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Abstract

We study the asymptotic generalization of an overparameterized linear model for1

multiclass classification under the Gaussian covariates bi-level model introduced in2

Subramanian et al. (2022), where the number of data points, features, and classes all3

grow together. We fully resolve the conjecture posed in Subramanian et al. (2022),4

matching the predicted regimes for generalization. Furthermore, our new lower5

bounds are akin to an information-theoretic strong converse: they establish that the6

misclassification rate goes to 0 or 1 asymptotically. One surprising consequence of7

our tight results is that the min-norm interpolating classifier can be asymptotically8

suboptimal relative to noninterpolating classifiers in the regime where the min-norm9

interpolating regressor is known to be optimal.10

The key to our tight analysis is a new variant of the Hanson-Wright inequality which11

is broadly useful for multiclass problems with sparse labels. As an application, we12

show that the same type of analysis can be used to analyze the related multilabel13

classification problem under the same bi-level ensemble.14

1 Introduction15

In this paper, we directly follow up on a specific line of work initiated by Subramanian et al. (2022);16

Anonymous (2023). For the sake of self-containedness, we briefly reiterate the context, directing the17

reader to Subramanian et al. (2022) and the references cited therein for more. A broader story can be18

found in Bartlett et al. (2021); Belkin (2021); Dar et al. (2021); Oneto et al. (2023).19

Classical statistical learning theory intuition predicts that highly expressive models, which can20

interpolate random labels (Zhang et al., 2016; 2021), ought not to generalize well. However, deep21

learning practice has seen such models performing well when trained with good labels. Resolving22

this apparent contradiction has recently been the focus of a multitude of works, and this paper builds23

on one particular thread of investigation that can be rooted in Bartlett et al. (2020); Muthukumar24

et al. (2020) where the concept of benign/harmless interpolation was crystallized in the context of25

overparameterized linear regression problems and conditions given for when this can happen. In26

Muthukumar et al. (2021), a specific toy "bi-level model" with Gaussian features was introduced to27

study overparameterized binary classification and show that successful generalization could happen28

even beyond the conditions for benign interpolation for regression. Following the introduction of29

the corresponding multi-class problem in Wang et al. (2021) with a constant number of classes, an30

asymptotic setting where the number of classes can grow with the number of training examples was31

introduced in Subramanian et al. (2022) where a conjecture was presented for when minimum-norm32

interpolating classifiers will generalize. We are now in a position to state our main contributions;33

afterwards, we expand on the related works.34
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Our contributions35

Our main contribution is crisply identifying the asymptotic regimes where an overparameterized36

linear model which performs minimum-norm interpolation does and does not generalize for multiclass37

classification under a Gaussian features assumption, thus resolving the main conjecture posed by38

(Subramanian et al., 2022). We improve on the analysis of Subramanian et al. (2022); Anonymous39

(2023), covering all regimes with the asymptotically optimal misclassification rate. When the model40

generalizes, it does so with a misclassification rate o(1), and we show a matching "strong converse"41

establishing when it misclassifies, it does so with rate 1 − o(1), where the explicit rate is nearly42

identical to that of random guessing. The critical component of our analysis is a new variant of the43

Hanson-Wright inequality, which applies to bilinear forms between a vector with subgaussian entries44

and a vector that is bounded and has soft sparsity, a notion we will define in Section 4.2. We show45

how this tool can be used to analyze other multiclass problems, such as multilabel classification.46

1.1 Brief treatment of related work47

Our thread begins with a recent line of work that analyzes the generalization behavior of overparame-48

terized linear models for regression (Hastie et al., 2022; Mei and Montanari, 2022; Bartlett et al., 2020;49

Belkin et al., 2020; Muthukumar et al., 2020). These simple models demonstrate how the capacity50

to interpolate noise can actually aid in generalization: training noise can be harmlessly absorbed51

by the overparameterized model without contaminating predictions on test points. In effect, extra52

features can be regularizing (in the context of descent algorithms’ implicit regularization (Soudry53

et al., 2018; Ji and Telgarsky, 2019; Engl et al., 1996; Gunasekar et al., 2018)), but an excessive54

amount of such regularization causes regression to fail because even the true signal will not survive55

the training process. Although works in this thread focus on very shallow networks, Chatterji and56

Long (2023) established that deeper networks can behave similarly. Note that recently, Mallinar et al.57

(2022) called-out an alternative regime (behaving like 1-nearest-neighbor learning) called "tempered"58

overfitting in which training noise is not completely absorbed but the true signal does survive training.59

The thread continues in a line of work that studies binary classification (Muthukumar et al., 2021;60

Chatterji and Long, 2021; Wang and Thrampoulidis, 2021) in similar overparameterized linear models.61

While confirming that the basic story is similar to regression, these works identify a further surprise:62

binary classification can work in some regimes where the corresponding regression problem would63

not work1 due to the regularizing effect of overparameterization being too strong. Just as in the64

regression case, the results here are sharp in toy models: we can exactly characterize where binary65

classification using an interpolating classifier asymptotically generalizes.66

With binary classification better understood, the thread continues to multiclass classification. After all,67

the current wave of deep learning enthusiasm originated in breakthrough performance in multiclass68

classification, and we have seen a decade of ever larger networks trained on ever larger datasets69

with ever more classes Kaplan et al. (2020). Using similar toy models (Muthukumar et al., 2020;70

2021; Wang et al., 2022), the constant number of classes case was studied in Wang et al. (2021) to71

recover results similar to binary classification. Subramanian et al. (2022) further introduced a model72

where the number of classes grows with the number of training points and proved an achievability73

result on how fast the number of classes can grow while still allowing the interpolating classifier to74

asymptotically generalize. While Subramanian et al. (2022) gave a conjecture for what the full region75

should be, there was no converse proof, and they could not show generalization in entire conjectured76

region. Anonymous (2023) proved a partial weak converse; they showed that the misclassification77

rate is bounded away from 0 — rather than tending to 1 — in some of the predicted regimes.78

2 Problem setup79

We consider the multiclass classification problem with k classes. The following exposition is lifted80

from Subramanian et al. (2022), but we include it for the sake of being self-contained. The training81

1Regression failing in the overparameterized regime is linked to the empirical covariance of the limited
data not revealing the spiked reality of the underlying covariance (Wang and Fan, 2017). See Appendix J of
Subramanian et al. (2022). When regression doesn’t generalize, we also get "support-vector proliferation"
in classification problems (Muthukumar et al., 2021; Hsu et al., 2021) which is also intimately related to the
phenomenon of "neural collapse" (Papyan et al., 2020) as discussed, for example, in Xu et al. (2023).
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data consists of n pairs {xi, ℓi}ni=1 where xi ∈ Rd are i.i.d standard Gaussian vectors2. We assume82

that the labels ℓi ∈ [k] are generated as follows.83

Assumption 1 (1-sparse noiseless model). The class labels ℓi are generated based on which of the84

first k dimensions of a point xi has the largest value,85

ℓi = argmax
m∈[k]

xi[m]. (1)

For a vector x, we index its jth entry with x[j]. Hence, under Assumption 1, xi[m] can be interpreted86

as how representative of class m the ith training point is.87

For clarity of exposition, we make explicit a feature weighting that transforms the training points:88

xwi [j] =
√
λjxi[j] ∀j ∈ [d]. (2)

Here λ ∈ Rd contains the squared feature weights. The feature weighting serves the role of favoring89

the true pattern, something that is essential for good generalization.390

The weighted feature matrix Xw ∈ Rn×d is given by91

Xw = [xw1 · · · xwn ]
⊤
=
[√

λ1z1 · · ·
√
λdzd

]
(3)

where we introduce the notation zj ∈ Rn to contain the jth feature from the n training points. Note92

that zj ∼ N(0, In) are i.i.d Gaussians. We use a one-hot encoding for representing the labels as the93

matrix Y oh ∈ Rn×k94

Y oh =
[
yoh
1 · · · yoh

k

]
, where yoh

m [i] =

{
1, if ℓi = m

0, otherwise
. (4)

Since we consider linear models, we center the one-hot encodings and define95

ym ≜ yoh
m − 1

k
1. (5)

Our classifier consists of k coefficient vectors f̂m for m ∈ [k] that are learned by minimum-norm96

interpolation (MNI) of the zero-mean one-hot variants using the weighted features:497

f̂m = argmin
f

∥f∥2 (6)

s.t. Xwf = ym. (7)

We can express these coefficients in closed form as98

f̂m = (Xw)⊤
(
Xw(Xw)⊤

)−1
ym. (8)

On a test point xtest ∼ N(0, Id) we predict a label as follows: First, we transform the test point99

into the weighted feature space to obtain xwtest where xwtest[j] =
√
λjxtest[j] for j ∈ [d]. Then we100

compute k scalar “scores” and assign the class based on the largest score as follows:101

ℓ̂ = argmax
1≤m≤k

f̂⊤
mxwtest. (9)

2Following previous work, we are staying within a Gaussian features framework. However, recent develop-
ments have confirmed that these models are actually predictive when the features arise from nonlinearities in a
lifting, as long as there is enough randomness underneath (Hu and Lu, 2022; Lu and Yau, 2022; Goldt et al.,
2022; Misiakiewicz, 2022; McRae et al., 2022; Pesce et al., 2023; Kaushik et al., 2023).

3Our weighted feature model is equivalent to other works (e.g. Muthukumar et al. (2021)) that assume that
the covariates come from a d−dimensional anisotropic Gaussian with a covariance matrix Σ that favors the
truly important directions (Wei et al., 2022). These directions do not have to be axis-aligned — we make that
assumption only for notational convenience. In reality, the optimizer will never know these directions a priori.

4The classifier learned via this method is equivalent to those obtained by other natural training methods (SVMs
or gradient-descent with exponential tailed losses like cross-entropy) under sufficient overparameterization
(Wang et al., 2021; Kaushik et al., 2023). Recently, Lai and Muthukumar (2023) showed via an extension of Ji
and Telgarsky (2021) that a much broader category of losses also asymptotically result in convergence to the
same MNI solution for sufficiently overparameterized classification problems.
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By assumption, a misclassification event Eerr occurs whenever102

argmax
1≤m≤k

xtest[m] ̸= argmax
1≤m≤k

f̂⊤
mxwtest. (10)

We study where the MNI generalizes in an asymptotic regime where the number of training points,103

features, classes, and feature weights all scale according to the bi-level ensemble model5:104

Definition 1 (Bi-level ensemble). The bi-level ensemble is parameterized by p, q, r and t where105

p > 1, 0 ≤ r < 1, 0 < q < (p − r) and 0 ≤ t < r. Here, parameter p controls the extent of106

overparameterization, r determines the number of favored features, q controls the weights on favored107

features and t controls the number of classes. The number of features (d), number of favored features108

(s), and number of classes (k) all scale with the number of training points (n) as follows:109

d = ⌊np⌋, s = ⌊nr⌋, a = n−q, k = ck⌊nt⌋, (11)

where ck is a positive integer. Define the feature weights by110

√
λj =


√

ad
s , 1 ≤ j ≤ s√
(1−a)d
d−s , otherwise

. (12)

We introduce the notation λF ≜ ad
s and λU ≜ (1−a)d

d−s to distinguish between the (squared) favored111

and unfavored weights, respectively.112

We visualize the bi-level model in Fig. 1, reproduced from Subramanian et al. (2022).113

Figure 1: Bi-level feature weighting model. The first s features have a higher weight and are favored
during minimum-norm interpolation. These can be thought of as the square-roots of the eigenvalues
of the feature covariance matrix Σ in a Gaussian model for the covariates as in Bartlett et al. (2020).

3 Main results114

In this section we state our main results and compare them to what was known and conjectured115

previously. Subramanian et al. (2022) use heuristic calculations to conjecture necessary and sufficient116

conditions for the bi-level model to generalize; we restate the conjecture here for reference.117

Conjecture 3.1 (Conjectured bi-level regions). Under the bi-level ensemble model (Definition 1),118

when the true data generating process is 1-sparse (Assumption 1), as n → ∞, the probability of119

misclassification Pr[Eerr] for MNI as described in Eq. (6) satisfies120

Pr[Eerr] →
{
0, if t < min {1− r, p+ 1− 2max {1, q + r}}
1, if t > min {1− r, p+ 1− 2max {1, q + r}} . (13)

Our main theorem establishes that Conjecture 3.1 indeed captures the correct generalization behavior121

of the overparameterized linear model.122

5Such models are widely used to study learning even beyond this particular thread of work. For example,
Tan et al. (2023) uses this to understand the privacy/generalization tradeoff of overparameterized learning.
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Theorem 3.2 (Generalization for bi-level-model). Under the bi-level ensemble model (Definition 1),123

when the true data generating process is 1-sparse (Assumption 1), Conjecture 3.1 holds.124

For comparison, we quote the best known previous positive and negative results for the bi-level model,125

which only hold in the restricted regime where regression fails (q + r > 1).126

Theorem 3.3 (Generalization for bi-level model (Subramanian et al., 2022)). In the same setting as127

Conjecture 3.1, in the regime where regression fails (q + r > 1), as n → ∞ we have Pr[Eerr] → 0 if128

t < min {1− r, p+ 1− 2(q + r), p− 2, 2q + r − 2}. (14)

Theorem 3.4 (Misclassification in bi-level model (Anonymous, 2023)). In the same setting as129

Conjecture 3.1, in the regime where regression fails (q + r > 1), as n → ∞ we have Pr[Eerr] ≥ 1
2 if130

t > min {1− r, p+ 1− 2(q + r)}. (15)

For ease of comparison between our main result and Theorems 3.3 and 3.4, we visualize the regimes131

in Fig. 2, as in Subramanian et al. (2022); Anonymous (2023). In particular, the blue starred and132

dashed regions in Fig. 2 indicate how Theorem 3.3 only applies where regression fails. In contrast,133

our new result holds regardless of whether regression fails or not, as in the the green diamond region134

and light blue triangle regions. The regions are also completely tight; the looseness between the prior135

Theorem 3.3 and our result can be seen in the light blue square region.136

The weak converse in the prior Theorem 3.4 captures some of the correct conditions for misclassifica-137

tion, but again only when q+ r > 1. As depicted in the maroon X region for r < 0.25 in Fig. 2b, our138

main theorem gives a strong converse, whereas Theorem 3.4 has nothing to say because q + r < 1.139

Theorem 3.4 also only proves that the misclassification rate is asymptotically at least 1
2 . In the red140

circle and maroon X regions, we illustrate how our result pushes the misclassification rate to 1− o(1),141

which requires a more refined analysis. We elaborate on this further in Section 4.142

We remark that it is simpler to analyze the case where regression fails, as the random matrices that143

arise in the analysis are flat, i.e. approximately equal to a scaled identity matrix. However, in the144

regime where regression works, the same matrices have a spiked spectrum, which complicates the145

analysis. To smoothly handle both cases, we leverage a new variant of the Hanson-Wright inequality146

to show concentration of certain sparse bilinear forms; see Section 4.1 for more details.147

Figure 2: Example of regimes for multiclass/binary classification and regression. The white regions
correspond to invalid regimes under the bi-level model. The entirety of 2b and all the light blue
regions are new to this paper, as is showing that the error tends to 1 in the maroon regions.

