in Tables I.2 and I.4 and Fig. I.2. The performance for MDP dynamics is shown in Figs. I.2a,
I.2c, I.2e, and I.2g, and for POMDP dynamics is shown in Figs. I.2b, I.2d, I.2f, and I.2h. Importantly,
Fig. I.2 shed light on when, and how, a cooperative strategy is achieved by each framework. Further,
through Fig. I.2 we also observe the relationship between the metrics outlined in Appendix F.1. This
connection is important, as a single metric in isolation only paints part of the performance picture.
A full comparison can be achieved by considering the metrics as as group, and, particularly, the
relationship between agent score, i.e., the sum of rewards, and own coin rate, i.e., the priority given
to coins of matching color.

Table I.3: Comparison of model score and own coin rate performance for MDP and POMDP
CoinGame-2 environment dynamics using mean, standard deviation, and 95% confidence interval
statistics. Best values are highlighted in bold.

Score Own Coin Rate

Dynamics Framework Mean SD 95% CI Mean SD 95% CI

MDP

eQMARL-Ψ+ 21.11 2.65 (20.91, 21.37) 0.9640 0.0347 (0.9606, 0.9667)
qfCTDE 19.41 6.23 (19.22, 19.60) 0.9398 0.1020 (0.9367, 0.9423)
sCTDE 14.18 2.69 (13.87, 14.53) 0.8504 0.0928 (0.8436, 0.8558)
fCTDE 12.36 4.41 (12.01, 12.66) 0.8202 0.1379 (0.8153, 0.8255)

POMDP

eQMARL-Ψ+ 18.49 3.91 (18.24, 18.75) 0.9226 0.0831 (0.9173, 0.9281)
qfCTDE 16.79 4.66 (16.43, 17.19) 0.9040 0.1135 (0.8991, 0.9094)
sCTDE 13.70 2.79 (13.33, 14.07) 0.8466 0.0985 (0.8407, 0.8525)
fCTDE 13.46 3.24 (13.08, 13.75) 0.8443 0.1026 (0.8389, 0.8495)

Table I.4: Comparison of model score and own coin rate convergence (in number of epochs) for MDP
and POMDP CoinGame-2 environment dynamics. Best values are highlighted in bold.

Epochs to Score Threshold Epochs to Own Coin Rate Threshold

Dynamics Framework 20 25 Max (value) 0.95 1.0 Max (value)

MDP

eQMARL-Ψ+ 568 2332 2942 (25.67) 376 2136 2136 (1.0)
qfCTDE 678 - 2378 (23.38) 397 - 2832 (0.9972)
sCTDE 1640 2615 2631 (25.3) 1511 - 2637 (0.9864)
fCTDE 1917 - 2925 (23.67) 1700 - 2909 (0.9857)

POMDP

eQMARL-Ψ+ 1049 1745 2950 (26.28) 773 - 2533 (0.9997)
qfCTDE 1382 2124 2871 (26.09) 1038 2887 2887 (1.0)
sCTDE 1738 2750 2999 (25.33) 1588 - 2956 (0.9894)
fCTDE 1798 2658 2824 (25.49) 1574 - 2963 (0.9894)
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(b) Score - POMDP
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(c) Total coins collected - MDP
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(d) Total coins collected - POMDP
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(e) Own coins collected - MDP
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(f) Own coins collected - POMDP
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(g) Own coin rate - MDP
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(h) Own coin rate - POMDP

Figure I.2: Comparison of CoinGame-2 MDP and POMDP environment performance metrics
(a,b) score, (c,d) total coins collected, (e,f) own coins collected, and (g,h) own coin rate for fCTDE
(orange), qfCTDE (magenta), sCTDE (green), and eQMARL-Ψ+ (blue) averaged over 10 runs, with
±1 std. dev. shown as shaded regions.
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I.3 CARTPOLE BASELINES COMPARISON

The empirical results for eQMARL-Ψ+, qfCTDE, fCTDE, and sCTDE, as discussed in Section 3.5,
are shown in Tables I.5 and I.6 and Fig. I.3. The performance for MDP dynamics is shown in Fig. I.3a,
and for POMDP dynamics is shown in Fig. I.3b. Importantly, from this we see that the classical
models do not perform well overall in either setting, and qfCTDE experiences high variance in the
MDP case. Even though sCTDE has a higher reward at the end of training in the POMDP case, it
converges considerably more slowly, experiencing high variance at the end, and requires over 400
more epochs achieve a mean value less than half of eQMARL. In contrast, eQMARL is more stable
than qfCTDE, and more rapidly converges to a higher mean reward than fCTDE and sCTDE across
both settings.

