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Abstract—Subramanian et al. [1] introduced an asymptotic
Gaussian-features model for overparameterized multiclass clas-
sification in which the number of classes, training points, and
parameters all go to infinity. They provided some achievable
regions where min-norm interpolating classifiers successfully
asymptotically generalize as well as conjecturing the full form
of the region based on a heuristic analysis. Here, we introduce
a converse for such min-norm interpolating classifiers in their
model which fully matches their conjectured regions. The key
technical tool is a variant of the Hanson-Wright concentration
inequality that applies to the sparse bilinear forms that arise.

I. INTRODUCTION

Classical statistical learning theory intuition predicts that
highly expressive models, which can interpolate random labels
[2], [3], ought not to generalize well. However, deep learning
practice has seen such models performing well when trained
with good labels. Resolving this apparent contradiction has
recently been the focus of a multitude of works, and this paper
builds on one particular thread of investigation. To be self-
contained, this introduction will quickly summarize this thread
but we direct the reader to [1] and the references cited therein
since space here is very constrained. A broader picture that
encompasses other threads can be found in [4]-[6].

Our thread begins with a recent line of work that analyzes
the generalization behavior of overparameterized linear models
for regression [7]-[11]. These simple models demonstrate how
the capacity to interpolate noise can actually aid in gener-
alization: training noise can be harmlessly absorbed by the
overparameterized model without contaminating predictions
on test points. In effect, extra features can be regularizing (in
the context of descent algorithms’ implicit regularization [12]-
[15]), but an excessive amount of such regularization causes
regression to fail because even the true signal will not survive
the training process.

The thread continues in a line of work that studies binary
classification [16]-[18] in similar overparameterized linear
models. While confirming that the basic story is similar to
regression, these works identify a further surprise: binary clas-
sification can work in some regimes where the corresponding
regression problem would not work! due to the regularizing
effect of overparameterization being too strong. Just as in the
regression case, the results here are sharp in toy models: we
can exactly characterize where binary classification using an
interpolating classifier asymptotically generalizes.

The phenomenon of regression failing in the overparameterized regime is
inextricably linked to the empirical covariance of the data not revealing the
spiked reality of the underlying true covariance [19]. See Appendix J of [1].

With binary classification better understood, the thread
continues to multiclass classification. After all, the current
wave of deep learning enthusiasm originated in breakthrough
performance in multiclass classification, and we have seen a
decade of ever larger networks trained on ever larger datasets
with ever more classes [20]. Using similar toy models [11],
[16], [21], the constant number of classes case was studied
in [22] to recover results similar to binary classification.
Subramanian et al. [1] further introduced a model where the
number of classes grows with the number of training points
and proved an achievability result on how fast the number of
classes can grow while still allowing the interpolating classifier
to asymptotically generalize. While [1] gave a conjecture for
what the full region should be, there was no converse proof.

In this paper, we prove a weak converse that exactly matches
what was conjectured in [1]. To do so, we leverage a new tool:
a variant of the Hanson-Wright concentration inequality that
applies to bilinear forms and takes advantage of the “sparsity”
inherent in multiclass classification.

II. PROBLEM SETUP

We consider the multiclass classification problem with k
classes. The following exposition is lifted from [1], but we
include it for the sake of being self-contained. The training
data consists of n pairs {x;,¢;}" ; where z; € R? are i.i.d
standard Gaussian vectors?. We assume that the labels ¢; € [k]
are generated as follows.

Assumption 1 (I-sparse noiseless model): The class labels
{; are generated based on which of the first k£ dimensions of
a point x; has the largest value,

¢; = arg max x;[m]. (1)
me|[k]

For a vector @, we index its jth entry with x[j]. Hence, under
Assumption 1, x;[m] can be interpreted as how representative
of class m the ith training point is.

For clarity of exposition, we make explicit a feature weight-
ing that transforms the training points as follows:

z ] =V Nlj] Vi e [d). )

Following previous work, we are staying within a Gaussian features
framework. However, recent developments have confirmed that these models
are actually predictive when the features arise from nonlinearities in a lifting,
as long as there is enough randomness underneath [23]-[27].



Here A € R? contains the squared feature weights. The
feature weighting serves the role of favoring the true pattern,
something that is essential for good generalization.?