4 Technical overview148

We now sketch out the proof for our main theorem. As in Subramanian et al. (2022); Anonymous149

(2023), the starting point is writing out the necessary and sufficient conditions for misclassification.150

Assume without loss of generality that the test point xtest ∼ N(0, Id) has true label α for some151

α ∈ [k]. Let xwtest be the weighted version of this test point. From (10), an equivalent condition for152

misclassification is that for some β ̸= α, β ∈ [k], we have f̂⊤
α xwtest < f̂⊤

β xwtest, i.e. the score for β153

outcompetes the score for α. Define the Gram matrix A ≜ Xw(Xw)⊤, the relative label vector154

5



∆y ≜ yα−yβ ∈ {−1, 0, 1}n, and the relative survival vector ĥα,β ∈ Rd which compares the signal155

from α and β:156

ĥα,β [j] ≜ λ
−1/2
j (f̂α[j]− f̂β [j]) (16)

= z⊤
j A

−1∆y, (17)

where to obtain the last line we have used (8). By converting the misclassification condition into the157

unweighted feature space we see that we will have errors when158

λαĥα,β [α]xtest[α]− λβĥβ,α[β]xtest[β] <
∑

j /∈{α,β}

λjĥβ,α[j]xtest[j]. (18)

Define the contamination term CNα,β :159

CNα,β ≜
√ ∑
j /∈{α,β}

λ2
j (ĥβ,α[j])

2. (19)

Note that CNα,β normalizes the RHS of (18) into a standard Gaussian. Indeed, define160

Z(β) ≜
1

CNα,β

∑
j /∈{α,β}

λjĥβ,α[j]xtest[j] ∼ N(0, 1). (20)

Since α, β ∈ [k] are favored, we have λα = λβ = λF . Hence an equivalent condition for misclassifi-161

cation is that there exists some β ̸= α, β ∈ [k] such that162

λF
CNα,β

(ĥα,β [α]xtest[α]− ĥβ,α[β]xtest[β]) < Z(β). (21)

We now translate the above criterion into sufficient conditions for correct classification and misclassi-163

fication and analyze these two cases separately.164

Correct classification: For correct classification, it suffices for the maximum value of the LHS of165

Eq. (21) to outcompete the maximum value of the RHS, where the max is taken over β ∈ [k], β ̸= α.166

Some algebra, as in Subramanian et al. (2022), shows that we correctly classify if167

minβ λF ĥα,β [α]

maxβ CNα,β︸ ︷︷ ︸
SU/CN ratio

(
min
β

(xtest[α]− xtest[β])︸ ︷︷ ︸
closest feature margin

− max
β

|xtest[β]|︸ ︷︷ ︸
largest competing feature

·max
β

∣∣∣∣∣ ĥα,β [α]− ĥβ,α[β]

ĥα,β [α]

∣∣∣∣∣︸ ︷︷ ︸
survival variation

)

> max
β

Z(β)︸ ︷︷ ︸
normalized contamination

. (22)

We will show that under the conditions specified in Conjecture 3.1, with high probability, the relevant168

survival to contamination ratio SU/CN grows at a polynomial rate nv for some v > 0, whereas the169

term in the parentheses shrinks at a subpolynomial rate ω(n−δ) for any δ > 0. Further, by standard170

subgaussian maximal inequalities, the magnitudes of the normalized contamination is no more than171

O(
√
log(nk)) with high probability. Thus with high probability the LHS outcompetes the RHS,172

leading to correct classification. See Section 4.1 for more discussion on how we prove tight bounds173

on the survival-to-contamination ratios.174

Misclassification: On the other hand, for misclassification it suffices for the maximum abso-175

lute value of the LHS of Eq. (21) to be outcompeted by the maximum value of the RHS. Some176

manipulations yield the following sufficient condition for misclassification:177

maxβ λF

(∣∣∣ĥα,β [α]∣∣∣+ ∣∣∣ĥβ,α[β]∣∣∣)
minβ CNα,β︸ ︷︷ ︸

SU/CN ratio

· max
γ∈[k]

|xtest[γ]|︸ ︷︷ ︸
largest label-defining feature

< max
β

Z(β)︸ ︷︷ ︸
normalized contamination

. (23)
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We show that within the misclassification regimes in Conjecture 3.1, the survival-to-contamination178

ratio SU/CN shrinks at a polynomial rate n−w for some w > 0. By standard subgaussian maximal179

inequalities, the largest label-defining feature is O(
√

log(nk)) with high probability. Gaussian180

anticoncentration implies that for some β ̸= α, β ∈ [k], Z(β) outcompetes the LHS with probability at181

least 1
2 − o(1). Hence, we conclude that the model will misclassify with rate at least 1

2 asymptotically.182

Let us now describe how to boost the misclassification rate to 1 − o(1). Notice that the above183

argument only considered the competition between the LHS of Eq. (23) and one of the Z(β)’s on184

the RHS instead of the maximum Z(β). It’s not hard to see from the definition of Z(β) in Eq. (20)185

that the Z(β) are jointly Gaussian. For intuition’s sake, assuming the Z(β) were independent, then186

maxβ Z
(β) would outcompete with probability ( 12 − o(1))k−1.187

In reality, the Z(β) are correlated, but we are able to show that the maximum correlation between the188

Z(β) is 1
2 + o(1) with high probability. An application of Slepian’s lemma (Slepian (1962)) and some189

explicit bounds on orthant probabilities (Pinasco et al. (2021)) implies that maxβ Z
(β) > 0 with190

probability at least 1− 1
k1+o(1) . Another application of anticoncentration implies that maxβ Z

(β) >191

n−w with probability 1− o(1), which finishes off the proof.192

4.1 Bounding the survival-to-contamination ratio193

Note that the critical survival-to-contamination ratio appears in both Eqs. (22) and (23). The most194

involved part of the proof is nailing down the correct order of growth of the survival to contamination195

ratio; a similar analysis tightly bounds the survival variation and the correlation structure of the Z(β).196

To understand the relative survival and contamination, we must analyze the bilinear forms ĥα,β [j] =197

z⊤
j A

−1∆y. Similarly, to control the correlation of the Z(β), we must understand the correlation198

between the ĥα,β vectors, which reduces to understanding the bilinear forms z⊤
j A

−1yα for j ∈199

[d], α ∈ [k]. The main source of inspiration for bounding these bilinear forms is the heuristic style of200

calculation carried out in Appendix K of Subramanian et al. (2022) that leads to Conjecture 3.1.201

To simplify the discussion, we temporarily restrict to the regime where regression fails (q + r > 1).202

However, our main technical tool seamlessly generalizes to the regime where regression works203

(q + r < 1). In the regime where regression fails, A−1 turns out to have a flat spectrum: A−1 ≈ αI204

for some constant α > 0. Assume for now that A−1 is exactly equal to a scaled identity matrix.205

Then the survival is proportional to z⊤
α∆y, which is a random inner product. Similarly, to bound the206

contamination terms we must control the random inner product z⊤
j ∆y for j ̸∈ {α, β}.207

Since ∆y is a sparse vector — it only has 2n
k nonzero entries in expectation — a quick computation208

reveals that E[z⊤
α∆y] = Õ(nk ) and E[z⊤

j ∆y] = 0. The deciding factor, then, is how tightly these209

quantities concentrate around their means. A naïve application of Hoeffding implies a concentration210

radius of order Õ(
√
n), which would lead to looseness in the overall result. The hope is to exploit211

sparsity to get a concentration radius of order Õ(
√

n/k). This is where our new technical tool212

Theorem 4.1 comes in, which may be of independent interest; we present it in the following section.213

4.2 A new variant of the Hanson-Wright inequality214

In reality, even in the regime where regression fails, A−1 is not actually perfectly flat. Even worse,215

in the regime where regression works, A−1 is actually spiked. Thus, we cannot simply reduce the216

bilinear form z⊤
j A

−1∆y to an inner product. Instead, we turn to the well-known Hanson-Wright217

inequality (Rudelson and Vershynin, 2013), which tells us that quadratic forms of random vectors with218

independent, mean zero, subgaussian entries concentrate around their mean. It was used extensively219

to study binary classification (Muthukumar et al., 2021), and multiclass classification (Subramanian220

et al., 2022; Anonymous, 2023).221

However, just as Hoeffding is loose, so too is the standard form of Hanson-Wright, because it also222

does not exploit sparsity. This motivates a new variant of Hanson-Wright which fully leverages the223

(soft) sparsity inherent to multiclass problems with an increasing number of classes. We now formally224

define the notions of soft and hard sparsity.225
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Variant Assumptions on y Concentration radius

Classic quadratica: x⊤Mx same as x Õ(∥M∥F )
Sparse bilinearb: x⊤M(γ ◦ y) γi ∼ Ber(π), indep. of Xi but not Yi Õ(

√
π∥M∥F )

Sparse bilinearc: x⊤M(γ ◦ y) γi ∼ Ber(π), indep. of Yi but not Xi Õ(
√
π∥M∥F )

Theorem 4.1: x⊤My |Yi| ≤ 1 a.s., EY 2
i ≤ π Õ(

√
π∥M∥F )

Table 1: Comparison of different variants of the Hanson-Wright inequality. In all variants, we assume
that (x,y) = (Xi, Yi)

n
i=1 are subgaussian, centered, and the pairs (Xi, Yi) are independent across i.

We use ◦ to denote elementwise multiplication, which allows us to express hard sparsity with the
sparsity mask γ ∈ {0, 1}n. The concentration radius corresponds to the size of typical fluctuations
guaranteed by the concentration inequality, i.e. the ϵ needed for high probability guarantees.
a (Rudelson and Vershynin, 2013, Theorem 1.1); b (Park et al., 2022, Theorem 1); c (Anonymous, 2023,
Theorem 4)

Definition 2 (Soft and hard sparsity). For π ≤ 1, we say that random vector y = (Yi)
n
i=1 has soft226

sparsity at level π if |Yi| ≤ 1 almost surely and Var(Yi) ≤ π for all i. On the other hand, we say227

that y has hard sparsity at level π if at most a π fraction of the Yi are nonzero.228

In particular, our variant Theorem 4.1 below requires that one of the vectors in the bilinear form has229

soft sparsity at level π. Throughout, one should think of π = o(1), and for us indeed π = O( 1k ). One230

can check that a bounded random vector y with hard sparsity level π must also have soft sparsity at231

level O(π), so soft sparsity is more general for bounded random vectors. In Table 1 we compare our232

variant with several variants of Hanson-Wright which have appeared in the literature, some of which233

involve hard sparsity.234

Define the subgaussian norm ∥ξ∥ψ2
(Vershynin, 2018) as235

∥ξ∥ψ2
= inf
K>0

{
K : E exp

(
ξ2/K2

)
≤ 2
}
, (24)

Theorem 4.1 (Hanson-Wright for bilinear forms with soft sparsity). Let x = (X1, . . . , Xn) ∈ Rn236

and y ∈ (Y1, . . . , Yn) ∈ Rn be random vectors such that (Xi, Yi) are independent pairs of (possibly237

correlated) centered random variables such that ∥Xi∥ψ2
≤ K and Yi has soft sparsity at level π, i.e.238

|Yi| ≤ 1 almost surely, and E[Y 2
i ] ≤ π. Assume that conditioned on Yj , ∥Xj∥ψ2

≤ K. Then there239

exists an absolute constant c > 0 such that for all M ∈ Rn×n and ϵ ≥ 0 we have240

Pr
[
|x⊤My − E[x⊤My]| > ϵ

]
≤ 2 exp

(
−cmin

{
ϵ2

K2π∥M∥2F
,

ϵ

K∥M∥2

})
. (25)

The full proof of Theorem 4.1 is deferred to Appendix G. The main proof techniques are heavily241

inspired by those of Rudelson and Vershynin (2013); Zhou (2019); Park et al. (2022). However, the242

proof of Theorem 4.1 is actually simpler than in Park et al. (2022); Anonymous (2023), as bounded243

with soft sparsity turns out to be easier to work with than subgaussian with hard sparsity. We refer244

readers to Anonymous (2023) for a more in-depth discussion of how these new “sparse” variants245

overcome the limitations of previous proof techniques used to study classification problems.246

We briefly illustrate how Theorem 4.1 can be used to get tighter results throughout our analysis. A247

quick calculation reveals that the label vectors ∆y and yα both have soft sparsity at level π = O(1/k).248

However, yα does not have hard sparsity as required by the variants in Park et al. (2022); Anonymous249

(2023). Since ∥M∥2F ≤ n∥M∥22, we obtain a concentration radius ϵ which scales like
√

n/k rather250

than
√
n (obtained via vanilla Hanson-Wright) or n/

√
k (obtained via Cauchy-Schwarz). This gain251

is crucial to tightly analyzing the survival, contamination, and correlation structure.252

4.3 Completing the proof sketch253

Theorem 4.1 and the above insights about sparsity and independence allow us to prove the following254

bounds on the relative survival and contamination terms which are tight up to log factors; see the255

Appendix for more details. For brevity’s sake, we introduce the notation µ ≜ nq+r−1.256
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Proposition 4.2 (Bounds on relative survival). Suppose we are in the bi-level model. With probability257

at least 1−O(1/n),258

λF ĥα,β [α] = min
{
µ−1, 1

}
Θ(n−min{t, 12})

√
log k.

Next, we state our bounds on contamination.259

Proposition 4.3 (Lower bound on contamination). Suppose we are in the bi-level model. Then with260

probability at least 1−O(1/n), the contamination satisfies261

CNα,β = min
{
µ−1, 1

}
Θ(n

r−t−1
2 )︸ ︷︷ ︸

favored features

+ Θ(n
1−t−p

2 )︸ ︷︷ ︸
unfavored features

. (26)

Translating the parameters in Propositions 4.2 and 4.3 we see that (i) the relative survival is diminished262

by a factor 1/k as long as k = o(
√
n), and a factor 1/

√
n for k = Ω(

√
n) (this looseness ends up263

being negligible for the final result) and (ii) the contamination is diminished by a factor of 1/
√
k.264

This essentially matches the expected behavior from the heuristic calculation in Subramanian et al.265

(2022). Together with some straightforward algebra, Propositions 4.2 and 4.3 allow us to compute266

the regimes where the survival-to-contamination ratio SU/CN grows or decays polynomially. This267

yields the stated regimes in Conjecture 3.1; see the Appendix for more details.268

For technical reasons, the analogous bounds in Subramanian et al. (2022) are loose, giving rise to269

unnecessary conditions for good generalization such as t < p− 2 and t < 2q + r − 2. Moreover, we270

are able to give both upper and lower bounds on the survival and contamination terms, whereas they271

only give one sided inequalities for each quantity.272

5 Discussion273

In this paper we resolve the main conjecture of Subramanian et al. (2022), identifying the exact274

regimes where an overparameterized linear model succeeds at multiclass classification. Our tech-275

niques also lay the foundation for investigating related generalization for other multiclass tasks and276

nonlinear algorithms. We hope that by bringing the rigorous proofs closer to the heuristic style of277

calculation, we open the path for analyzing more complicated and realistic models.278

As an example application, we sketch out how our proof techniques imply precise conditions for279

a variant of the learning task called multilabel classification. In a simple model for multilabel280

classification, each datapoint can have several of k possible labels — corresponding to the positive281

valued features — but in the training set only one such correct label is provided at random for each282

datapoint. We deem that the model generalizes if for any queried label it successfully labels test283

inputs as positive or negative. We can use the MNI approach here to learn classifiers.284

Some thought reveals that the main difference between multilabel classification and multiclass285

classification from a survival and contamination perspective is that positive features no longer need286

to outcompete other features. Thus, the main object of study would be the bilinear forms z⊤
j A

−1yα,287

which is possible thanks to Theorem 4.1. The survival and contamination terms are only affected by288

the expected values of these bilinear forms, but the expected values match the multiclass behavior up289

to log factors, which do not affect the regimes where SU/CN will grow or shrink polynomially. A290

similar analysis thus reveals that MNI will generalize in exactly the same regimes as in Conjecture 3.1.291

Here, the model generalizes in the sense that with high probability over the labels the model will292

correctly classify, and failure to generalize means that the model will do no better than a coin toss.293

Perhaps surprisingly, resolving Conjecture 3.1 also implies that MNI is asymptotically suboptimal294

compared to a natural non-interpolative approach: simply make f̂m equal to the average6 of all295

positive training examples of class m. A straightforward analysis, detailed in the supplementary296

material, reveals this scheme fails to generalize exactly when t < min {1− r, p+ 1− 2(q + r)},297

even in the regime where regression succeeds (q + r < 1). This is particularly interesting because298

we have shown that in the regime where regression succeeds, MNI generalizes only when t <299

min {1− r, p− 1}, which is a smaller region. In light of this gap, it would be interesting to identify300

the information-theoretic barrier for multiclass classification, especially within the broader context of301

statistical-computation gaps (see e.g. (Wu and Xu, 2021; Brennan and Bresler, 2020)).302

6Note that Frei et al. (2023) point out that even leaky ReLU networks trained with a gradient flow can behave
like averages of training examples.
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A Preliminaries and notation473

For positive integers n, we use the shorthand [n] ≜ {1, . . . , n}. For a vector v ∈ Rn, ∥v∥2 always474

denotes the Euclidean norm. We index entries by using square brackets, so v[j] denotes the jth475

entry of v. For any matrix M ∈ Rm×n, we denote its ijth entry by mij , ∥M∥2 denotes the spectral476

norm, and ∥M∥F = Tr
(
M⊤M

)
denotes the Frobenius norm. We use σmax (M) and σmin (M) to477

denote the maximum and minimum singular values of M , respectively. If M ∈ Rn×n is symmetric,478

we write µ1(M) ≥ µ2(M) ≥ . . . ≥ µn(M) to denote the ordered eigenvalues of M . Given two479

vectors v,u ∈ Rn, we write v ◦ u ∈ Rn to denote the entrywise product of v and u.480

We make extensive use of big-O notation. In this paragraph, c refers to a positive constant which481

does not depend on n, and all statements hold for sufficiently large n. If f(n) = O(g(n)), then482

f(n) ≤ cg(n) for some c. If f(n) = Õ(g(n)), then f(n) ≤ cg(n) poly log(n) for some c. If f(n) =483

o(g(n)), then for all c > 0 we have f(n) ≤ cg(n). We write f(n) = Ω(g(n)) if f(n) ≥ cg(n)484

for some c. Finally, we write f(n) = Θ(g(n)) if there exists positive constants c1 and c2 such that485

c1g(n) ≤ f(n) ≤ c2g(n).