Table I.5: Comparison of model average reward performance for MDP and POMDP CartPole
environment dynamics using mean, standard deviation, and 95% confidence interval statistics.

Reward

Dynamics Framework Mean SD 95% CI

MDP

eQMARL-Ψ+ 79.11 50.62 (77.26, 81.01)
qfCTDE 121.35 110.13 (117.95, 124.59)
sCTDE 16.07 22.15 (15.90, 16.21)
fCTDE 15.14 17.43 (15.06, 15.22)

POMDP

eQMARL-Ψ+ 82.28 44.24 (80.80, 83.91)
qfCTDE 79.03 44.06 (76.27, 81.02)
sCTDE 47.59 29.71 (44.71, 50.86)
fCTDE 11.62 32.02 (11.45, 11.82)

Table I.6: Comparison of model average reward convergence (in number of epochs) for MDP and
POMDP CartPole environment dynamics.

Epochs to Average Reward Threshold

Dynamics Framework Mean (value) Max (value)

MDP

eQMARL-Ψ+ 166 (79.11) 555 (134.16)
qfCTDE 189 (121.35) 810 (262.43)
sCTDE 23 (16.07) 978 (24.64)
fCTDE 9 (15.14) 44 (19.43)

POMDP

eQMARL-Ψ+ 251 (82.28) 770 (127.60)
qfCTDE 276 (79.03) 648 (137.66)
sCTDE 669 (47.59) 998 (172.16)
fCTDE 9 (11.62) 999 (28.83)
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(b) Average Reward - POMDP
Figure I.3: Comparison of CartPole MDP and POMDP environment average reward performance
for fCTDE (orange), qfCTDE (magenta), sCTDE (green), and eQMARL-Ψ+ (blue) averaged over 5
runs of 1000 epochs, with ±1 std. dev. shown as shaded regions.
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I.4 MINIGRID BASELINES COMPARISON

The empirical results for eQMARL-Ψ+, qfCTDE, fCTDE, and sCTDE, as discussed in Section 3.6,
are shown in Table I.7 and Fig. I.4. Importantly, from Fig. I.4 we see that the qfCTDE, fCTDE, and
sCTDE baselines have an average reward that is clustered near −100 for the majority of training.
This implies that the baselines learn to exhaust many steps by simply spinning in place, since the
maximum step size is 50 and the agents receive a −2 reward for staying in the same position as a
previous time step. In contrast, we see that the average reward of eQMARL-Ψ+ is spread out higher
over the training regime. From Table I.7 we specifically see that eQMARL-Ψ+ achieves an average
overall reward of −13.32, which is 4.5-times higher than the baselines. Indeed, this negative reward
means that eQMARL-Ψ+ also expends actions turning in place, but the fact the reward is so close to
zero implies these events occur at a vastly reduced frequency than the baselines.

In addition, from Table I.7 we see that both eQMARL-Ψ+ and qfCTDE reduce the overall critic size
by a factor of 8 compared to the classical baselines. This reduction in size means that eQMARL-Ψ+

and qfCTDE are more computationally efficient than the classical baselines. Further, we see that
eQMARL-Ψ+ is even more efficient because it only requires a single centralized trainable parameter,
which is a significant 200-times reduction in size compared to sCTDE.

In testing, eQMARL-Ψ+ was able to traverse to the goal in as little as 9 steps, whereas fCTDE
required 17 steps, and both qfCTDE and sCTDE were unable to find the goal within the 50 step limit.
This is a marked 50% improvement in the exploration and navigation speed of eQMARL-Ψ+ over
fCTDE, with the bonus of no observation sharing, and an 8-times smaller overall critic size. Hence,
we have shown that eQMARL-Ψ+ can indeed be applied to more complex environments, such as
grid-world navigation with limited visibility, and provide learning benefits over baselines without the
need for observation sharing.