The weighted feature matrix X € R™*? is given by

2v]" = [Vaiz Viaza 3

where we introduce the notation z; € R™ to contain the ;%"
feature from the n training points. Note that z; ~ N(0, I,)
are i.i.d Gaussians. We use a one-hot encoding for representing
the labels as the matrix Yo" € R"**

X =[xy

Yo = [y v, 4)
where
1, if¢; =
yhlp =4t 5)

0, otherwise

Since we consider linear models, we center the one-hot
encodings by subtracting % from each entry, and define

1
h
ym Sy — 21 (6)
Our classifier consists of k coefficient vectors fm for m €
[k] that are learned by minimum-norm interpolation of the
zero-mean one-hot variants using the weighted features:*

fn = axgmin | £ @)
st. XYf =y, ()

We can express these coefficients in closed form as
Fro = (X (X(X)T) Y ©)

On a test point @it ~ N(0,1;) we predict a label as
follows: First, we transform the test point into the weighted
feature space to obtain @y, where T2 [j] = \/Aj@est[j] for
j € [d]. Then we compute k scalar “scores” and assign the

class based on the largest score as follows:
{ = arg max met‘gst. (10)
1<m<k

By assumption, a misclassification event Egrr occurs whenever
T

arg max Liest[M] # arg max f,,, o - (11)

1<m<k 1<m<k
In this paper, we prove a converse result to the positive result
for generalization in [1]. In particular, we determine sufficient
conditions under which the probability of misclassification
(computed over the randomness in both the training data
and test point) is bounded below by a positive constant in
an asymptotic regime where the number of training points,

30ur weighted feature model is equivalent to the one used in other works
(e.g. [16]) that assume that the covariates come from a d—dimensional
anisotropic Gaussian with a covariance matrix 3 that favors the truly important
directions. These directions do not have to be axis-aligned — we make that
assumption only for notational convenience. In reality, the optimizer will never
know these directions a priori.

4The classifier learned via this method is equivalent to those obtained by
other natural training methods under sufficient overparameterization [22].

features, classes, and feature weights all scale according to
the bi-level ensemble model, which we now formally define.

Definition 1 (Bi-level ensemble): The bi-level ensemble is
parameterized by p,q,r and ¢ where p > 1, 0 < r < 1,
0<g< (p—r)and 0 <t < r. Here, parameter p controls
the extent of overparameterization, r determines the number
of favored features, g controls the weights on favored features
and t controls the number of classes. The number of features
(d), number of favored features (s), number of classes (k) all

scale with the number of training points (n) as follows:
d=|n?],s=|n"],a=n"%k=cp|n'], (12)

where ¢y, is a positive integer. Furthermore, the feature weights
(4/A;) scale according to the following definition:

ad 1<j<
VA = Ve == (13)

(1—a)d
d—s

, otherwise

(1—a)d

We introduce the notation A\p £ 2 and Ay £ %
to distinguish between the (squared) favored and unfavored
weights, respectively.

We provide a visualization of the bi-level model in Figure 1,
reproduced from [1].
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Fig. 1. Bi-level feature weighting model. The first s features have a higher
weight and are favored during minimum-norm interpolation. These can be
thought of as the square-roots of the eigenvalues of the feature covariance
matrix Y in a Gaussian model for the covariates as in [9].

Subramanian et al. [1] use heuristic calculations to conjec-
ture necessary and sufficient conditions for the bi-level model
to generalize. We restate it here, as it provides the primary
benchmark for our theoretical result.

Conjecture 1 (Conjectured bi-level regions): Under the bi-
level ensemble model 1, when the true data generating process
is 1-sparse (Assumption 1), as n — oo, in the regime where
q+7r > 1, the probability of misclassification P[Egy| satisfies®

0, ift<min{l—-r,p+1-2(qg+r)}

PlEerr| —
[Eer] 1, ift>min{l—rp+1-2(q+7)}

. (14)
III. MAIN RESULT: WHERE MIN-NORM INTERPOLATION IN
THE BI-LEVEL MODEL FAILS TO GENERALIZE

For the sake of comparison to [1], we only consider the
regime where regression provably fails, i.e. g+7r > 1 (see e.g.

(91, [16]).

SWe have omitted the constraint ¢ < 7 as this is included in the definition
of the bi-level model.



Theorem 1 (Impossibility for bi-level model): Under the bi-
level ensemble model 1, when the true data generating process
is 1-sparse (Assumption 1), the probability of misclassification
Pl€er] > % as n — oo if the following conditions hold:

t>min{l —r,p+1-2(g+r)}
qg+r>1.

15)
(16)

We now quote the corresponding positive result for the bi-
level model, which is Theorem 5.1 in [1].