Table 2: Notation
Symbol Definition Dimension Source

k Number of classes Scalar Sec. 2
n Number of training points Scalar Sec. 2
d Dimension of each point — the total number of features Scalar Sec. 2
s The number of favored features Scalar Def. 1
a The constant controlling the favored weights Scalar Def. 1
p Parameter controlling overparameterization (d = np) Scalar Def. 1
r Parameter controlling the number of favored features (s = nr) Scalar Def. 1
q Parameter controlling the favored weights (a = n−q) Scalar Def. 1
t Parameter controlling the number of classes (k = ckn

t) Scalar Def. 1
ck The number of classes when t = 0 (k = ckn

t) Scalar Def. 1
λj Squared weight of the jth feature Scalar Def. 1
xi ith training point (unweighted) Length-d vector Sec. 2
ℓi Class label of ith training point Scalar Eqn. 1
wi ith training point (weighted) Length-d vector Eqn. 2
Xw Weighted feature matrix (n× d)-matrix Eqn. 3
zj The collected jth features of all training points Length-n vector Eqn. 3
yoh
m One-hot encoding of all the training points for label m Length-n vector Eqn. 4

Y oh One-hot label matrix (n× k)-matrix Eqn. 4
ym Zero-mean encoding of the training points for label m Length-n vector Eqn. 5
f̂m Learned coefficients for label m using min-norm interpolation Length-d vector Eqn. 8
xtest A single test point Length-d vector Sec. 2
xwtest A single weighted test point Length-d vector Sec. 2
A Gram matrix A = Xw(Xw)⊤ (n× n)-matrix Sec. 4
µi(A) The ith eigenvalue of matrix A, sorted in descending order Scalar App. A
λF Squared favored feature weights: λF = ad

s Scalar Def. 1
λU Squared unfavored feature weights: λF = (1−a)d

d−s Scalar Def. 1
ĥα,β Relative survival ĥα,β [j] = λ

−1/2
j (f̂α[j]− f̂β [j]) Length-d vector Eqn. 16

CNα,β Normalizing factor CNα,β =

√(∑
j /∈{α,β} λ

2
j (ĥβ,α[j])

2
)

Scalar Eqn. 19

∥·∥ψ2
The sub-Gaussian norm of a scalar random variable Scalar Eqn. 24

µ Factor controlling whether regression works, µ ≜ nq+r−1 Scalar App. A.1

486

Let us now describe the organization of the appendix. In Appendix A.1, we give a more detailed487

proof sketch and introduce the main propositions that complete the proof of Theorem 3.2. In488

Appendix B, we introduce the main tools that allow us to prove that the critical bilinear forms489

z⊤
j A

−1∆y concentrate: our new variant of the Hanson-Wright inequality, the Woodbury inversion490
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formula, and Wishart concentration to bound the spectra of the relevant random matrices that appear.491

In Appendix C we apply these tools to bound some useful quantities that repeatedly appear in the rest492

of the proofs. After that, we proceed to bound the survival, contamination, and correlation structure493

in Appendices D to F.494

A.1 Proof of Theorem 3.2495

In this section, we fill in some of the details of the proof sketch of Theorem 3.2. After recalling the496

beginning of the proof, we will split up the proof into two subtheorems: one for the positive result497

where MNI generalizes (Theorem A.4), and another for the negative result where MNI misclassifies498

(Theorem A.6).499

Assume without loss of generality that the test point xtest ∼ N(0, Id) has true label α for some500

α ∈ [k]. Let xwtest be the weighted version of this test point. From (10), an equivalent condition for501

misclassification is that for some β ̸= α, β ∈ [k], we have f̂⊤
α xwtest < f̂⊤

β xwtest, i.e. the score for β502

outcompetes the score for α. Define the Gram matrix A ≜ Xw(Xw)⊤, the relative label vector503

∆y ≜ yα−yβ ∈ {−1, 0, 1}n, and the relative survival vector ĥα,β ∈ Rd which compares the signal504

from α and β:505

ĥα,β [j] ≜ λ
−1/2
j (f̂α[j]− f̂β [j]) (27)

= z⊤
j A

−1∆y, (28)

where to obtain the last line we have used the explicit formula for the MNI classifiers (8). By506

converting the misclassification condition into the unweighted feature space we see that we will have507

errors when508

λαĥα,β [α]xtest[α]− λβĥβ,α[β]xtest[β] <
∑

j /∈{α,β}

λjĥβ,α[j]xtest[j]. (29)

Define the contamination term CNα,β :509

CNα,β ≜
√ ∑
j /∈{α,β}

λ2
j (ĥβ,α[j])

2. (30)

Note that CNα,β normalizes the RHS of (29) into a standard Gaussian. Indeed, define510

Z(β) ≜
1

CNα,β

∑
j /∈{α,β}

λjĥβ,α[j]xtest[j] ∼ N(0, 1). (31)

Since α, β ∈ [k] are favored, we have λα = λβ = λF . Hence an equivalent condition for misclassifi-511

cation is that there exists some β ̸= α, β ∈ [k] such that512

λF
CNα,β

(ĥα,β [α]xtest[α]− ĥβ,α[β]xtest[β]) < Z(β). (32)

We will translate the above criterion into sufficient conditions for correct classification and misclassi-513

fication and analyze these two cases separately.514

First, let us recall our tight characterization of the survival and contamination terms, which will be515

useful for both sides of the theorem. Recall our definition of µ ≜ nq+r−1; whether this quantity516

polynomially shrinks or decays directly determines if regression works or fails.517

Proposition A.1 (Bounds on relative survival). Under the bi-level ensemble model (Definition 1),518

when the true data generating process is 1-sparse (Assumption 1), if t < 1
2 , then with probability at519

least 1−O(1/nk)520

λF ĥα,β [α] = c7 min
{
µ−1, 1

}
n−t(1±O(n−κ5))

√
log k,

where c7 and κ5 are positive constants.521

If t ≥ 1
2 , then522

λF

∣∣∣ĥα,β [α]∣∣∣ ≤ c9 min
{
µ−1, 1

}
n− 1

2

√
log(nk),

where c9 is a positive constant.523
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Proposition A.2 (Bounds on contamination). Under the bi-level ensemble model (Definition 1), when524

the true data generating process is 1-sparse (Assumption 1), with probability at least 1−O(1/nk),525

CNα,β ≤ min
{
µ−1, 1

}
O(n

r−t−1
2 ) log(nsk)︸ ︷︷ ︸

favored features

+O(n
1−t−p

2 )
√
log(nsk)︸ ︷︷ ︸

unfavored features

.

Furthermore, if t > 0, then with probability at least 1−O(1/nk),526

CNα,β ≥ min
{
µ−1, 1

}
Ω(n

r−t−1
2 )︸ ︷︷ ︸

favored features

+ Ω(n
1−t−p

2 )︸ ︷︷ ︸
unfavored features

.

We defer the proof of Proposition A.1 to Appendix D and the proof of Proposition A.2 to Appendix E.527

Combining Propositions A.1 and A.2 yields the following sufficient conditions for when the SU/CN528

ratio grows or shrinks polynomially.529

Proposition A.3 (Regimes for survival-to-contamination). Under the bi-level ensemble model (Def-530

inition 1), when the true data generating process is 1-sparse (Assumption 1), as n → ∞, with531

probability at least 1−O(1/n), the survival-to-contamination ratio satisfies532

minβ λF ĥα,β [α]

maxβ CNα,β
≥ nv for some v > 0 if t < min {1− r, p+ 1− 2max {1, q + r}} (33)

maxβ λF

∣∣∣ĥα,β [α]∣∣∣
minβ CNα,β

≤ n−w for some w > 0 if t > min {1− r, p+ 1− 2max {1, q + r}} (34)

Here, the max and min are being taken over β ̸= α, β ∈ [k].533

Proof. We do casework on whether we want to prove an upper bound or lower bound534

on SU/CN. First, suppose we want to prove the lower bound, so assume t <535

min {1− r, p+ 1− 2max {1, q + r}}. Since t < r by the definition of the bi-level ensemble536

(Definition 1), we have that t < 1
2 . So by union bounding over β, Proposition A.1 implies that with537

probability 1−O(1/n)538

min
β

λF ĥα,β [α] ≥ min
{
µ−1, 1

}
Ω(n−t)

√
log k. (35)

Then from Proposition A.2, by union bounding over β we see that with probability 1−O(1/n),539

max
β

CNα,β ≤ min
{
µ−1, 1

}
Õ(n

r−t−1
2 )︸ ︷︷ ︸

favored features

+ Õ(n
1−t−p

2 )︸ ︷︷ ︸
unfavored features

.

Let us combine these two bounds. If we compare the survival to the contamination coming from540

favored features, we obtain541

min
{
µ−1, 1

}
n−t√log k

min {µ−1, 1}Õ(n
r−t−1

2 )
≥ n−t− r−t−1

2

poly log(n)
(36)

≥ n
1−r−t

2

poly log(n)
, (37)

so in particular if t < 1− r, the numerator grows polynomially and dominates the denominator. Now542

let’s compare the survival to the contamatination coming from unfavored fetures. This yields543

min
{
µ−1, 1

}
n−t√log k

Õ(n
1−t−p

2 )
≥

min
{
µ−1, 1

}
n−t− 1−t−p

2

poly log n
(38)

≥ n−max {q+r−1,0} · n
p−t−1

2

poly log(n)
(39)

≥ n
p+1−2max {1,q+r}−t

2

poly log(n)
. (40)
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Hence, by union bounding, we see that with probability 1−O(1/n),544

min
β

λF ĥα,β [α]

CNα,β
≥ nv, (41)

where v ≜ 1
4 (min {1− r, p+ 1− 2max {1, q + r}} − t) > 0 by asssumption.545

For the upper bound, supose t > min {1− r, p+ 1− 2max {1, q + r}}. Hence t > 0, and by union546

bounding we conclude that with probability at least 1−O(1/n),547

max
β

λF

∣∣∣ĥα,β [α]∣∣∣ ≤ min
{
µ−1, 1

}
O(n− 1

2 )
√
log k (42)

and548

min
β

CNα,β ≥ min
{
µ−1, 1

}
Ω(n

r−t−1
2 ) + Ω(n

1−t−p
2 ). (43)

Combining these and union bounding yields that with probability 1−O(1/n),549

min
β

λF ĥα,β [α]

CNα,β
≤ n−w, (44)

where w ≜ 1
4 (t−min {1− r, p+ 1− 2max {1, q + r}}) > 0 by asssumption.550

We now sketch out a proof of both the positive and negative sides of Theorem 3.2. We point out that551

the regimes for generalization and misclassification exactly match the regimes above for where the552

SU/CN ratio grows or shrinks polynomially.553

Theorem A.4 (Positive side of Theorem 3.2). Under the bi-level ensemble model (Definition 1),554

when the true data generating process is 1-sparse (Assumption 1), as n → ∞, the probability of555

misclassification for MNI satisfies Pr[Eerr] → 0 if556

t < min {1− r, p+ 1− 2max {1, q + r}}.

Proof sketch. For correct classification, it suffices for the maximum value of the LHS of Eq. (32) to557

outcompete the maximum value of the RHS, where the max is taken over β ∈ [k], β ̸= α. Some558

algebra, as in Subramanian et al. (2022), shows that we correctly classify if559

minβ λF ĥα,β [α]

maxβ CNα,β︸ ︷︷ ︸
SU/CN ratio

(
min
β

(xtest[α]− xtest[β])︸ ︷︷ ︸
closest feature margin

− max
β

|xtest[β]|︸ ︷︷ ︸
largest competing feature

·max
β

∣∣∣∣∣ ĥα,β [α]− ĥβ,α[β]

ĥα,β [α]

∣∣∣∣∣︸ ︷︷ ︸
survival variation

)

> max
β

Z(β)︸ ︷︷ ︸
normalized contamination

. (45)

By our lower bound on the survival to contamination ratio (Proposition A.3), assuming t <560

min {1− r, p+ 1− 2(q + r)}, then with probability at least 1−O(1/n) we have that λF ĥα,β [α]
CNα,β

≥561

nu for some constant u > 0. By Lemmas B.2 and B.3 in Subramanian et al. (2022) for every ϵ > 0,562

with probability at least 1− ϵ, we have minβ xtest[α]− xtest[β] ≥ Ω( 1√
log k

).563

Next, by standard subgaussian maxima tail bounds we have that |xtest[β]| ≤ 2
√
log(nk) and564

Z(β) ≤ 2
√
log(nk) with probability at least 1−O(1/nk). Finally, applying our upper bound on the565

relative survival variance (Proposition A.5, which we prove below), the survival variation is at most a566

polynomially decaying n−w with probability at least 1−O(1/nk).567

By union bounding, we see that with probability at least 1−O(1/n)− ϵ, the LHS outcompetes the568

RHS, implying that the model correctly classifies.569

570

In fact, given Proposition A.1, it is straightforward to bound the survival variation.571
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Proposition A.5 (Upper bound on the survival variation). Suppose that t < 1− r. With probability572

at least 1− 2/n, we have573 ∣∣∣∣∣ ĥα,β [α]− ĥβ,α[β]

ĥα,β [α]

∣∣∣∣∣ ≤ c1n
−w, (46)

where c1 and w are both positive constants.574

Proof. Since we have ĥα,β [α] = z⊤
αA

−1∆y, the survival variation is575

ĥα,β [α]− ĥβ,α[β]

ĥα,β [α]
=

z⊤
αA

−1∆y + z⊤
β A

−1∆y

z⊤
αA

−1∆y

Since t < 1− r and t < r by definition, we know that t < 1
2 and we can apply Proposition A.1 to576

see that with probability at least 1− 2/n we have577

z⊤
αA

−1∆y = max
{
µ−1, 1

}
n−t(1±O(n−κ5))

√
log k = −z⊤

β A
−1∆y

Hence we have578 ∣∣∣∣∣ ĥα,β [α]− ĥβ,α[β]

ĥα,β [α]

∣∣∣∣∣ ≤ c1n
−κ5 (47)

where c1 is an appropriately defined positive constant.579

Theorem A.6 (Negative side of Theorem 3.2). Under the bi-level ensemble model (Definition 1),580

when the true data generating process is 1-sparse (Assumption 1), as n → ∞, the probability of581

misclassification for MNI satisfies Pr[Eerr] → 1 if582

t > min {1− r, p+ 1− 2max {1, q + r}}.

Proof sketch. On the other hand, for misclassification it suffices for the maximum absolute value of583

the LHS of Eq. (32) to be outcompeted by the maximum value of the RHS. Some manipulations yield584

the following sufficient condition for misclassification:585

maxβ λF

(∣∣∣ĥα,β [α]∣∣∣+ ∣∣∣ĥβ,α[β]∣∣∣)
minβ CNα,β︸ ︷︷ ︸

SU/CN ratio

· max
γ∈[k]

|xtest[γ]|︸ ︷︷ ︸
largest label-defining feature

< max
β

Z(β)︸ ︷︷ ︸
normalized contamination

. (48)

Within the misclassification regimes in Conjecture 3.1, Proposition A.3 implies that the survival-586

to-contamination ratio SU/CN shrinks at a polynomial rate n−w for some w > 0. By standard587

subgaussian maximal inequalities, the largest label-defining feature is O(
√

log(nk)) with high588

probability. Gaussian anticoncentration (Proposition I.2) implies that for some β ̸= α, β ∈ [k], Z(β)589

outcompetes the LHS, which is bounded above by n−w, with probability at least 1
2 − o(1). Hence,590

we conclude that the model will misclassify with rate at least 1
2 asymptotically.591

Let us now describe how to boost the misclassification rate to 1 − o(1). Notice that the above592

argument only considered the competition between the LHS of Eq. (48) and one of the Z(β)’s on593

the RHS instead of the maximum Z(β). It’s not hard to see from the definition of Z(β) in Eq. (31)594

that the Z(β) are jointly Gaussian. For intuition’s sake, assuming the Z(β) were independent, then595

maxβ Z
(β) would outcompete with probability ( 12 − o(1))k−1.596

In reality, the Z(β) are correlated, but we are able to show that the maximum correlation between597

the Z(β) is 1
2 + o(1) with high probability. An application of Slepian’s lemma (Slepian (1962)) and598

some explicit bounds on orthant probabilities (Pinasco et al. (2021)) implies that maxβ Z
(β) > 0599

with probability at least 1 − 1
k1+o(1) . An application of anticoncentration for Gaussian maxima600

(Chernozhukov et al., 2015) implies that maxβ Z
(β) > n−w with probability 1−o(1), which finishes601

off the proof.602

To fill in the details of the above proof sketch, we will prove the following proposition in Appendix F.603

604
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Proposition A.7 (Correlation bound). Assume we are in the bi-level ensemble model (Definition 1),605

the true data generating process is 1-sparse (Assumption 1), and the number of classes scales with n606

(i.e. t > 0). Then for every ϵ > 0, we have607

Pr

[
max

β∈[k],β ̸=α
Z(β) > n−u

]
≥ 1−Θ

(
1

k1+o(1)

)
− ϵ (49)

for sufficiently large n and any u > 0.608

B Main tools609

In this section we introduce our suite of technical tools that allow us to prove the desired rates of610

growth for survival, contamination, and correlation.611

B.1 Hanson-Wright Inequality612

As established in Section 4, we need to use the Hanson-Wright inequality to prove our tight character-613

ization of generalization. For the sake of precision, we explicitly state our definitions of subgaussian614

and subexponential which we use throughout the rest of the paper.615

The subgaussian norm ∥ξ∥ψ2
of a random variable ξ is defined as in Rudelson and Vershynin (2013),616

∥ξ∥ψ2
= inf
K>0

{
K : E exp

(
ξ2/K2

)
≤ 2
}
. (50)

The sub-exponential norm ∥ξ∥ψ1
is defined as in Vershynin (2018, Definition 2.7.5):617

∥ξ∥ψ1
= inf
K>0

{K : E exp(|ξ|/K) ≤ 2}. (51)

We will occassionally need to use the following variant of Hanson-Wright for nonsparse bilinear618

forms, first proved in Park et al. (2021).619

Theorem B.1 (Hanson-Wright for bilinear forms without sparsity). Let x = (X1, . . . , Xn) ∈620

Rn and y ∈ (Y1, . . . , Yn) be random vectors such that the pairs (Xi, Yi) are all independent of621

each other (however Xi and Yi can be correlated). Assume also that E[Xi] = E[Yi] = 0 and622

max
{
∥Xi∥ψ2

, ∥Yi∥ψ2

}
≤ K. Then there exists an absolute constant c > 0 such that for all623

M ∈ Rn×n and ϵ ≥ 0 we have624

Pr
[
|x⊤My − E[x⊤My]| > ϵ

]
≤ 2 exp

(
−cmin

{
ϵ2

K4∥M∥2F
,

ϵ

K2∥M∥2

})
. (52)

Finally, we restate our new version of Hanson-Wright for bilinear forms with soft sparsity, which we625

prove in Appendix G.626

Theorem 4.1 (Hanson-Wright for bilinear forms with soft sparsity). Let x = (X1, . . . , Xn) ∈ Rn627

and y ∈ (Y1, . . . , Yn) ∈ Rn be random vectors such that (Xi, Yi) are independent pairs of (possibly628

correlated) centered random variables such that ∥Xi∥ψ2
≤ K and Yi has soft sparsity at level π, i.e.629

|Yi| ≤ 1 almost surely, and E[Y 2
i ] ≤ π. Assume that conditioned on Yj , ∥Xj∥ψ2