Table I.7: Comparison of model average reward performance for POMDP MiniGrid environment
dynamics using mean and 95% confidence interval statistics, and comparison of model size in number
of trainable critic parameters for each framework.

Reward

Framework Mean 95% CI Number of Trainable Critic Parameters

fCTDE -63.04 (-65.16, -61.06) 29,601
qfCTDE -85.86 (-87.03, -84.72) 3,697
sCTDE -88.02 (-88.69, -87.10) 29,801 (14,800 per agent, 201 central)
eQMARL-Ψ+ -13.32 (-14.68, -11.91) 3,697 (1,848 per agent, 1 central)
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Figure I.4: Comparison of MiniGrid POMDP environment average reward performance for
fCTDE (orange), qfCTDE (magenta), sCTDE (green), and eQMARL-Ψ+ (blue) for 2 agents over
1000 epochs, with a maximum step limit of 50.
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I.5 ABLATION STUDY

The empirical results for the ablation study as discussed in Section 3.7 are shown in Table I.8 and
Figs. I.5 and I.6. Looking at the statistics in Table I.8 and the convergence in Figs. I.5 and I.6, we can
see that our selection of h = 12 hidden units for the baselines and L = 5 for the quantum models is
fair because of the significant performance drops and increased variation incurred by reducing, and
the limited gains by increasing, the number of units and layers. This choice for architecture results in
the most comparable performance across all baselines. From the results of this ablation study, we can
more concretely represent a comparison of the final sizes of the actor and critic models, in number of
trainable parameters, for eQMARL, qfCTDE, fCTDE, and sCTDE. The final selected model sizes, in
number of trainable parameters, are shown in Table I.9.

Table I.8: Ablation study with classical model hidden layer units h ∈ {3, 6, 12, 24} and quantum
VQC layers L ∈ {2, 5, 10}. Compares model size in number of trainable critic parameters with score
and own coin rate performance for MDP and POMDP CoinGame-2 environment dynamics using
mean, standard deviation, and 95% confidence interval statistics.

Score Own Coin Rate

Dynamics Framework Params Mean SD 95% CI Mean SD 95% CI

MDP

fCTDE-3 223 2.42 2.35 (2.35, 2.49) 0.6720 0.2024 (0.6685, 0.6769)
fCTDE-6 445 7.41 3.46 (7.19, 7.65) 0.7658 0.1414 (0.7610, 0.7712)
fCTDE-12 889 12.36 4.41 (12.09, 12.67) 0.8202 0.1379 (0.8139, 0.8262)
fCTDE-24 1777 17.63 2.58 (17.25, 17.91) 0.8823 0.0751 (0.8770, 0.8875)

sCTDE-3 229 3.24 3.09 (3.16, 3.33) 0.6852 0.1991 (0.6821, 0.6897)
sCTDE-6 457 8.54 3.67 (8.29, 8.78) 0.7857 0.1327 (0.7804, 0.7924)
sCTDE-12 913 14.18 2.69 (13.90, 14.60) 0.8504 0.0928 (0.8454, 0.8553)
sCTDE-24 1825 18.18 2.41 (17.84, 18.53) 0.8936 0.0673 (0.8896, 0.8979)

qfCTDE-L2 121 6.58 3.92 (6.47, 6.66) 0.8482 0.1921 (0.8435, 0.8518)
qfCTDE-L5 265 19.41 6.23 (19.23, 19.59) 0.9398 0.1020 (0.9366, 0.9426)
qfCTDE-L10 505 22.08 2.22 (21.91, 22.26) 0.9691 0.0247 (0.9665, 0.9723)

eQMARL-Ψ+-L2 121 5.38 3.74 (5.30, 5.46) 0.8271 0.2213 (0.8234, 0.8300)
eQMARL-Ψ+-L5 265 21.11 2.65 (20.92, 21.35) 0.9640 0.0347 (0.9601, 0.9667)
eQMARL-Ψ+-L10 505 22.45 2.23 (22.28, 22.62) 0.9719 0.0219 (0.9685, 0.9745)