Theorem 2 (Generalization for bi-level model): Under the
bi-level ensemble model 1, when the true data generating
process is 1-sparse (Assumption 1), the probability of mis-
classification P[Eer] — 0 as n — oo if the following hold:

t<min{l—-rp+1-2(qg+7),p—2,2¢+7r—2} (17)
g+r>1. (18)

As alluded to in the introduction, our main result Theorem 1
is a weak converse result. With some extra effort, we believe
this can be strengthened for a strong converse with asymptotic
probability of misclassification of 1 — %, which would match
random guessing. Our converse result Theorem 1 fully resolves
the impossibility side of Conjecture 1 in the regime where
regression fails. We expect our techniques to carry over to the
g + r < 1 regime where regression works, but we omit these
details due to space constraints.

In Figure 2, we compare Theorems 1 and 2 by visualizing
the regimes where they hold; this figure parallels Fig 2. in
[1]. The figure depicts slices of the four dimensional scaling
parameter space of p, ¢, 7, and ¢t. We fix the value of ¢ to 0.75,
as our result fully matches the conjectured regimes. Note that
there is looseness in the positive result in [1]. We expect our
tighter analysis techniques from this paper to close that gap,
but we omit these details for the sake of space. We point
out that in (2b), the boundary of the region where multiclass
classification fails contains two slopes. These slopes arise from
the two conditions in Theorem 1.

IV. PROOF SKETCH AND MAIN TECHNIQUES

In this section we briefly describe the high level ideas of
the proof of Theorem 1. Parallel to [1], the starting point is
writing out a sufficient (instead of necessary) condition for
misclassification. From there, the crux is proving the correct
order of growth of a certain signal-to-noise ratio, which we
will define later.

Assume without loss of generality that the test point Tiest ~
N(0, I;) has true label « for some o € [k]. Let xj, be the
weighted version of this test point. From (11), an equivalent
condition for misclassification is that for some 3 # «, 8 € [k],
we have J/‘I Tiog < f;r Tl i.e. the score for 3 outcompetes
the score for a. Define the Gram matrix A = X% (X")T, the
relative label vector Ay £ y, —ys € {—1,0,1}", and the
relative survival vector Tza g € R? which compares the signal
from « and 5:

19)
(20)

hasli] 2 X2 (Fali] — Foli))
= z;-rA_lAy,

where to obtain the last line we have used (9). By converting
the misclassification condition into the unweighted feature
space we see that we will have errors when

)‘oﬁa,ﬁ [a]Test[a] — )‘ﬁﬁﬁ,a [B]rest | B]

< D Ahgalilzesl] @
i¢{a,B}
Define the contamination term CN,, g:
N2 [ D7 N(hgali))? (22)

J¢{eB}

Note that CN,, 3 normalizes the RHS of (21) into a standard
Gaussian. Indeed, define
1

7(B) &
CN

S Nhgalil@esli] ~ N(0,1).  (23)
B j¢{a.p}

Since «, 8 € [k] are favored, we have A\, = Ag = Ap.
Taking an absolute value of the LHS of (21), a sufficient
condition for misclassification is

%Oxtest[@]l‘ﬁa,g[a]’ + |mteSt[ﬁH‘i\lﬁ,a[ﬂ]D < 70
h (24)

By standard subgaussian maximal inequalities, |@Tiest[i]| =
O(y/log(nk)) with high probability. Hence, misclassifica-
tion occurs with nonvanishing probability if the survival to
contamination ratio Ar|hq gle]|/CNag < n™* for some
w > 0, and similarly for Ap|hgo[5]|/CNy,g. Taking this
result on faith for now, we can deduce that since N(0,1) is
a symmetric continuous distribution, some Z( outcompetes
with probability at least 3 — o(1).

We now discuss the high level proof ideas for proving that
the survival to contamination ratio shrinks. We highlight where
our techniques differ from those of Subramanian et al. [1]. To
understand the relative survival and contamination, we must
understand the bilinear forms h, glj] = z]-TA’lAy. The
main source of inspiration for bounding these bilinear forms
is the heuristic style of calculation that leads to Conjecture 1.

In the regime where regression fails, A~ turns out to have
a flat spectrum. In other words, A~! is very close to a scaled
identity matrix. If we assume that A~! is exactly equal to a
scaled identity matrix, then the survival for « is proportional to
2! Ay. This is an inner product between two random vectors.
We point out that it is crucial that Ay is a sparse vector; it only
has 2n/k nonzero entries in expectation. A quick computation
reveals that E[z] Ay] ~ O(%). With some additional effort,
one can show that the inner product concentrates. The same
argument applies verbatim for f3.