≤ K. Then there630

exists an absolute constant c > 0 such that for all M ∈ Rn×n and ϵ ≥ 0 we have631

Pr
[
|x⊤My − E[x⊤My]| > ϵ

]
≤ 2 exp

(
−cmin

{
ϵ2

K2π∥M∥2F
,

ϵ

K∥M∥2

})
. (25)

B.2 Gram matrices and the Woodbury formula632

In order to apply Hanson-Wright to the bilinear form x⊤My, we need to have a deterministic matrix633

M such that the hypotheses are satisfied. However, in our setting we study bilinear forms such634

as z⊤
j A

−1∆y. Here, the inverse Gram matrix A−1 is not independent of zj or ∆y, so we cannot635

simply condition on A−1. The way around this is to cleverly decompose A−1 using the so-called636

Woodbury inversion formula (stated formally below), which generalizes the leave-one-out trick and637
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Sherman-Morrison used to study binary classification in Muthukumar et al. (2021). To that end, we638

will explicitly decompose the Gram matrix A ≜
∑
j∈[d] λjzjz

⊤
j based on whether the features zj639

are favored or not.640

We now introduce some notation to keep track of which matrices contain or leave out which indices.641

In general, we use subscripts to denote which sets of features we preserve or leave out; we use a642

minus sign to signify leaving out. The k label-defining features are represented with a subscript k,643

whereas the s− k favored but not label defining features are represented with a subscript F . The rest644

of the d− s unfavored features are represented with a subscript U .645

For notational convenience, we introduce some new notation for the weighted features, as the646

superscript w to denote weighted features is rather cumbersome. We denote the weighted label-647

defining feature matrix by Wk ≜ [w1 · · · wk] ∈ Rn×k, where the vectors wi ≜
√
λizi ∈ Rn648

denote the weighted observations for feature i. Define the unweighted label-defining feature matrix649

Zk ≜ [z1 · · · zk] ∈ Rn×k. Similarly, define WF ≜ [wk+1 · · · ws] ∈ Rn×(s−k), which650

contains the rest of the weighted favored features and the corresponding unweighted version ZF .651

Let A−k ≜
∑
i ̸∈[k] wiw

⊤
i denote the leave-k-out Gram matrix which removes the k label-defining652

features. Similarly let A−F ≜
∑
i ̸∈[s]\[k] wiw

⊤
i ∈ Rn×n to denote leave-(s− k)-out Gram matrix653

which removes the favored but not label-defining features. Finally, let AU ≜
∑
i̸∈[s] wiw

⊤
i ∈ Rn×n654

denote the leave-s-out matrix which only retains the unfavored features. We will also sometimes655

write A−s instead of AU to emphasize that the s favored features have all been removed.656

Define the so-called hat matrices by657

Hk ≜ W⊤
k A−1

−kWk ∈ Rk×k (53)

HF ≜ W⊤
F A−1

−FWF ∈ R(s−k)×(s−k). (54)

These hat matrices appear in the Woodbury inversion formula. For the sake of notational compactness,658

define659

Mk ≜ Wk(Ik +Hk)
−1W⊤

k ∈ Rn×n (55)

MF ≜ WF (Is−k +HF )
−1W⊤

F ∈ Rn×n. (56)

The Woodbury inversion formula yields660

A−1 = (WkW
⊤
k +A−k)

−1 (57)

= A−1
−k −A−1

−kWk(Ik +Hk)
−1W⊤

k A−1
−k (58)

= A−1
−k −A−1

−kMkA
−1
−k. (59)

Left multiplying (58) by W⊤
k yields661

W⊤
k A−1 = W⊤

k A−1
−k −Hk(Ik +Hk)

−1W⊤
k A−1

−k (60)

= (Ik −Hk(Ik +Hk)
−1)W⊤

k A−1
−k (61)

= (Ik +Hk)
−1W⊤

k A−1
−k. (62)

We can derive completely analogous identities using A−1
−F instead of A−1

−k. The above exposition is662

summarized by the following lemma.663

Lemma B.2. We have664

W⊤
k A−1∆y = (Ik +Hk)

−1W⊤
k A−1

−k∆y (63)

W⊤
F A−1∆y = (Is−k +HF )

−1W⊤
F A−1

−F∆y. (64)

Lemma B.2 is quite powerful. Indeed, consider the action of the linear operator W⊤
k A−1 : Rn → Rk665

on ∆y. The action is identical to that of the linear operator W⊤
k A−1

−k : Rn → Rk, up to some666

invertible transformation. This new linear operator is nice because A−1
−k is independent of Wk and667

∆y, as it removes all of the label-defining features. Reclaiming independence sets the stage for using668

our variant of Hanson-Wright.669
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How does the invertible operator (Ik +Hk)
−1 act? Our general strategy is to show that Hk is itself670

close to a scaled identity matrix, i.e. Hk ≈ νIk for an appropriately defined ν. Then for any i ∈ [k],671

we have that672

w⊤
i A

−1∆y ≈ (1 + ν)−1w⊤
i A

−1
−k∆y.

Of course, there will be some error in this approximation, as Hk is not exactly equal to νIk.673

Nevertheless, we can bound away the error that arises from this approximation.674

B.3 Concentration of spectrum675

As foreshadowed in the previous section, we will leverage the fact that the hat matrices such as Hk676

are close to a scaled identity. To formalize this, we appeal to random matrix theory and show that the677

spectra of various random matrices are very close to being flat (i.e. all eigenvalues are within 1+ o(1)678

of each other). To that end, we present the following standard characterization of the spectrum of a679

standard Wishart matrix, which is Equation 2.3 in Rudelson and Vershynin (2010).680

Lemma B.3 (Concentration of spectrum for Wishart matrices). Let M ∈ RM×m with M > m be a681

real matrix with iid N(0, 1) entries. Then for any ϵ ≥ 0, we have with probability at least 1−2e−ϵ
2/2682

that683 √
M −

√
m− ϵ ≤ σmin (M) ≤ σmax (M) ≤

√
M +

√
m+ ϵ. (65)

In other words, the singular values of M satisfy subgaussian concentration.684

Since µm(M⊤M) = σmin (M)2 and µ1(M
⊤M) = σmax (M)2, we can conclude that if m =685

o(M), then for any ϵ > 0 we have686

M−2
√
Mm−ϵ+o(

√
Mm) ≤ µm(M⊤M) ≤ µ1(M

⊤M) ≤ M+2
√
Mm+ϵ+o(

√
Mm), (66)

with probability at least 1− 2e−ϵ
2/2.687

On the other hand, consider MM⊤ ∈ RM×M . Its spectrum is just that of M⊤M ∈ Rm×m with688

an additional M −m zeros corresponding to the fact that m < M .689

We can use Lemma B.3 to prove concentration of the spectrum of the various matrices introduced in690

Appendix B.2. Let us summarize some convenient forms of these results; their proofs are deferred to691

Appendix H.692

Proposition B.4 (Gram matrices have a flat spectrum). Recall that AU = A−s =
∑
j>s λjzjz

⊤
j ∈693

Rn×n is the unfavored Gram matrix and A−k =
∑
j>k λjzjz

⊤
j ∈ Rn×n is the leave-k-out Gram694

matrix.695

Then the following hold with probability at least 1− 2e−n − 2e−
√
n,696

(a) For all i ∈ [n], we have µi(AU ) = np(1±O(n−κ7)).697

(b) For all i ∈ [s− k], we have698

µi(A−k) = (1 + µ−1)np(1±O(n−κ9)), (67)

where κ9 is a positive constant. Moreover, for all i ∈ [n] \ [s− k], we have699

µi(A−k) = np(1±O(n−κ7)), (68)

where κ7 is a positive constant.700

As a simple corollary, we can obtain the following cruder bounds on the trace and spectral norm of701

A−1
−k and A−1

−s.702

Corollary B.5 (Trace and spectral norm of A−1
−k). In the bi-level model, with probability at least703

1− 2e−n, we have704

Tr
(
A−1
U

)
= n1−p(1±O(n−κ7))

√
log k (69)

Tr
(
A−1

−k
)
= n1−p(1±O(n−κ3))

√
log k (70)

and705

max
{∥∥A−1

−k
∥∥
2
,
∥∥A−1

U

∥∥
2

}
≤ c2n

−p, (71)

where c2, κ7, and κ3 are all positive constants.706

22



Proof. We prove the claim for A−1
−k; the proof for A−1

U is similar or easier because A−1
U has a flat707

spectrum (Proposition B.4).708

If q + r < 1, the upper bound for the spectral norm similarly follows. For the trace bounds, we can709

apply Proposition B.4, we have710

Tr
(
A−1

−k
)
= (n− nr + nt)n−p(1±O(n−κ7)) + (nr − nt) · (1 + µ−1)n−p(1±O(n−κ9)) (72)

= n1−p(1±O(n−κ1)) (73)

where711

κ1 = min {r − 1, 2− q − 2r} > 0,

as q + 2r < 2(q + r) < 2 by assumption.712

On the other hand, the claim is obviously true when q + r > 1, as the entire spectrum of A−1
−k is713

(1 ± O(n−κ2))n−p with an appropriately defined positive constant κ2. The spectral norm bound714

follows by defining c2 to be any positive constant greater than 1 which absorbs the o(1) deviation715

terms in the spectrum.716

The proof concludes by setting κ3 = min {κ1, κ2}.717

Finally, we have the following proposition which controls the spectrum of hat matrices such as718

Hk ≜ W⊤
k A−1

−kWk ∈ Rk×k. The intuition is that even though the spectrum of A−1
−k may be spiked,719

the spectrum of W⊤
k A−1

−kWk is ultimately flat because we are taking an extremely low dimensional720

projection which is unlikely to see significant contribution from the spiked portion of A−1
−k.721

In fact, we can prove a more general statement, which will be useful for us in the proof. Let722

∅ ̸= T ⊆ S ⊆ [s]; here T and S index nonempty subsets of the s favored features. Then723

we can define WT to be the matrix of weighted features in T and the leave-T -out Gram matrix724

A−T ≜
∑
j ̸∈T λjzjz

⊤
j . Now define the (T, S) hat matrix as HT,S ≜ W⊤

T A−1
−SWT . Evidently we725

have Hk = H[k],[k], so our notion is more general. The full proof is deferred to Appendix H.726

Proposition B.6 (Generalized hat matrices are flat). Assume we are in the bi-level ensemble Defini-727

tion 1. For any nonempty T ⊆ S ⊆ [s], with probability at least 1− 2e−
√
n − 2e−n, we have all the728

eigenvalues tightly controlled:729

µi((I|T | +HT,S)
−1) = min {µ, 1} (1± cT,Sn

−κ11). (74)

where cT,S and κ11 are positive constants that depend on |T | and |S|.730

C Utility bounds: applying the tools731

Wishart concentration allows us to tightly bound the hat matrix and pass to studying bilinear forms of732

the form w⊤
i A

−1
−k∆y rather than w⊤

i A
−1∆y. Since A−1

−k is independent of Wk and ∆y, we can733

condition on A−1
−k and then apply Hanson-Wright (Theorem 4.1) to these bilinear forms for every734

realization of A−1
−k. In this section, we will explicitly calculate the scaling of the typical value of735

these bilinear forms using the bi-level ensemble scaling; these will prove to be useful throughout the736

rest of the paper.737

We first state the following proposition which bounds the correlation between the relevant label-738

defining features and the label vectors; it is a combination of Propositions D.5 and D.6 in (Subrama-739

nian et al., 2022).740

Proposition C.1. For any distinct α, β ∈ [k], we have741

1√
π ln 2

· n
k
·
√
ln k ≤ E[z⊤

α yα] ≤
√
2 · n

k
·
√
ln k (75)

and742

−
√
2 · n

k
· 1

k − 1
·
√
ln k ≤ E[z⊤

α yβ ] ≤ − 1√
π ln 2

· n
k
· 1

k − 1
·
√
ln k (76)
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With the above proposition in hand, we can prove the following lemma which gives concentration of743

the bilinear forms that we study.744

Lemma C.2. Let i ∈ [d] and ∆y = yα − yβ where α, β ∈ [k] and β ̸= α. Let M ∈ Rn×n be a745

(random) matrix which is independent of zi and ∆y. Then conditioned on M , with probability at746

least 1− 1/nk,747 ∣∣z⊤
i M∆y − E[z⊤

i M∆y|M ]
∣∣ ≤ c3

√
n

k
∥M∥2

√
log(nk),

and the same holds with ∆y replaced with yα. Here, c3 is an appropriately chosen universal positive748

constant.749

Moreover, we have750

(1) For any distinct α, β ∈ [k], we have751

E[z⊤
αM∆y|M ] = c7

√
log k

k
tr(M) = −E[z⊤

β M∆y] (77)

E[z⊤
αMyα|M ] = c4

√
log k

k
tr(M), (78)

where c7 and c4 are positive constants.752

(2) For i ∈ [d] \ {α, β}, we have753

E[z⊤
i M∆y|M ] = 0. (79)

(3) For i ∈ [d] \ {α}, we have754

E[z⊤
i Myα|M ] = −c5

√
log k

k(k − 1)
, (80)

where c5 is a positive constant.755

Proof. Let us check the conditions for our new variant of Hanson-Wright with soft sparsity (The-756

orem 4.1). We want to apply it to the random vectors (zi,∆y) = (zi[j],∆y[j])nj=1. Some of the757

hypotheses are immediate by definition. Evidently, (zi[j],∆y[j]) are independent across j, and are758

mean zero. Since zi[j] ∼ N(0, 1), it is subgaussian with parameter at most K = 2. For the bounded759

and soft sparsity assumption, we clearly have |∆y[j]| ≤ 1 and yα[j] ≤ 1 almost surely. Also, since760

∆y[j]2 ∼ Ber( 2k ), we have E[∆y[j]2] = 2
k . Similarly, E[yα[j]2] = 1

k (1−
1
k )

2 + (1− 1
k )

1
k2 ≤ 2

k .761

The more complicated condition is the subgaussianity of zi[j] conditioned on the value of ∆y[j] or762

yα[j]. Regardless of whether we’re conditioning on ∆y or yα, it suffices to instead prove that zi[j]763

is subgaussian conditioned on whether feature i won the competition for datapoint j. First, suppose764

i won, i.e. yoh
i [j] = 1. Then the Borell-TIS inequality (Adler et al., 2007, Theorem 2.1.1) implies765

that zi[j] satisfies a subgaussian tail inequality. By the equivalent conditions for subgaussianity766

Vershynin (2018, Proposition 2.5.2), it follows that zi[j]− E[zi[j]|yoh
i [j] = 1] has conditionally has767

subgaussian norm bounded by some absolute constant K. If i doesn’t win (or doesn’t participate in the768

competition), then Proposition D.2 in Subramanian et al. (2022) implies that zi[j]−E[zi[j]|yoh
i [j] =769

0] conditionally has subgaussian norm bounded by 6.770

Finally, since M is independent of zi and ∆y, we can condition on M and apply Theorem 4.1 to771

the bilinear form for every realization of M .772

Hence we conclude that with probability at least 1− 1/nk we have773 ∣∣z⊤
i M∆y − E[z⊤

i M∆y|M ]
∣∣ ≤ c3

√
n

k
∥M∥2

√
log(nk), (81)

where c3 is an appropriately chosen absolute constant based on K and the constant c defined in774

Theorem 4.1.775

Now we can compute E[z⊤
i M∆y|M ] to prove the rest of the theorem. If i = α, we have776

E[z⊤
αM∆y|M ] = tr

(
ME[∆yz⊤

α ]
)
.
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Let us now compute E[∆yz⊤
α ]. From Eq. (75) in Proposition C.1, we have E[yαz⊤

α ] = c4
√
log k
k In,777

where 1√
π log 2

≤ c4 ≤
√
2. Similarly we have E[yβz⊤

α ] = −c5
√
log k

k(k−1)In where 1√
π log 2

≤ c5 ≤
√
2.778

It follows that E[∆yz⊤
α ] = Θ

(√
log k
k

)
In.779

For i ∈ [d] \ {α, β}, by symmetry we obtain E[yαz⊤
i ] = E[yβz⊤

i ]. This implies E[∆yz⊤
i ] =780

E[yαz⊤
i ]− E[yβz⊤

i ] = 0, so we obtain781

E[z⊤
i M∆y|M ] = tr

(
ME[∆yz⊤

i ]
)

(82)

= 0. (83)
782

Plugging in the bi-level scaling, we obtain the following corollary.783

Corollary C.3 (Asymptotic concentration of bilinear forms). In the bi-level model, for any i ∈ [k],784

we have with probability at least 1−O(1/nk) that785 ∣∣z⊤
i A

−1
−k∆y − E[z⊤

i A
−1
−k∆y]

∣∣ ≤ c6n
1−t
2 −p

√
log(nk).