POMDP

fCTDE-3 169 2.98 2.47 (2.91, 3.05) 0.7082 0.1890 (0.7039, 0.7123)
fCTDE-6 337 7.15 3.06 (6.95, 7.37) 0.7711 0.1388 (0.7658, 0.7781)
fCTDE-12 673 13.46 3.24 (13.09, 13.76) 0.8443 0.1026 (0.8396, 0.8506)
fCTDE-24 1345 17.38 2.65 (17.06, 17.73) 0.8889 0.0752 (0.8840, 0.8945)

sCTDE-3 175 2.68 2.60 (2.61, 2.74) 0.6834 0.1942 (0.6792, 0.6866)
sCTDE-6 349 6.35 3.53 (6.18, 6.54) 0.7677 0.1488 (0.7633, 0.7725)
sCTDE-12 697 13.70 2.79 (13.44, 13.99) 0.8466 0.0985 (0.8411, 0.8515)
sCTDE-24 1393 17.97 2.60 (17.67, 18.25) 0.8948 0.0723 (0.8898, 0.9004)

qfCTDE-L2 745 12.34 7.56 (12.09, 12.60) 0.8335 0.2058 (0.8277, 0.8386)
qfCTDE-L5 817 16.79 4.66 (16.45, 17.04) 0.9040 0.1135 (0.8994, 0.9091)
qfCTDE-L10 937 18.14 4.28 (17.83, 18.31) 0.9476 0.0660 (0.9443, 0.9508)

eQMARL-Ψ+-L2 745 17.14 3.98 (16.77, 17.47) 0.8834 0.1106 (0.8769, 0.8896)
eQMARL-Ψ+-L5 817 18.49 3.91 (18.23, 18.80) 0.9226 0.0831 (0.9172, 0.9272)
eQMARL-Ψ+-L10 937 19.09 3.44 (18.86, 19.46) 0.9485 0.0603 (0.9458, 0.9523)

Table I.9: Comparison of the best model size in number of trainable parameters for each framework
used on CoinGame-2 environment with MDP and POMDP dynamics.

Number of Trainable Parameters

Framework Ablation Selection Model MDP dynamics POMDP dynamics

eQMARL
L = 5 Actor 136 412
L = 5 Critic 265 (132 per agent, 1 central) 817 (408 per agent, 1 central)

qfCTDE
L = 5 Actor 136 412
L = 5 Critic 265 817

fCTDE
h = 12 Actor 496 388
h = 12 Critic 889 673

sCTDE
h = 12 Actor 496 388
h = 12 Critic 913 (444 per agent, 25 central) 697 (336 per agent, 25 central)
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(a) fCTDE - MDP - Score
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(c) sCTDE - MDP - Score
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(d) sCTDE - POMDP - Score
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(e) qfCTDE - MDP - Score
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(f) qfCTDE - POMDP - Score
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(g) eQMARL-Ψ+ - MDP - Score
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(h) eQMARL-Ψ+ - POMDP - Score
Figure I.5: Score performance for ablation study using CoinGame-2 for (a,b) fCTDE, and (c,d)
sCTDE, and (e,f) qfCTDE, and (g,h) eQMARL-Ψ+ with hidden layer units h ∈ {3, 6, 12, 24} and
VQC layers L ∈ {2, 5, 10}, averaged over 10 runs of 3000 epochs, with ±1 std. dev. shown as shaded
regions.
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(a) fCTDE - MDP - Own Coin Rate
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(b) fCTDE - POMDP - Own Coin Rate
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(c) sCTDE - MDP - Own Coin Rate
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(d) sCTDE - POMDP - Own Coin Rate
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(e) qfCTDE - MDP - Own Coin Rate
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(f) qfCTDE - POMDP - Own Coin Rate
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(g) eQMARL-Ψ+ - MDP - Own Coin Rate

0 500 1000 1500 2000 2500 3000
Epoch

0.0

0.2

0.4

0.6

0.8

0.95
1.0

O
w

n 
C

oi
n 

R
at

e

eQMARL +-L2 eQMARL +-L5 eQMARL +-L10

(h) eQMARL-Ψ+ - POMDP - Own Coin Rate
Figure I.6: Own Coin Rate performance for ablation study using CoinGame-2 for (a,b) fCTDE, and
(c,d) sCTDE, and (e,f) qfCTDE, and (g,h) eQMARL-Ψ+ with hidden layer units h ∈ {3, 6, 12, 24}
and VQC layers L ∈ {2, 5, 10}, averaged over 10 runs of 3000 epochs, with ±1 std. dev. shown as
shaded regions.
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