Similarly, to lower bound the contamination terms we lower
bound |z Ay| for j & {a,3}. By symmetry E[z] Ay] = 0.
The growth of the contamination term is therefore determined
by the concentration radius, which is where we hope to
leverage sparsity. This is the heart of Theorem 4, which may be
of independent interest; we present it in the following section.
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Fig. 2. Example of regimes for multiclass/binary classification and regression. The white regions correspond to invalid regimes under the bi-level model.

A. On the role of Hanson-Wright concentration

In reality, A~! is not actually perfectly flat, so we cannot

immediately reduce the bilinear form ijA_lAy to a simple
inner product. Instead, we turn to the well-known Hanson-
Wright inequality [28], which tells us that quadratic forms
of random vectors with independent, mean zero, subgaussian
entries concentrate around their mean. It was used extensively
to study binary classification [16] and the positive result for
multiclass classification [1] in the bi-level model. However,
there are several key differences in our use of Hanson-Wright.
At a high level, our analysis is optimal because it cleverly
exploits the dependence structure in the problem and fully
leverages a new variant of Hanson-Wright which explicitly
uses the sparsity inherent to the multiclass problem.

For reference, we state the original version of the Hanson-
Wright inequality proved in [28]. First, for the sake of preci-
sion, we define the subgaussian norm ||£]|,, [29] as

l€lly, = jnf {K :Eexp(¢?/K?) <2}, (25)

Theorem 3 (Hanson-Wright for quadratic forms, from [28]):
Let £ € R" be a random vector composed of independent
random variables that are zero mean and have subgaussian
norm at most K. There exists universal constant ¢ > 0 such
that for any deterministic M € R™*" and € > 0,

Pllz" Mz —Elz " Mz]| > ¢|

€ €
< 2exp| —cmin , .
( {K4|M||2F K2|M|,

The original Hanson-Wright inequality quoted above only
applies to quadratic forms, and moreover assumes that the
matrix M is deterministic. In our setting, we have a bilinear
form ijA*IAy, where A~! is random. One can condition
on the realization of A~!, but this removes independence
and alters the distributions of the random variables involved.
Of course, if we condition on a random matrix which is
independent of the random vectors, then there is no issue.

Assuming a way around the independence issue, one could
decompose the bilinear form with the identity

4ijA_1Ay = (z; +Ay) A7 (z; + Ay)
—(zj —Ay)T A (z; - Ay).

(26)
27

This trick is used in both [1], [16]. In the binary classifi-
cation case, one regains complete independence by using a
leave-one-out trick. More precisely, define the leave-one-out
matrix A_; = >, A\iziz; and let y € {+1}" be the
binary label vector. Then A_; is evidently independent of
z; and y, and the Sherman-Morrison formula implies that
z] A7y = 7414:11'?
J 1+zJTA7 %
which concentrates well due to Hanson-Wright, this allows for
a completely tight characterization of binary classification.
However, this trick does not immediately work in the
multiclass setting, because the labels depend on all of the
k > 1 label-defining features. Here, one needs to potentially
remove w(1) features from the Gram matrix A to regain
independence. In [1], they eschew Sherman-Morrison entirely
and directly exploit the fact that A~! is flat (as ¢ +r > 1).
More precisely, they decompose A~' = I, + A, where
|ALll, < fi. This essentially shoves all the dependencies
into A,,. While the i portion reduces to the inner product
calculation discussed above, they must use Cauchy-Schwarz
to handle the dependent A, portion. This leads to inevitable
looseness in the regimes for Theorem 2, as Cauchy-Schwarz
is a worst-case bound. Interestingly, their Cauchy-Schwarz
bound leverages the sparsity of the label vectors to gain a
factor of v/k, but the bound is still loose by a factor of /7.
We fully tighten the analysis for multiclass classification by
directly analyzing the bilinear forms and fully exploiting their
sparsity. To that end, we prove a variant of Hanson-Wright for
sparse bilinear forms, which is quite similar to recent results
about sparse bilinear and quadratic forms [30], [31] (recall
that the original Hanson-Wright inequality only applies to
quadratic forms that need not have sparsity). To actually apply
Hanson-Wright, we carefully isolate the dependent portions

. Because the denominator is a scalar



using the Woodbury inversion formula, which generalizes the
Sherman-Morrison formula for arbitrary rank updates.

Although our variant of Hanson-Wright is quite similar to
Theorem 1 in [31], the assumptions are actually incomparable.
The main proof techniques are heavily inspired by the style of
analysis of [28], [30], [31]. To encode sparsity, we introduce
the notation v o u € R" to denote the elementwise product
of v,u € R™. Then setting v to be a binary vector in {0, 1}"
allows us to explicitly encode sparsity.