Moreover, we have786

(1) For any distinct α, β ∈ [k],787

E[z⊤
αA

−1
−k∆y] = c7n

1−t−p(1±O(n−κ3))
√
log k = −E[z⊤

β A
−1
−k∆y] (84)

The same statements hold (with different constants) if we replace A−1
−k with A−1

−s.788

Proof. From Corollary B.5, we have
∥∥A−1

−k
∥∥
2
≤ c6n

−p, where c6 is an appropriately chosen789

universal positive constant based on c3. Recall that A−k is obtained by removing the k label-defining790

features, so in particular A−1
−k is independent of (zi,∆y) for i ∈ [k]. Hence, the conditions for791

Lemma C.2 are satisfied. Then applying the union bound for the spectral norm bound on A−1
−k, we792

see that with probability at least 1− O(1/nk), the deviation term from Hanson-Wright is at most793

c6n
1
2−p
√
log(nk).794

We now turn to calculating the asymptotic scalings for the expectations. From Lemma C.2, we know795

that E[z⊤
αA

−1
−k∆y|A−1

−k] = c7
√
log k
k tr

(
A−1

−k
)
. Applying the high probability bound on tr

(
A−1

−k
)

796

from Corollary B.5, we obtain that with probability at least 1−O(1/nk) that797

−E[z⊤
β A

−1
−k∆y] = E[z⊤

αA
−1
−k∆y] = c7n

−tn1−p(1±O(n−κ3))
√
log k (85)

= c7n
1−t−p(1±O(n−κ3))

√
log k (86)

where in the second line we have applied Corollary B.5 and c7 is an appropriately chosen positive798

constant. This proves (84).799

With Corollary C.3 in hand, we are now in a position to do some straightforward calculations and800

bound some quantities which will pop up in the survival and contamination analysis.801

Proposition C.4 (Worst-case bound based on Hanson-Wright). Let T ⊆ [s] be a subset of favored802

features such that {α, β} ⊆ T . Assume that |T | = nτ for some τ ≤ r. Then with probability at least803

1−O(1/nk), we have804 ∥∥Z⊤
T A

−1
−T∆y

∥∥
2
≤ c8(n

1−t−p + n
1+τ−t

2 −p)
√

log(nk|T |). (87)

Proof. WLOG, suppose α = 1 and β = 2. By Corollary C.3 we have with probability at least805

1− 1/n that806

∣∣Z⊤
T A

−1
−T∆y

∣∣ ≤


c7n
1−t−p√log k

c7n
1−t−p√log k

c6n
1−t
2 −p

√
log(nk)

...
c6n

1−t
2 −p

√
log(nk)

. (88)
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Hence the norm of this vector is at most807 ∥∥Z⊤
T A

−1
−T∆y

∥∥
2
≤ 2c7n

1−t−p
√
log k + n

τ
2 c6n

1−t
2 −p

√
log(nk) (89)

≤ c8(n
1−t−p + n

1+τ−t
2 −p)

√
log(nk), (90)

where c8 is a positive constant.808

809

D Bounding the survival810

Recall that the relative survival was defined to be λF ĥα,β [α] = λFz
⊤
αA

−1∆y. The strategy is to811

apply our variant of Hanson-Wright to z⊤
αA

−1∆y. Unfortunately, A−1 is not independent of zα812

or ∆y, so we need to use Woodbury to extract out the independent portions and bound away the813

dependent portion. As we’ll see shortly, the error from the dependent portions can also be controlled814

using Hanson-Wright. Let us now recall Proposition A.1 for reference.815

Proposition A.1 (Bounds on relative survival). Under the bi-level ensemble model (Definition 1),816

when the true data generating process is 1-sparse (Assumption 1), if t < 1
2 , then with probability at817

least 1−O(1/nk)818

λF ĥα,β [α] = c7 min
{
µ−1, 1

}
n−t(1±O(n−κ5))

√
log k,

where c7 and κ5 are positive constants.819

If t ≥ 1
2 , then820

λF

∣∣∣ĥα,β [α]∣∣∣ ≤ c9 min
{
µ−1, 1

}
n− 1

2

√
log(nk),

where c9 is a positive constant.821

Proof. Recall that ĥα,β [α] = z⊤
αA

−1∆y. We first observe that for i ∈ [k], the dependence between822

A−1 and zi as well as A−1 and ∆y only comes through the k label defining features. Hence, we823

can use the Woodbury identity to extract out the independent portions of A−1.824

Indeed, our “push through” lemma for Woodbury (Lemma B.2) and concentration of the hat matrix825

(Proposition B.6) implies that with extremely high probability826

Z⊤
k A

−1∆y = (Ik +Hk)
−1Z⊤

k A
−1
−k∆y (91)

= min {µ, 1} (Ik +E)Z⊤
k A

−1
−k∆y, (92)

where ∥E∥2 = O(n−κ11).827

Let uα ∈ Rk denote the αth row vector in E, and let u−
α ∈ Rk−1 denote the subvector of uα without828

index α. By reading off the αth row of Eq. (92), we see that829

z⊤
αA

−1∆y = min {µ, 1} (z⊤
αA

−1
−k∆y +

〈
uα,Z

⊤
k A

−1
−k∆y

〉
) (93)

Since ∥uα∥2 ≤ ∥E∥2 = O(n−κ11), it follows from Cauchy-Schwarz that830 ∣∣z⊤
αA

−1∆y −min {µ, 1}z⊤
αA

−1
−k∆y

∣∣ ≤ min {µ, 1}O(n−κ11)
∥∥Z⊤

k A
−1
−k∆y

∥∥
2
. (94)

Let us pause for a moment and interpret Eq. (94). The term min {µ, 1} is merely capturing the831

difference in behavior when regression works and fails; if regression works (q + r < 1) then it832

becomes µ, and if regression fails (q + r > 1), then it becomes 1. This behavior should be expected:833

in the regression works case, we expect the effect of interpolation to be a regularizing one: the signals834

are attenuated by a factor of µ. The RHS of Eq. (94) is an error term, capturing how differently835

z⊤
αA

−1∆y behaves from the expected behavior min {µ, 1}z⊤
αA

−1
−k∆y.836

Let us now bound the error term. From Proposition C.4 we have with probability at least 1−O(1/nk)837

that838 ∥∥Z⊤
k A

−1
−k∆y

∥∥
2
≤ c8(n

1−t−p + n
1
2−p)

√
log(nk2). (95)
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Let us do casework on t. For t < 1
2 , we have 1

2 − p < 1− t− p, so we conclude that the error term839

is min {µ, 1}O(n1−t−p · n−κ4)
√

log(nk2), where κ4 is a positive constant.840

On the other hand, our Hanson-Wright calculations imply (Corollary C.3) that with probability at841

least 1−O(1/nk) that842 ∣∣∣z⊤
αA

−1
−k∆y − c7n

1−t−p(1±O(n−κ3))
√
log k

∣∣∣ ≤ c6n
1
2−p
√

log(nk).

Again, since t < 1
2 , the deviation term is o(n1−t−p)

√
log k.843

Hence we conclude that with probability 1−O(1/nk) we have844

z⊤
αA

−1∆y = c7 min {µ, 1}n1−t−p(1±O(n−κ5))
√

log k,

where κ5 is a positive constant.845

Completely analogous logic handles the bounds for z⊤
β A

−1∆y. Let us now return back to the846

quantity of interest, λF ĥα,β [α]. We can compute847

λFz
⊤
αA

−1∆y = np−q−r · c7 min {µ, 1}n1−t−p(1±O(n−κ5))
√
log k

= c7µ
−1 min {µ, 1}n−t(1±O(n−κ5))

√
log k

= c7 min
{
1, µ−1

}
n−t(1±O(n−κ5))

√
log k.

On the other hand, if t ≥ 1
2 the error terms all dominate, and we replace n1−t−p with n

1
2−p848

everywhere. We conclude that with probability at least 1−O(1/nk),849 ∣∣z⊤
αA

−1∆y
∣∣ ≤ c9 min {µ, 1}n 1

2−p
√
log(nk), (96)

where c9 is a positive constant. Plugging in the scaling for λF yields the desired result.850

E Bounding the contamination851

In this section we give a tight analysis of the contamination term. First, we rewrite the squared852

contamination term and separate it out into the contamination from the k − 2 label-defining features853

which are not α or β, the rest of the s − k favored features, and the remaining d − s unfavored854

features. From Eq. (30), we have855

CN2
α,β =

∑
j∈[d]\{α,β}

λ2
j (z

⊤
j A

−1∆y)2 (97)

= ∆y⊤A−1

 ∑
j∈[d]\{α,β}

λ2
jzjz

⊤
j

A−1∆y (98)

= ∆y⊤A−1

 ∑
j∈[k]\{α,β}

λ2
jzjz

⊤
j

A−1∆y

︸ ︷︷ ︸
≜CN2

α,β,L

+∆y⊤A−1

 ∑
j∈[s]\[k]

λ2
jzjz

⊤
j

A−1∆y

︸ ︷︷ ︸
≜CN2

α,β,F

(99)

+∆y⊤A−1

∑
j>s

λ2
jzjz

⊤
j

A−1∆y

︸ ︷︷ ︸
≜CN2

α,β,U

. (100)

Here, CNα,β,L corresponds to contamination from label defining features, CNα,β,F corresponds to856

contamination from favored features, and CNα,β,U corresponds to contamination from unfavored857

features. The reason for separating out the contamination into these three subterms is that we will858

need slightly different arguments to bound each of them, although Hanson-Wright and Woodbury are859
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central to all of the arguments. In Appendix E.1 we prove the upper bound on CNα,β,L+CNα,β,F ; in860

Appendix E.2 we prove the lower bound. Finally, in Appendix E.3 we bound CNα,β,U . After putting861

these bounds together, we will obtain the main bounds on the contamination, which we restate here862

for reference.863

Proposition A.2 (Bounds on contamination). Under the bi-level ensemble model (Definition 1), when864

the true data generating process is 1-sparse (Assumption 1), with probability at least 1−O(1/nk),865

CNα,β ≤ min
{
µ−1, 1

}
O(n

r−t−1
2 ) log(nsk)︸ ︷︷ ︸

favored features

+O(n
1−t−p

2 )
√
log(nsk)︸ ︷︷ ︸

unfavored features

.

Furthermore, if t > 0, then with probability at least 1−O(1/nk),866

CNα,β ≥ min
{
µ−1, 1

}
Ω(n

r−t−1
2 )︸ ︷︷ ︸

favored features

+ Ω(n
1−t−p

2 )︸ ︷︷ ︸
unfavored features

.

E.1 Upper bounding the contamination from label-defining+favored features867

In this section, we upper bound the contamination coming from the s− 2 favored features which are868

not α or β. This culminates in the following lemma.869

Lemma E.1. In the same setting as Proposition A.2, we have with probability 1−O(1/nk) that870

CN2
α,β,L + CN2

α,β,F ≤ c212 min
{
1, µ−2

}
nr−t−1 log(nsk)

2
,

where c12 is a positive constant.871

Proof. Let WR ∈ Rn×(s−2) as the weighted feature matrix which includes all of the s− 2 favored872

features aside from α, β. We can then define A−R ≜ A − WRW
⊤
R and HR = W⊤

RA−1
−RWR.873

Using Woodbury, an analogous computation to Lemma B.2 implies that874

WRA
−1∆y = (Is−2 +HR)

−1WRA
−1
−R∆y. (101)

The contamination from all of the s− 2 favored features that are not α or β satisfies875

CN2
α,β,L + CN2

α,β,F = λF∆y⊤A−1
∑

j∈[s]\{α,β}

wjw
⊤
j A

−1∆y

= λF∆y⊤A−1WRW
⊤
RA−1∆y

= λF∆y⊤A−1
−RWR(Is−2 +HR)

−2W⊤
RA−1

−R∆y.

Since Proposition B.6 implies that µ1((Is−2 + HR)
−2) ≤ c10 min

{
µ2, 1

}
with extremely high876

probability where c10 is a positive constant, we know the contamination is with extremely high877

probability upper bounded by the following quadratic form:878

c10 min
{
µ2, 1

}
λF∆y⊤A−1

−RWRW
⊤
RA−1

−R∆y (102)

= c10 min
{
µ2, 1

}
λ2
F

∑
j∈[s]\{α,β}

〈
zj ,A

−1
−R∆y

〉2
. (103)

We still cannot apply Hanson-Wright, because A−1
−R is not independent of ∆y. However, we can use879

Woodbury again to take out zα, zβ from A−1
−R.880

Define Wα,β = [wα wβ ] and H
(s)
α,β = W⊤

α,βA
−1
−sWα,β . Then Woodbury implies that881

A−1
−R = A−1

−s −A−1
−sWα,β(I2 +H

(s)
α,β)

−1W⊤
α,βA

−1
−s. (104)

Hence882

z⊤
j A

−1
−R∆y = z⊤

j A
−1
−s∆y − z⊤

j A
−1
−sWα,β(I2 +H

(s)
α,β)

−1W⊤
α,βA

−1
−s∆y. (105)

We will use Hanson-Wright and Cauchy-Schwarz to argue that the second term in Eq. (105)883

above will be dominated by the first term. Indeed, Corollary C.3 implies that z⊤
j A

−1
−s∆y ≤884
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c6n
1−t
2 −p

√
log(nsk) with probability at least 1−O(1/nsk), so it suffices to show that the other term885

is dominated by n
1−t
2 −p. We will show that its contribution for each j is min

{
1, µ−1

}
Õ(n

1
2−t−p).886

By Cauchy-Schwarz, the magnitude of the second term of Eq. (105) is at most887 ∥∥(I2 +Hα,β)
−1
∥∥
2

∥∥W⊤
α,βA

−1
−szj

∥∥
2

∥∥W⊤
α,βA

−1
−s∆y

∥∥
2

(106)

≤ c11λF min {µ, 1}n 1
2−p
√

log(nsk) · n1−t−p
√
log k (107)

≤ c11 min
{
1, µ−1

}
n

1
2−t−p log(nsk), (108)

where c11 is a positive constant. In the second line, we have used Proposition B.6 to upper bound888 ∥∥∥(I2 +H
(s)
α,β)

−1
∥∥∥
2
≤ O(min {µ, 1}) and we have used Theorem B.1 and Proposition B.4 to deduce889

that that
∣∣z⊤
j A

−1
−sza

∣∣ ≤ O(n
1
2−p)

√
log(nsk) with probability at least 1−O(1/nsk). Similarly, we890

used the scaling from Corollary C.3 to deduce that
∣∣z⊤
αA

−1
−s∆y

∣∣ ≤ O(n1−t−p)
√
log k, and similarly891

for β.892

Hence z⊤
j A

−1
−R∆y is O(n

1−t
2 −p) log(nsk) with probability 1 − O(1/nsk). By union bounding893

over j and plugging our upper bound back into Eq. (103), we conclude that with probability at least894

1−O(1/nk)895

CN2
α,β,L + CN2

α,β,F ≤ c10 min
{
µ2, 1

}
λ2
Fn

r ·O(n1−t−2p) log(nsk)
2 (109)

= µ−2 min
{
µ2, 1

}
O(nr−t−1) log(nsk)

2 (110)

≤ c212 min
{
1, µ−2

}
nr−t−1 log(nsk)

2
, (111)

where c12 is a positive constant, concluding the proof.896

E.2 Lower bounding the contamination from label-defining+favored features897

In this section, we upper bound the contamination coming from the s− 2 favored features which are898

not α or β. This culminates in the following lemma.899

Lemma E.2. In the same setting as Proposition A.2, if t > 0, with probability at least 1−O(1/nk),900

we have901

CN2
α,β,L + CN2

α,β,F ≥ c214 min
{
1, µ−2

}
nr−t−1,

where c14 is a positive constant.902

Proof. Following the beginning of the proof of Lemma E.1 and what we know about the flatness of903

the spectra of hat matrices from Proposition B.6, we can deduce that there is some positive constant904

c13 such that with extremely high probability905

CN2
α,β,L + CN2

α,β,F ≥ c13 min
{
µ2, 1

}
λ2
F

∑
j∈[s]\{α,β}

〈
zj ,A

−1
−R∆y

〉2
. (112)

We will further lower bound this by throwing out all label-defining j. In other words, the goal now is906

to lower bound907 ∑
j∈[s]\[k]

〈
zj ,A

−1
−R∆y

〉2
=
〈
Z⊤
FA

−1
−R∆y,Z⊤

FA
−1
−R∆y

〉
. (113)

The main idea is to use Bernstein’s inequality, but unfortunately A−1
−R is not independent of ∆y, so908

we will again resort to Woodbury to take out zα and zβ . As in the proof for upper bounding the909

favored contamination, we have Wα,β = [wα wβ ] and H
(s)
α,β = W⊤

α,βA
−1
−sWα,β . Then we can910

deduce from another application of Woodbury that911

z⊤
j A

−1
−R∆y = z⊤

j A
−1
−s∆y − z⊤

j A
−1
−sWα,β(I2 +Hα,β)

−1W⊤
α,βA

−1
−s∆y. (114)

Again, we can argue that with probability 1 − O(1/nsk), the second term is upper bounded in912

magnitude by913

min
{
1, µ−1

}
n

1
2−t−p log(nsk) = min

{
1, µ−1

}
O(n

1−t
2 −p · n−κ6), (115)

29



where κ6 is a positive constant because t > 0. Since Hanson-Wright (Corollary C.3) implies that914

z⊤
j A

−1
−s∆y = Õ(n

1−t
2 −p), this implies that z⊤

j A
−1
−R∆y = Õ(n

1−t
2 −p), and similarly for β. Hence915

we have916

(z⊤
j A

−1
−R∆y)2 = (z⊤

j A
−1
−s∆y +min

{
1, µ−1

}
O(n

1−t
2 −p−κ6))2 (116)

= (z⊤
j A

−1
−s∆y)2 +min

{
1, µ−1

}
O(n

1−t
2 −p−κ6)Õ(n

1−t
2 −p) (117)

= (z⊤
j A

−1
−s∆y)2 +min

{
1, µ−1

}
o(n1−t−2p). (118)

We are now in a position to analyze the contribution from the first term of Eq. (118) to Eq. (113):917

its contribution is
〈
Z⊤
FA

−1
−s∆y,Z⊤

FA
−1
−s∆y

〉
. This does have all the independence required to918

apply Bernstein, because (A−1
−s,∆y) are independent of ZF . Hence conditioned on A−1

−s and ∆y,919 〈
Z⊤
FA

−1
−s∆y,Z⊤

FA
−1
−s∆y

〉
is a sum of s − k subexponential variables, and by Lemma 2.7.7 of920

Vershynin (2018) each of these random variables conditionally has subexponential norm at most921 ∥∥A−1
−s∆y

∥∥2
2

and conditional mean
〈
A−1

−s∆y,A−1
−s∆y

〉
.922

We can use Hanson-Wright (Theorem 4.1) to bound both of these quantities. Indeed, it implies that923

with probability at least 1−O(1/nk),924 ∥∥A−1
−s∆y

∥∥2
2
≤ O(n1−t−2p). (119)

Let us now compute the Hanson-Wright bound for
〈
A−1

−s∆y,A−1
−s∆y

〉
. Note that A−1

−s is indepen-925

dent of ∆y, so we can condition on A−1
−s and conclude that with probability at least 1−O(1/nk)926 〈

A−1
−s∆y,A−1

−s∆y
〉
≥ E[

〈
A−1

−s∆y,A−1
−s∆y

〉
|A−1

−s]−O(n
1−t
2 )
∥∥A−2

−s
∥∥
2

√
log(nk) (120)

= Tr
(
A−2

−sE[∆y∆y⊤]
)
−O(n

1−t
2 )
∥∥A−2

−s
∥∥
2

√
log(nk) (121)

=
2

k
Tr
(
A−2

−s
)
−O(n

1−t
2 )
∥∥A−2

−s
∥∥
2

√
log(nk), (122)

where we have used the fact that ∆y is mean zero and ∆y[i]2 ∼ Ber( 2k ).927

From Proposition B.4, we obtain the scaling for Tr
(
A−2

−s
)

and
∥∥A−2

−s
∥∥
2
. This implies that with928

probability at least 1−O(1/nk)929 〈
A−1

−s∆y,A−1
−s∆y

〉
≥ Ω(n1−t−2p)−O(n

1−t
2 −2p)

√
log(nk) (123)

≥ Ω(n1−t−2p). (124)

as t < 1.930

Bernstein and the union bound implies that with probability at least 1−O(1/nk),931

〈
Z⊤
FA

−1
−s∆y,Z⊤

FA
−1
−s∆y

〉
≥

 ∑
j∈[s]\[k]

Ω(n1−t−2p)

−O(n
r
2+1−t−2p) (125)

≥ Ω(nr+1−t−2p), (126)

as r > 0.932

To wrap up, we will need to upper bound the contribution of the error term in Eq. (118). Its contribution933

from summing over j ∈ [s] \ [k] is min
{
1, µ−2

}
o(nr+1−t−2p), which is negligible compared to the934

Bernstein term, which as we just proved is Ω(nr+1−t−2p). Hence
〈
Z⊤
FA

−1
−R∆y,Z⊤

FA
−1
−R∆y

〉
≥935

Ω(nr+1−t−2p) with high probability, and inserting this back into our lower bound Eq. (112), we see936

that937

CN2
α,β,L + CN2

α,β,F ≥ c13 min
{
µ2, 1

}
λ2
FΩ(n

r+1−t−2p) (127)

= c13µ
−2 min

{
µ2, 1

}
Ω(nr−t−1) (128)

≥ c214 min
{
1, µ−2

}
nr−t−1, (129)

where c14 is a positive constant.938
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E.3 Bounding the unfavored contamination939

Finally, we wrap up the section by proving matching upper and lower bounds for the unfavored940

contamination CNα,β,U .941

Lemma E.3 (Bounding unfavored contamination). In the same setting as Proposition A.2, if t > 0,942

with probability 1−O(1/nk), the contamination from the unfavored features satisfies943

CN2
α,β,U = c215(1± o(1))n1−t−p,

where c15 is a positive constant.944

On the other hand, if t = 0, then with probability 1−O(1/nk), the unfavored contamination satisfies945

CN2
α,β,U ≤ c216 min

{
1, µ−1

}
n1−t−p log(nsk).

Proof. By Woodbury, we have946

A−1 = A−1
U −A−1

U MsA
−1
U , (130)

where947

Ms ≜ Ws(Is +Hs)
−1W⊤

s , (131)

and Hs ≜ W⊤
s A−1

−sWs.948

Now we have949

CN2
α,β,U = ∆y⊤A−1AUA

−1∆y (132)

= ∆y⊤(A−1
U −A−1

U MsA
−1
U )AU (A

−1
U −A−1

U MsA
−1
U )∆y (133)

= ∆y⊤
(
A−1
U − 2A−1

U MsA
−1
U +A−1

U MsA
−1
U MsA

−1
U

)
∆y. (134)

By Theorem 4.1, we have with probability at least 1−O(1/nk)950

∆y⊤A−1
U ∆y = c215(1± o(1))n1−t−p, (135)

where c15 is a positive constant.951

On the other hand, we have that952

MsA
−1
U Ms = Ws(Is +Hs)

−1W⊤
s A−1

U Ws(Is +Hs)
−1W⊤

s

= Ws(Is +Hs)
−1Hs(Is +Hs)

−1W⊤
s

= Ws(Is − (Is +Hs)
−1)(Is +Hs)

−1W⊤
s

= Ws((Is +Hs)
−1 − (Is +Hs)

−2)W⊤
s

Due to Proposition B.6, µi((Is + Hs)
−1) = min {µ, 1} (1± o(1)) for all i with very high953

probability. Hence to handle the error terms that are not ∆y⊤A−1
U ∆y, it suffices to asymp-954

totically bound ∆y⊤A−1
U MsA

−1
U ∆y. In turn, we can couple this to the quadratic form955

min {µ, 1} (1± o(1))∆y⊤A−1
U WsWsA

−1
U ∆y. By Proposition C.4, we have with probability at956

least 1−O(1/nk)957

min {µ, 1} (1± o(1))∆y⊤A−1
U WsWsA

−1
U ∆y (136)

≤ c28λF min {µ, 1} (1± o(1))(n2−2t−2p + nr+1−t−2p) log(nsk) (137)

≤ c28 min
{
1, µ−1

}
(1± o(1))(n1−2t−p + nr−t−p) log(nsk) (138)

For t > 0, we claim that the term in Eq. (138) is o(n1−t−p), because 1 − 2t − p < 1 − t − p and958

r − t − p < 1 − t − p. Hence if t > 0 then by union bound we have with probability at least959

1−O(1/nk) that960

CN2
α,β,U = c215(1± o(1))n1−t−p, (139)

as desired.961
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On the other hand, if t = 0, we only have an issue if q + r < 1, so that min
{
1, µ−1

}
= 1. In this962

case, the deviation term n1−2t−p = n1−t−p. However, this won’t affect the fact that the upper bound963

on contamination will still be Õ(n1−t−p). More precisely, this bound concludes by arguing that964

CN2
α,β,U ≤ c216 min

{
1, µ−1

}
n1−t−p log(nsk), (140)

where c16 is an appropriately defined positive constant.965

It turns out we don’t have to worry about this edge case at all for the lower bound on CNα,β,U ,966

because the stated conditions for misclassification imply that t > 0 anyway. This completes the proof967

of the lemma.968

F Obtaining tight misclassification rate969

In this section, we will prove Proposition A.7. Let us restate the main proposition and sketch out its970

proof more formally.971

Proposition A.7 (Correlation bound). Assume we are in the bi-level ensemble model (Definition 1),972

the true data generating process is 1-sparse (Assumption 1), and the number of classes scales with n973

(i.e. t > 0). Then for every ϵ > 0, we have974

Pr

[
max

β∈[k],β ̸=α
Z(β) > n−u

]
≥ 1−Θ

(
1

k1+o(1)

)
− ϵ (49)

for sufficiently large n and any u > 0.975

Proof sketch. Note that the Z(β)’s that must outcompete the decaying survival to contamination ratio976

are jointly Gaussian, as they are projections of a standard Gaussian vector xtest ∈ Rd. Hence if we977

want to study the probability that maxβ Z
(β) outcompetes n−u, we have to understand the correlation978

structure of the Z(β)’s.979

We will argue that for β, γ ∈ [k] with α, β, γ pairwise distinct, the correlation between Z(β) and980

Z(γ) is 1
2 ± o(1) with high probability. To that end, we want to look at the correlation (inner product)981

between the vectors
{
λjĥα,β [j]

}
for j ̸∈ {α, β} and

{
λjĥα,γ [j]

}
for j ̸∈ {α, γ}. However, note982

that by independence of the components of xtest from every other random variable and the fact that983

they are mean zero, we have984

E[ĥα,β [γ]xtest[γ]ĥα,γ [β]xtest[β]] = 0.

Hence it suffices to look at the correlation for j ̸∈ {α, β, γ}.985

We assume WLOG that α = 1, β = 2, γ = 3. Let986

Λα,β ≜ diag(1− 1j=α − 1j=β)j∈[d] ◦ diag(λj)j∈[d] ∈ Rd×d

represent the diagonal matrices containing the squared feature weights with indices α, β zeroed out.987

Next, let vα,β ∈ Rd denote the vector with vα,β [α] = vα,β [β] = 0 and vα,β [j] = λjĥα,β [j] for988

j ∈ [d], j ̸∈ {α, β}. Hence vα,β = Λ
1/2
α,β(f̂α − f̂β). Since Z(β) = ⟨vα,β ,xtest⟩, in order to analyze989

the correlations between Z(β) and Z(γ), it suffices to analyze vα,β . Indeed, we will show that the990

weighted halfspaces Λ1/2
α,β f̂α ∈ Rd and Λ

1/2
α,β f̂β ∈ Rd are asymptotically orthogonal.991

In other words, we need to show that992 〈
Λ
1/2
α,β f̂α,Λ

1/2
α,β f̂β

〉
∥∥∥Λ1/2

α,β f̂α

∥∥∥
2

∥∥∥Λ1/2
α,β f̂β

∥∥∥
2

= o(1)

with probability at least 1−O(1/nk); we can then union bound against all choices of β. This is the993

most technically involved part of the proof, and is the content of Proposition F.1.994

This in turn will imply (see Lemma F.2) that the maximum (and minimum) correlation between the995

vα,β for different β is 1
2 ± o(1). Let (Zβ)β∈[k],β ̸=α be equicorrelated gaussians with correlation996
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ρ = 1
2 + o(1), and (Zβ)β∈[k],β ̸=α be equicorrelated gaussians with correlation ρ = 1

2 − o(1). By997

Slepian’s lemma, for any u > 0, the probability of maxβ Z
(β) losing to n−u is sandwiched as998

Pr

[
max
β

Zβ ≤ n−u
]
≤ Pr

[
max
β

Z(β) ≤ n−u
]
≤ Pr

[
max
β

Zβ ≤ n−u
]
,

where we have adopted the shorthand maxβ to denote maxβ∈[k],β ̸=α.999

Theorem 2.1 of Pinasco et al. (2021) shows that jointly gaussian vectors in Rk with equicorrelation ρ1000

lie in the positive orthant with probability Θ(k1−1/ρ). In particular, applied to Zβ , with correlation1001

ρ = 1
2 + o(1), we find that1002

Pr

[
max
β

Zβ ≤ 0

]
= Θ(k−1+o(1)),

and similarly for Zβ . Anticoncentration for Gaussian maxima (Chernozhukov et al., 2015,1003

Corollary 1) implies that we can transfer over the bound on Pr
[
maxβ Zβ ≤ 0

]
to a bound on1004

Pr
[
maxβ Zβ ≤ n−u] to show that for every ϵ > 0, we have1005

Θ(k−1−o(1))− ϵ ≤ Pr

[
max
β

Z(β) ≤ n−u
]
≤ Θ(k−1+o(1)) + ϵ (141)

for sufficiently large n. Taking the complement of the above event concludes the proof.1006

F.1 Main results for tight misclassification rates1007

The main result in this section is the following proposition, which states that the halfspace predictions1008

are asymptotically orthogonal. Its proof is deferred to the subsequent sections.1009

Proposition F.1. Assume we are in the bi-level ensemble model (Definition 1), the true data generating1010

process is 1-sparse (Assumption 1), and the number of classes scales with n (i.e. t > 0).1011

For any distinct α, β ∈ [k], with probability at least 1−O(1/nk), we have1012 〈
Λ
1/2
α,β f̂α,Λ

1/2
α,β f̂β

〉
∥∥∥Λ1/2

α,β f̂α

∥∥∥
2

∥∥∥Λ1/2
α,β f̂β

∥∥∥
2

= o(1).

Given Proposition F.1, we can show that the Z(β) have correlations that approach 1
2 . The intuitive1013

reason that this correleation approaches 1
2 is that the contribution from α is common. The following1014

lemma formalizes this intuition.1015

Lemma F.2 (Correlation of relative differences of almost orthogonal vectors). Suppose that we have1016

n unit vectors x1, . . . ,xn ∈ Rd such that |⟨xi,xj⟩| ≤ γ for γ > 0. Then for any distinct i, j, k ∈ [n],1017

we have1018 ∣∣∣∣ ⟨xj − xi,xi − xk⟩
∥xj − xi∥∥xi − xk∥

− 1

2

∣∣∣∣ ≤ 2γ

1− γ
.

Proof. For any i ̸= j, we have ∥xi − xj∥2 = 2− 2 ⟨xi,xj⟩. Hence we have1019

2− 2γ ≤ ∥xi − xj∥2 ≤ 2 + 2γ.

Also1020

2− 2γ ≤ ∥xj − xk∥2

= ∥xi − xj∥2 + ∥xi − xk∥2 − 2 ⟨xj − xi,xi − xk⟩
≤ 4 + 4γ − 2 ⟨xj − xi,xi − xk⟩ .

Since ∥xi − xj∥ ≥
√
2− 2γ, we can rearrange and obtain that1021

⟨xj − xi,xi − xk⟩
∥xj − xi∥∥xi − xk∥

≤ 1 + 3γ

2− 2γ
.
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Similarly we can reverse the inequalities and get1022

2 + 2γ ≥ 4− 4γ − 2 ⟨xj − xi,xi − xk⟩ ,
so1023

⟨xj − xi,xi − xk⟩
∥xj − xi∥∥xi − xk∥

≥ 1− 3γ

2 + 2γ
.

1024

Combining Proposition F.1 with Lemma F.2 yields the following formal statement about the correla-1025

tions between the Z(β).1026

Lemma F.3 (Asymptotic correlation of relative survivals). For any distinct α, β, β′ ∈ [k], under the1027

same assumptions as Proposition F.1, as n → ∞, with probability at least 1−O(1/n), we have1028 ∣∣∣∣E[Z(β)Z(β′)]− 1

2

∣∣∣∣ ≤ o(1).

As a consequence, the asymptotic correlation between the relative survivals approaches 1
2 at a1029

polynomial rate.1030

Proof. Plugging in the result of Proposition F.1 into Lemma F.2, we obtain the stated result.1031

F.2 Lower bounding the denominator1032

Let us now begin to prove Proposition F.1. The first step is to bound the denominator of the normalized1033

correlation. Writing out the definitions, we have1034 ∥∥∥Λ1/2
α,β f̂α

∥∥∥2 =
∑

j ̸∈{α,β}

λ2
jy

⊤
αA

−1zjz
⊤
j A

−1yα

= λ2
F

∑
j ̸∈{α,β},j∈[s]

y⊤
αA

−1zjz
⊤
j A

−1yα + λ2
U

∑
j>s

y⊤
αA

−1zjz
⊤
j A

−1yα

Note that these two terms are respectively analogous to CN2
α,β,L+CN2

α,β,F and CN2
α,β,U . In fact, the1035

proofs of the lower bounds for contamination essentially transfer over verbatim to the lower bounds1036

on the denominator, because Hanson-Wright implies that we can show that
∥∥A−1

−syα
∥∥
2

concentrates1037

the same way that
∥∥A−1

−s∆y
∥∥
2

does. In essence, we are able to show the following proposition.1038

Proposition F.4 (Lower bound on norm of scaled halfspaces). Under the same assumptions as1039

Proposition F.1, for any α, β ∈ [k], with α ̸= β, with probability at least 1−O(1/nk), we have1040 ∥∥∥Λ1/2
α,β f̂α

∥∥∥2 ≥ min
{
1, µ−2

}
Ω(nr−t−1) + Ω(n1−t−p).

F.3 Upper bounding the numerator: the unnormalized correlation1041

We now turn to the more involved part of the bound: proving an upper bound on the numerator. As1042

before, we can bound the split up the numerator into favored and unfavored terms. For each term, we1043

will show that it is dominated by the denominator, in the precise sense that each term is1044

o(min
{
1, µ−2

}
nr−t−1 + n1−t−p).