Theorem 4 (Sparse Hanson-Wright for bilinear forms): Let
z = (X1,...,Xn) € R"and y € (1,...,Y,) € R” be
random vectors such that the pairs (X;,Y;) are independent
pairs of (possibly correlated) centered random variables with
subgaussian norm at most K. Suppose ¥ = (y1,.--,Vn) €
{0,1}" is an i.i.d. Bernoulli vector with bias 7. Assume that
~ is independent of y, ; is independent of X; for ¢ # j, and
finally conditioned on v; = 1, X; has subgaussian norm at
most K. Then there exists an absolute constant ¢ > 0 such
that for all M € R™*"™ and € > 0 we have

P(le"M(yo~y) —Elz" M(yo~)]| > ¢

€2 €
< 2exp| —cmin , .
( {K47TM2F K2||M”2}>
(28)

Note that the sparsity level m improves the concentration
radius € (smaller € is better), which can be interpreted as
the high probability bound. Since ||M||?, < n||M| 3 and
m = O(1/k) in our setting, we obtain a concentration radius €
which scales like y/n/k rather than 1/n (obtained via Hanson-
Wright without sparsity) or n/vk (obtained via Cauchy-
Schwarz with sparsity). This gain is crucial to tightly analyzing
the survival and contamination terms.

B. Completing the proof sketch

Theorem 4 and the above insights about sparsity and in-
dependence allow us to prove (see Appendix) the following
bounds on the relative survival and contamination terms.

Proposition 5 (Upper bound on relative survival): Suppose
we are in the bi-level model in the regime where regression
fails, i.e. ¢ +r > 1. With probability at least 1 — O(1/n),

AF\ﬁa,ﬁ[a]\ < O(n!mrmrmin{tdh) Jlogk.

Translating the parameters in Proposition 5, we see that the
relative survival is diminished by a factor 1/k as long as k =
o(y/n), and a factor 1/4/n for k = Q(y/n). This roughly
matches the expected behavior from the heuristic calculation.
The looseness in the k = Q(y/n) regime does not affect our
final result. We now state our lower bound on contamination.
Proposition 6 (Lower bound on contamination): Suppose
we are in the bi-level model regime where regression fails,
i.e. ¢+ r > 1. Then with probability at least 1 — O(1/n), the

contamination satisfies
r—t—1

CNQ,B > Q(nl—q—r+ 2

CNo g, F

1—t—p

)+ Q).

CNea,g,U

(29)

The first term n!~9~"+" =% arises from the contamination
from favored® features CN, g p. In the regime ¢ < 1, com-
paring the relellgiy_etsurvival to this favored contamination yields
a ratio of n= 2 . This decays polynomially exlzlctJy when
t > 1 — r. On the other hand, the second term n~— 2 arises
from the contamination from unfavored features CN, g.7. In
the regime ¢ < %, comparing the relative survival to this
. . . . p+1—-2(g+r)—t .
unfavored contamination yields a ratio of n 2 , which
decays polynomially exactly when ¢t > p+ 1 — 2(¢ + ). For
t> %, we get a ratio of nFTr, which shrinks because ¢ < r.

This explains the regimes for misclassification in Theorem 1.

V. DISCUSSION

In this paper we present a weak-converse style impossibility
result for min-norm interpolative multiclass classification us-
ing the overparameterized bi-level model, matching what was
conjectured in [1]. This suggests that it might be possible to get
a more general information-theoretic converse that limits the
performance of any learning scheme that does not fully know
the underlying covariance 3 of input features. Since entropic
quantities in jointly normal contexts parallel the behavior
of second-order quadratic forms involving correlations and
covariances [32], the style of analysis here might be further
developed to unlock such results.

More speculatively, we suspect that the classification prob-
lem here can be connected to an ultrawideband variant [33]-
[35] of covert communication [36]-[41] in which the covert
transmitter/receiver are connected by a wide fading channel
and have only coordinated with a prior agreement to send
pilot transmissions of the k distinct codewords before sending
any new messages. The regime where regression doesn’t work
in learning is closely related to when the communication will
be covert. Classification working using a learned codebook is
required for the receiver to actually decode covert transmis-
sions. Making such a connection precise might help bring new
tools and perspectives to bear on such problems.

6Strictly speaking, this lower bound comes from the s — k favored but not
label defining features, but the distinction is asymptotically negligible.
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