Now, let’s look at the numerator, which is the bilinear form1045

λ2
F

∑
j ̸∈{α,β},j∈[s]

y⊤
αA

−1zjz
⊤
j A

−1yβ + λ2
U

∑
j>s

y⊤
αA

−1zjz
⊤
j A

−1yβ . (142)

= λ2
F

〈
Z⊤
LA

−1yα,Z
⊤
LA

−1yβ
〉︸ ︷︷ ︸

corα,β,L

+λ2
F

〈
Z⊤
FA

−1yα,Z
⊤
FA

−1yβ
〉︸ ︷︷ ︸

corα,β,F

+λ2
U

∑
j>s

y⊤
αA

−1zjz
⊤
j A

−1yβ︸ ︷︷ ︸
corα,β,U

(143)
We refer to the the first term as the label defining correlation corα,β,L, the second term as the1046

favored correlation corα,β,F , and the last term as the unfavored correlation corα,β,U . Here, we abuse1047

terminology slightly and refer to these inner products as correlations, even though strictly speaking,1048

they are unnormalized.1049
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F.3.1 Bounding the favored correlation1050

We now bound the correlation coming from the favored features; we will ultimately show that its1051

contribution is min
{
1, µ−2

}
o(nr−t−1). Recall that WR ∈ Rn×(s−2) is the weighted feature matrix1052

for the s − 2 favored features aside from α and β. Then the label-defining+favored correlation1053

corα,β,L + corα,β,F can be written succinctly as1054

λ2
F

〈
Z⊤
RA

−1yα,Z
⊤
RA

−1yβ
〉
. (144)

Why should we be able to bound this better than Cauchy-Schwarz? Intuitively, although there is a1055

mild dependence between yα and yβ , it is not strong enough to cause Z⊤
RA

−1yα and Z⊤
RA

−1yβ to1056

point in the same direction.1057

To formalize this argument, we will first follow the strategy to bound the favored contamination. In1058

particular, using the push-through form of Woodbury (Lemma B.2) we see that1059 〈
Z⊤
RA

−1yα,Z
⊤
RA

−1yβ
〉
= y⊤

αA
−1
−RZR(Is−2 +HR)

−2Z⊤
RA

−1
−Ryβ . (145)

Now, we can apply Proposition B.6 to replace (Is−2 +HR)
−2 with min

{
µ2, 1

}
(Is−2 +E), where1060

∥E∥2 = O(n−κ11) with extremely high probability. Cauchy-Schwarz yields that1061 〈
Z⊤
RA

−1yα,Z
⊤
RA

−1yβ
〉

(146)

≤ min
{
µ2, 1

} 〈
Z⊤
RA

−1
−Ryα,Z

⊤
RA

−1
−Ryβ

〉
(147)

+min
{
µ2, 1

}
∥E∥2

∥∥Z⊤
RA

−1
−Ryβ

∥∥
2

∥∥Z⊤
RA

−1
−Ryα

∥∥
2
. (148)

The term in Eq. (148) can be bounded in the same way that we bounded the favored contamina-1062

tion. Indeed, since we can swap in yα and yβ with ∆y, the argument that proved the bounds on1063 ∥∥Z⊤
RA

−1
−R∆y

∥∥
2

port over immediately. After using the scaling for λF and the fact that ∥E∥2 =1064

O(n−κ11), we conclude that this Cauchy-Schwarz error term is at most min
{
1, µ−2

}
o(nr−t−1)1065

with probability at least 1−O(1/nk).1066

Let us now turn to the term in Eq. (147). As in the proof for the lower bound for favored contamination1067

Lemma E.2, to get better concentration than Cauchy-Schwarz, we want to use Bernstein. We can1068

rewrite it suggestively as1069 ∑
j∈[s]\{α,β}

(z⊤
j A

−1
−Ryα)(z

⊤
j A

−1
−Ryβ) (149)

We cannot immediately power through with the calculation, because A−1
−R is not independent of yα1070

or yβ . The main idea is to again use Woodbury and show that the dependent portions contribute1071

negligibly to z⊤
j A

−1
−Ryα. Therefore the dependent contributions get dominated by the lower bound1072

on the correlation.1073

As in the proof for bounding the favored contamination, we can further define Wα,β = [wα wβ ]1074

and H
(s)
α,β = W⊤

α,βA
−1
−sWα,β . Then we can deduce from another application of Woodbury that1075

z⊤
j A

−1
−Ryα = z⊤

j A
−1
−syα − z⊤

j A
−1
−sWα,β(I2 +Hα,β)

−1W⊤
α,βA

−1
−syα. (150)

Again, we can argue that the second term is bounded in magnitude by1076

min
{
1, µ−1

}
n

1
2−t−p log(ns) = min

{
1, µ−1

}
O(n

1−t
2 −p · n−κ6), (151)

because t > 0. Since Hanson-Wright (Corollary C.3) implies that z⊤
j A

−1
−syα = Õ(n

1−t
2 −p), this1077

implies that z⊤
j A

−1
−Ryα = Õ(n

1−t
2 −p), and similarly for β. Hence we have1078

(z⊤
j A

−1
−Ryα)(z

⊤
j A

−1
−Ryβ) (152)

≤ (z⊤
j A

−1
−syα +min

{
1, µ−1

}
O(n

1−t
2 −p−κ6))(z⊤

j A
−1
−syβ +min

{
1, µ−1

}
O(n

1−t
2 −p−κ6))

(153)

≤ (z⊤
j A

−1
−syα)(z

⊤
j A

−1
−syβ) + min

{
1, µ−1

}
O(n

1−t
2 −p−κ6)Õ(n

1−t
2 −p) (154)

≤ (z⊤
j A

−1
−syα)(z

⊤
j A

−1
−syβ) + min

{
1, µ−1

}
o(n1−t−2p). (155)
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This implies that we can rewrite Eq. (149) as1079  ∑
j∈[s]\{α,β}

(z⊤
j A

−1
−syα)(z

⊤
j A

−1
−syβ)

±min
{
1, µ−1

}
o(nr+1−t−2p). (156)

Let us argue that the second term in Eq. (156) will be negligible compared to the denominator, which1080

is min
{
1, µ−2

}
Ω(nr−t−1). Tracing back up the stack, we see that its contribution to the favored1081

correlation will be at most1082

λ2
F min

{
µ2, 1

}
·min

{
1, µ−1

}
o(nr+1−t−2p) ≤ µ−2 min

{
µ2, µ−1

}
o(nr−t−1) (157)

≤ min
{
1, µ−3

}
o(nr−t−1) (158)

≤ min
{
1, µ−2

}
o(nr−t−1). (159)

Turning back to the first term, we are now in a position to apply Bernstein. Note that (A−1
−s,yα,yβ)1083

are independent of ZR. Hence conditioned on A−1
−s,yα, and yβ ,

〈
Z⊤
RA

−1
−syα,Z

⊤
RA

−1
−syβ

〉
is a sum1084

of s− 2 subexponential variables, and by Lemma 2.7.7 of Vershynin (2018) each of these random1085

variables conditionally has subexponential norm at most
∥∥A−1

−syα
∥∥
2

∥∥A−1
−syβ

∥∥
2

and conditional1086

mean
〈
A−1

−syα,A
−1
−syβ

〉
.1087

We can use Hanson-Wright (Theorem 4.1) to bound both of these quantities. Indeed, it implies that1088

with probability at least 1−O(1/nk),1089 ∥∥A−1
−syα

∥∥
2

∥∥A−1
−syβ

∥∥
2
≤ O(n1−t−2p). (160)

Let us now compute the Hanson-Wright bound for
〈
A−1

−syα,A
−1
−syβ

〉
. Note that A−1

−s is independent1090

of yα and yβ , so we can condition on A−1
−s and conclude that with probability at least 1−O(1/nk)1091 〈

A−1
−syα,A

−1
−syβ

〉
≤ E[

〈
A−1

−syα,A
−1
−syβ

〉
|A−1

−s] + c6n
1−t
2

∥∥A−2
−s
∥∥
2

√
log(nk). (161)

We can rewrite the expectation as1092

Tr
(
A−2
s E[yβy⊤

α ]
)
. (162)

Clearly, E[yβy⊤
α ] is diagonal, and each diagonal entry is equal to . Let ρ = 1

k . Then since yα = 1−ρ1093

implies yβ = −ρ and vice versa, we get1094

E[yα[i]yβ [i]] = 2(1− ρ)(−ρ) Pr[yα[i] = 1− ρ] + (−ρ)2 Pr[yα[i] = yβ [i] = −ρ] (163)

≤ −2ρ2(1− ρ) + ρ2 Pr[yα[i] = −ρ] (164)

≤ −ρ2(1− ρ). (165)
In other words, the expectation is negative, so we can neglect it in our upper bound.1095

On the other hand, the deviation term is with very high probability at most1096

c6n
1−t
2

∥∥A−2
−s
∥∥
2

√
log(nk) ≤ c6n

1−t
2 −2p

√
log(nk). (166)

Combining all of our bounds, Bernstein yields1097

〈
Z⊤
RA

−1
−syα,Z

⊤
RA

−1
−syβ

〉
≤

 ∑
j∈[s]\{α,β}

c6n
1−t
2 −2p

√
log(nk)

+ n
r
2+1−t−2p (167)

≤ nr+
1−t
2 −2p

√
log(nk) + n

r
2−t+1−2p. (168)

Again, let’s trace all the way back to Eq. (147) and then the favored correlation bound. We have1098

shown that
〈
Z⊤
RA

−1
−syα,Z

⊤
RA

−1
−syβ

〉
’s contribution to the favored correlation is at most1099

c17λ
2
F min

{
µ2, 1

}
(nr+

1−t
2 −2p

√
log(nk) + n

r
2−t+1−2p) (169)

= c17µ
−2 min

{
µ2, 1

}
(nr−

1+t
2 −1

√
log(nk) + n

r
2−t−1) (170)

≤ c17 min
{
1, µ−2

}
(nr−

1+t
2 −1

√
log(nk) + n

r
2−t−1) (171)

≤ c17 min
{
1, µ−2

}
o(nr−t−1), (172)

where the last line follows becuase 0 < t < r < 1, and c17 is a positive constant.1100
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F.3.2 Bounding the unfavored correlation1101

Now, let us show that the unfavored correlation corα,β,U is negligible; more precisely, we’ll show1102

that it’s min
{
1, µ−2

}
o(nr−t−1) + o(n1−t−p). We can rewrite corα,β,U as1103

λUy
⊤
αA

−1AUA
−1yβ ,

and play the same game with using Woodbury to replace A−1 with A−1 −A−1
U MsA

−1
U , where we1104

recall that1105

Ms ≜ Ws(Is +Hs)
−1W⊤

s ∈ Rn×n.
This yields1106

y⊤
αA

−1
U yβ − 2y⊤

αA
−1
U MsA

−1
U yβ + y⊤

αA
−1
U MsA

−1
U MsA

−1
U yβ . (173)

Let us first focus on the first term of Eq. (173). Hanson-Wright implies that with probability at least1107

1−O(1/n),1108 ∣∣y⊤
αA

−1
U yβ − E[y⊤

αA
−1
U yβ |A−1

U ]
∣∣ ≤ n

1−t
2

∥∥A−1
U

∥∥
2

√
log n. (174)

Also, E[y⊤
αA

−1
U yβ |A−1

U ] = Tr
(
A−1
U E[yβy⊤

α ]
)

= Θ(n1−2t−p) with high probability, and1109 ∥∥A−1
U

∥∥
2
≤ n−p with extremely high probability. Hence we see that y⊤

αA
−1
U yβ ≤ O(n

1−t
2 −p) ≤1110

o(n1−t−p) as t > 0.1111

Next, let’s turn to the second and third terms of Eq. (173). We claim that only the second term will be1112

relevant to bound asymptotically, and moreover that they are both min
{
1, µ−2

}
o(nr−t−1). Since1113

MsA
−1
U Ms = Ws(Is +Hs)

−1Hs(Is +Hs)
−1W⊤

s

= Ws((Is +Hs)
−1 − (Is +Hs)

−2)W⊤
s ,

the second and third term can be rewritten as1114

− 2y⊤
αA

−1
U Ws(Is +Hs)

−1W⊤
s A−1

U yβ

+ y⊤
αA

−1
U Ws((Is +Hs)

−1 − (Is +Hs)
−2)W⊤

s A−1
U yβ .

As we are going to use Hanson-Wright to bound the entries of Z⊤
s A

−1
U yα, it follows that only the1115

second term of Eq. (173) is relevant asymptotically.1116

To bound the second term, we will use Cauchy-Schwarz. We see that1117

y⊤
αA

−1
U MsA

−1
U yβ ≤ λF

∥∥(Is +Hs)
−1
∥∥
2

∥∥Z⊤
s A

−1
U yα

∥∥
2

∥∥Z⊤
s A

−1
U yβ

∥∥
2

(175)

≤ λF min {µ, 1}O(nr−t+1−2p) log(ns) (176)

≤ µ−1 min {µ, 1}O(nr−t−p) log(ns) (177)

≤ min
{
1, µ−1

}
O(nr−t−p) log(ns), (178)

where in the second line we have used Proposition B.6.1118

Now, note that if regression works, this yields an upper bound of O(nr−t−p) log(ns). But since1119

p > 1, this is o(nr−t−1), which means this contribution is dominated by the denominator.1120

On the other hand, if regression fails, then the upper bound is now µ−1O(nr−t−p) log(ns), which1121

we claim is o(µ−2nr−t−1). Indeed, from the definition of the bi-level ensemble Definition 1, we1122

have p > q + r, so1123

min
{
1, µ−1

}
nr−t−p ≤ µ−1nr−t−1 · n1−p

≤ µ−1o(nr−t−1 · n1−q−r)

= µ−2o(nr−t−1),

as desired.1124

Let us now go back to Eq. (173) and combine our two bounds. Since λU = O(1), we have just shown1125

that1126

corα,β,U ≤ min
{
1, µ−2

}
o(nr−t−1) + o(n1−t−p), (179)

as desired.1127
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G A new variant of the Hanson-Wright inequality1128

In this section, we prove Theorem 4.1. First, we outline a high level idea of the proof. The starting1129

point of the proof is to explicitly decompose the quadratic form into diagonal and off-diagonal terms1130

x⊤My − E[x⊤My] =
∑
i,j

mijXiYj −
∑
i

miiE[XiYi] (180)

=
∑
i

mii(XiYi − E[XiYi])︸ ︷︷ ︸
≜Sdiag

+
∑
i ̸=j

mijXiYj︸ ︷︷ ︸
≜Soffdiag

(181)

where in the first line we have used the fact that for i ̸= j, Xi and Yj are independent and mean zero1131

to conclude that E[XiYj ] = 0.1132

We can start with the upper tail inequality P[x⊤My − E[x⊤My] > t] and conclude the lower tail1133

inequality by replacing M with −M . To bound Sdiag and Soffdiag, we will proceed by explicitly1134

bounding the MGF and applying Chernoff’s inequality.1135

G.1 Diagonal terms1136

For the diagonal terms, we want to bound the MGF of Sdiag =
∑
imii(XiYi − E[XiYi]). For1137

λ2 < 1
2C1K2 maxim2

ii
, we obtain1138

exp(λSdiag) =

n∏
i=1

EXi,Yi
exp(λmii(XiYi − E[XiYi])) (182)

≤
n∏
i=1

EYiEXi [exp(λmiiYi(Xi − E[Xi|Yi]))|Yi] (183)

≤
n∏
i=1

EYi exp
(
C1λ

2m2
iiK

2Y 2
i

)
(184)

where we have applied Jensen’s inequality in the second line and the subgaussian assumption on Xi1139

conditioned on Yi in the last line. Here, C1 is a universal positive constant relating the equivalent1140

formulations of subgaussianity Vershynin (2018). Continuing with our calculation, we have1141

exp(λSdiag) ≤
n∏
i=1

EYi [1 + 2C1λ
2m2

iiK
2Y 2
i ] (185)

≤
n∏
i=1

(1 + 2C1πλ
2K2m2

ii) (186)

≤ exp

(
2C1πλ

2K2
n∑
i=1

m2
ii

)
. (187)

where in the first line we have used the inequality exp(x) ≤ 1 + 2x valid for x ≤ 1
2 , in the second1142

line we have used the soft sparsity assumption on Yi, and in the last line we have used the inequality1143

1 + x ≤ exp(x), valid for all x.1144

Now Markov’s inequality yields for ϵ > 0 that1145

Pr[Sdiag > ϵ] ≤ E exp(λSdiag)

exp(λϵ)
(188)

≤ exp

(
−λϵ+ 2πC1K

2λ2
n∑
i=1

m2
ii

)
, (189)

and optimizing λ in the region λ2 ≤ 1
2C1K2 maxim2

ii
yields1146

λ = min

{
ϵ

2C1K2π
∑n
i=1 m

2
ii

,
1

2C1Kmaxi |mii|

}
. (190)
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Plugging in this value of λ into the Markov calculation yields the desired upper tail bound. We can1147

repeat the argument with −M to get the lower tail bound. A union bound completes the proof.1148

G.2 Offdiagonal terms1149

Following Rudelson and Vershynin (2013), for the offdiagonal terms we can decouple the terms in the1150

sum. More precisely, the terms in Soffdiag involving indices i and j are precisely mijXiYj+mjiYiXj .1151

The issue is that Yi can be correlated with Xi, which complicates the behavior of this random variable.1152

Decoupling ensures that for any j ∈ [n] we will have exactly one term which involves either Xj or1153

Yj , so in particular we will regain independence of the terms, allowing us to bound the MGF more1154

easily.1155

Let {δi}i∈[n] denote iid Bernoulli’s with parameter 1/2, which are independent of all other random1156

variables.1157

Let1158

Sδ ≜
∑
i̸=j

mijδi(1− δj)XiYj .

Since E[δi(1− δj)] =
1
4 , we have1159

Soffdiag = 4Eδ[Sδ],

Hence, Jensen’s inequality yields1160

Ex,y exp(λSoffdiag) ≤ Ex,y,δ exp(4λSδ),

where we have used the independence of δ and all other random variables. It follows that it suffices1161

to upper bound the MGF of Sδ .1162

Define the random set Λδ = {i ∈ [n] : δi = 1} to denote the indices selected by δ. For a vector1163

u ∈ Rn we also introduce the shorthand uΛδ
to denote the subvector of u where δi = 1 and uΛc

δ
to1164

denote the subvector of u where δi = 0.1165

Hence, we can rewrite Sδ ≜
∑
i∈Λδ,j∈Λc

δ
mijXiYj . For |λ| ≤ 1

2C1K∥M∥2
, we have1166

E exp(λSoffdiag) ≤ E exp(4λSδ) (191)

≤ Eδ
∏

i∈Λδ,j∈Λc
δ

ExΛδ
,yΛc

δ
[exp(λmijXiYj)] (192)

Now we can use the fact that the Xi and Yj are mean zero and independent because i ∈ Λδ and1167

j ∈ Λcδ , to show that1168 ∏
i∈Λδ,j∈Λc

δ

ExΛδ
,yΛc

δ
[exp(λmijXiYj)] ≤

∏
i∈Λδ,j∈Λc

δ

EyΛc
δ
[exp

(
C1λ

2K2m2
ijY

2
j

)
] (193)

≤
∏

i∈Λδ,j∈Λc
δ

EyΛc
δ
[1 + 2C1λ

2K2m2
ijY

2
j )] (194)

≤
∏

i∈Λδ,j∈Λc
δ

(1 + 2πC1λ
2K2m2

ijY
2
j ) (195)

≤
∏

i∈Λδ,j∈Λc
δ

exp
(
2πC1λ

2K2m2
ijY

2
j

)
(196)

≤ exp
(
2πC1λ

2K2∥M∥2F
)
. (197)

In the first line, we have used the subgaussianity of Xi; in the second line, we have used the1169

assumption on λ, in the third line, we have used the variance bound on Yj .1170

Again, we can apply Markov’s inequality and to see that for ϵ > 0,1171

Pr[Sdiag > ϵ] ≤ E exp(λSdiag)

exp(λϵ)
(198)

≤ exp
(
−λϵ+ 2πC1K

2λ2∥M∥2F
)
, (199)
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Picking1172

λ = min

{
ϵ

2C1K2π∥M∥2F
,

1

2C1K∥M∥2

}
(200)

yields the desired result.1173

H Proofs of main lemmas for concentration of spectrum1174

The goal of this section is ultimately to prove Proposition B.6, which asserts that for valid (T, S),1175

the hat matrix HT,S is a flat matrix whose spectrum is min {µ, 1} (1 + o(1)) with extremely high1176

probability. First, let us recall some notation. For any ∅ ̸= T ⊆ S ⊆ [s], we can define the (T, S)1177

hat matrix as HT,S ≜ W⊤
T A−1

−SWT . Here, WT is the n× |T | matrix of weighted features in T , and1178

A−T = A−WTW
⊤
T is the leave-T -out Gram matrix.1179

First, Wishart concentration applied to W⊤
T WT yields the following result.1180

Lemma H.1. Recall that µ ≜ nq+r−1 and W⊤
T WT ∈ R|T |×|T |. For any nonempty T ⊆ [s], with1181

probability at least 1− 2e−
√
n we have that for all i ∈ [|T |],1182

µi(W
⊤
T WT ) =

(
1± cT

√
|T |
n

)
µ−1np (201)

Proof. We can apply Lemma B.3 with M = ZT ∈ Rn×|T |, with M = n, m = |T | = o(n), and1183

ϵ = n
1
4 = o(

√
n|T |). Hence we have1184

n− 2
√

n|T |+ o(
√

n|T |) ≤ µ|T |(Z
⊤
T ZT ) ≤ µ1(Z

⊤
T ZT ) ≤ n+ 2

√
n|T |+ o(

√
n|T |).

Pluagging in the scaling λF = np−q−r and dividing through by n yields the desired result. Here, we1185

define cT to be an appropriately defined positive constant which only depends on |T | (as the favored1186

features are identically distributed).1187

Next, we can use Wishart concentration to bound the spectrum of AU .1188

Lemma H.2 (Concentration of spectrum for unfavored Gram matrix). Throughout this theo-1189

rem, assume we are in the bi-level model (Definition 1). Define µ ≜ nq+r−1. Recall AU =1190

λU
∑
j>s zjz

⊤
j ∈ Rn×n. With probability at least 1− 2e−n, for i ∈ [n] we have1191

µi(AU ) = (1± c18n
κ7)np, (202)

where c18 and κ7 are positive constants. In other words, the spectrum of the unfavored Gram matrix1192

AU is flat.1193

Proof. Note that AU = λU
∑
j>s zjz

⊤
j . Under the bi-level model, λU = 1 + o(1). Now we can1194

apply Lemma B.3 with M =
∑
j>s zjz

⊤
j , M = d− s = np − nr, m = n = o(d), and ϵ =

√
2n to1195

conclude that with probability at least 1− 2e−n, we have1196

d− 2
√
dn+ n−

√
2n ≤ µn(

∑
j>s

zjz
⊤
j ) ≤ µ1(

∑
j>s

zjz
⊤
j ) ≤ d+ 2

√
dn+ n+

√
2n. (203)

We can obtain the spectrum of AU by multiplying through by1197

λU =
(1− a)d

d− s
(204)

= 1 + nmax {−q,r−p} + o(nmax {−q,r−p}), (205)

where in the last line we have used the power series expansion for 1
1−x = 1 + x+ o(x). Preserving1198

only first order terms for λU and the spectrum of
∑
j>s zjz

⊤
j in Eq. (203) yields1199

µi(AU ) = (1± c18n
max{ 1−p

2 ,r−p,−q})np. (206)
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In fact, we know 1−p
2 > 1− p > r− p, since r < 1 and p > 1. This means we can neglect the r− p1200

term in the max, define κ7 = min
{
p−1
2 ,−q

}
> 0 and c18 to be an appropriately defined positive1201

constant.1202

Since A−T = AU +W[s]\TW
⊤
[s]\T , we can apply Lemmas H.1 and H.2 to control the spectrum1203

of A−T . We show that there is a (potentially) spiked portion of the spectrum corresponding to the1204

s− |T | favored features which were not taken out, whereas the rest of the n− s+ |T | eigenvalues1205

are flat.1206

Lemma H.3. Recall that A−T ∈ Rn×n. For any nonempty T ⊆ [s], with probability at least1207

1− 2e−
√
n − 2e−n, we have that for all i ∈ [s− |T |],1208

µi(A−T ) =

(
1± cT

√
|T |
n

)
µ−1np +

(
1± c18n

−κ7
)
np. (207)

For all i ∈ [n] \ [s− |T |], we have1209

µi(A−T ) =
(
1± c18n

−κ7
)
np. (208)

Proof. We can write1210

A−T = W[s]\TW
⊤
[s]\T +AU . (209)

Weyl’s inequality (Horn and Johnson, 2012, Corollary 4.3.15) implies that for any i ∈ [n], we have1211

µi(W[s]\TW
⊤
[s]\T ) + µn(AU ) ≤ µi(A−T ) ≤ µi(W[s]\TW

⊤
[s]\T ) + µ1(AU ). (210)

Then applying Lemmas H.1 and H.2, for i ∈ [s− |T |] we conclude that1212

µi(A−T ) =

(
1± cT

√
|T |
n

)
µ−1np +

(
1± c18n

−κ7
)
np.. (211)

which proves Eq. (207).1213

For i > s− |T |, applying Lemma H.2 and the fact that µi(W[s]\TW
⊤
[s]\T ) = 0 to Eq. (210) yields1214

µi(A−T ) =
(
1± c18n

−κ7
)
np. (212)

which proves Eq. (208).1215

By inverting the bounds proved above, we can also control the spectrum of A−1
−T .1216

Corollary H.4. Recall that A−T ∈ Rn×n. For any nonempty T ⊆ [s], with probability at least1217

1− 2e−
√
n − 2e−n, we have that for all i ∈ [n− s+ |T |],1218

µi(A
−1
−T ) = (1± c19n

−κ7)n−p (213)

For all i ∈ [n] \ [n− s+ |T |], we have1219

µi(A
−1
−T ) = min {µ, 1} (1± c20n

−κ8)n−p. (214)

where κ8 is a positive constant depending on |T |.1220

Proof. By inverting the bounds in Lemma H.3, using the fact that µi(A−1
−T ) =

1
µn−i+1(A−T ) we see1221

that for i ∈ [n− s+ |T |],1222

µi(A
−1
−T ) =

1

1± c18n−κ7
n−p (215)

= (1± c19n
−κ7)n−p, (216)

where we have used the power series expansion 1
1−x = 1 + x+ o(x2) and c19 is a positive constant.1223
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On the other hand, for i > n− s+ |T |, we get1224

µi(A
−1
−T ) =

1(
1± cT

√
|T |
n

)
µ−1 + (1± c18n−κ7)

n−p (217)

= min {µ, 1} (1± c20n
−κ8)n−p, (218)

where c20 and κ8 are positive constants defined as follows. If q + r < 1, i.e. regression works,1225

then µ−1 = ω(1), so the denominator becomes µ−1

(
1± cT

√
|T |
n + µ(1± c18n

−κ7)

)
. Then, since1226

|T | ≤ s = nr, we see that we can pick1227

κ8 = min

{
1− r

2
, 1− q − r

}
.

On the other hand, if q + r > 1, i.e. regression fails, then µ−1 = o(1), and so we can define1228

κ8 = min {κ7, q + r − 1}.
Hence to cover both cases we can pick1229

κ8 = min

{
1− r

2
, κ7, |1− q − r|

}
.

The choice of c20 is picked by again using the power series expansion for 1
1−x .1230

Note that Corollary H.4 immediately implies Proposition B.4, with κ9 defined based on picking1231

T = [k]. We are now in a position to prove that the generalized hat matrices HT,S , and hence the1232

Woodbury terms (I|T | +HT,S)
−1 have a flat spectrum as well.1233

Proposition B.6 (Generalized hat matrices are flat). Assume we are in the bi-level ensemble Defini-1234

tion 1. For any nonempty T ⊆ S ⊆ [s], with probability at least 1− 2e−
√
n − 2e−n, we have all the1235

eigenvalues tightly controlled:1236

µi((I|T | +HT,S)
−1) = min {µ, 1} (1± cT,Sn

−κ11). (74)

where cT,S and κ11 are positive constants that depend on |T | and |S|.1237

Proof. We seek to control the spectrum of the hat matrix HT,S = W⊤
T A−1

−SWT . We cannot directly1238

use naive eigenvalue bounds to bound the minimum and maximum eigenvalue, as this does not rule1239

out the possibility that HT,S has a spike. Instead, we control the spectrum from first principles.1240

The spectrum of HT,S is flat: By the rotational invariance of the distribution of WT and the fact1241

that A−1
−S is independent of WT (as T ⊆ S), we can assume WLOG that the symmetric matrix A−1

−S1242

is diagonal and equal to1243

D ≜

[
Dflat

Dspiked

]
∈ Rn×n =

µ1(A
−1
−S)

. . .
µn(A

−1
−S)

, (219)

where Dflat ∈ R(n−s+|T |)×(n−s+|T |) and Dspiked ∈ R(s−|T |)×(s−|T |) correspond to the flat and1244

(downwards) spiked portions of the spectrum of A−1
−S . We can also correspondingly decompose1245

ZT =

[
BT

CT

]
, (220)

where BT ∈ R(n−s+|T |)×|T | and CT ∈ R(s−|T |)×|T |. Note that each entry of these matrices are1246

i.i.d. N(0, 1) variables.1247

By direct computation we have1248

Z⊤
T DZT = B⊤

TDflatBT +C⊤
T DspikedCT (221)
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We thus have by using standard eigenvalue inequalities that1249

µ|T |(Z
⊤
T DZT ) ≥ µ|T |(B

⊤
TDflatBT ) + µ|T |(C

⊤
T DspikedCT ) (222)

≥ µ|T |(B
⊤
TBT )µn−s+|T |(A

−1
−S) + µ|T |(C

⊤
T CT )µn(A

−1
−S) (223)

≥ µ|T |(B
⊤
TBT )µn−s+|T |(A

−1
−S), (224)

where in the last line we have used µn(A
−1
−S) ≥ 0.1250

Since n > s, we have n− s+ |T | > |T |, so we can apply Wishart concentration (Lemma B.3) to1251

B⊤
TBT to obtain that with probability at least 1− 2e−

√
n we have1252

µ|T |(B
⊤
TBT ) ≥ n− s+ |T | − 2

√
(n− s+ |T |)|T |+ o(

√
(n− s+ |T |)|T |) (225)

≥ n(1− nr−1 − c21

√
|T |
n ), (226)

where c21 is a positive constant.1253

On the other hand, we can deduce that1254

µ1(Z
⊤
T DZT ) ≤ µ1(Z

⊤
T ZT )µ1(A

−1
−S). (227)

Lemma H.1 implies that with probability at least 1− 2e−
√
n1255

µ1(Z
⊤
T ZT ) ≤ n(1 + cT

√
|T |
n ) (228)

Similarly, Corollary H.4 implies that with probability at least 1 − 2e−n − 2e−
√
n, µ1(A

−1
−S) and1256

µn−s+|T |(A
−1
−S) are both (1 ± c20n

κ8)n−p. Since |T | ≤ s = nr, Eqs. (226) and (228) together1257

demonstrate that for all i ∈ [|T |],1258

µi(Z
⊤
T DZT ) = n1−p(1± c22n

−κ10). (229)

Here, c22 and κ10 are positive constants defined as follows. Since |T | ≤ s = nr. Then κ10 =1259

min
{
1− r, 1−r

2 , κ8

}
, and c22 is a constant chosen appropriately based on c20 and c21. Plugging in1260

the scaling λF = np−q−r, we conclude that with extremely high probability, for all i ∈ [|T |],1261

µi(HT,S) = µ−1(1± c22n
−κ10). (230)

From here, it is easy to compute the spectrum of (I|T | +HT,S)
−1. Indeed, reading off our result1262

from Eq. (230) yields1263

µi((I|T | +HT,S)
−1) =

1

1 + µn−i+1(HT,S)
(231)

= min {µ, 1} (1± cT,Sn
−κ11). (232)

Here, the positive constant cT,S is picked appropriately and κ11 = min {κ10, |1− q − r|} > 0. This1264

completes the proof.1265

I Miscellaneous lemmas1266

Lemma I.1 (Coupling of quadratic forms). Let B ∈ Rn×m be an arbitrary real matrix and1267

M ∈ Rn×n be a PSD matrix. Then for any vector x ∈ Rm, we have1268

λn(M)x⊤B⊤Bx ≤ x⊤B⊤MBx ≤ λ1(M)x⊤B⊤Bx. (233)

Proof. For any PSD matrix C, the matrix B⊤CB is PSD. In particular, C has a unique square root1269

C1/2 ∈ Rn×n with C1/2C1/2 = (C1/2)⊤C1/2 = C. We thus have1270

x⊤B⊤CBx = x⊤B⊤C1/2C1/2Bx (234)

=
∥∥∥C1/2Bx

∥∥∥2
2
≥ 0. (235)
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Hence1271

λ1(M)x⊤B⊤Bx− x⊤B⊤MBx = x⊤B⊤(λ1(M)In −M)Bx. (236)

Since M ⪯ λ1(M)In by definition, λ1(M)In−M is a PSD matrix. Hence by applying Eq. (235),1272

we conclude that1273

λ1(M)x⊤B⊤Bx− x⊤B⊤MBx ≥ 0, (237)

which gives the upper bound in Eq. (233).1274

Similarly, M ⪰ λn(M)In, so an analogous argument1275

λn(M)x⊤B⊤Bx− x⊤B⊤MBx ≤ 0, (238)

which gives the lower bound in Eq. (233).1276

Next, we prove the elementary anti-concentration result that we will need.1277

Proposition I.2 (Gaussian anticoncentration). Let x ∼ N(0, Id) be a standard Gaussian vector, and1278

let v ∈ Rd be arbitrary deterministic vector. Then1279

Pr[|⟨x,v⟩| ≤ ϵ] ≤ 2ϵ√
2π∥v∥2

.

Proof. Note that ⟨x,v⟩ is a linear projection of a standard multivariate Gaussian, so it is itself a1280

one-dimensional Gaussian. It is also clearly zero mean, and its variance is just give by the squared1281

norm of v. So ⟨x,v⟩ ∼ N(0, ∥v∥22). Now we have1282

Pr[|⟨x,v⟩| ≤ ϵ] =
1√

2π∥v∥2

∫ ϵ

−ϵ
exp

(
− x2

∥v∥22

)
dx ≤ 2ϵ√

2π∥v∥2
.

1283

J Comparison to the straightforward non-interpolative scheme1284

In this section, we quickly give calculations for how well a straightforward non-interpolating scheme1285

for learning classifiers can work asymptotically. However, a similar analysis using the tools developed1286

to prove our main results should give a rigorous proof of the below derivation.1287

This scheme simply uses the sum/average of all positive training examples of a class as the vector we1288

take an inner-product with to generate scores for classifying test points. For m ∈ [k], define1289

f̂m =
∑
i:ℓi=m

xwi . (239)

To understand how well this will do asymptotically, it is easy to see that the for the true label-1290

defining direction, the positive exemplars in the bi-level model will be tightly concentrating around1291 √
2 log k

√
λF which, keeping only the polynomial-order scaling, will be like n

p−q−r
2 . There will be1292

roughly n
k = n1−t positive examples for every class with high probability. For simplicity, let us just1293

look at m = 1 and consider k
n f̂1 = nt−1f̂1. We see1294

nt−1f̂1[1] ≈ n
p−q−r

2 . (240)

For the other directions that are not true-label defining, we will just have random Gaussians. The1295

favored directions will be Gaussian with variance λF = np−q−r while the unfavored directions will1296

essentially be Gaussian with unit variance. By averaging over n1−t examples, those variances will1297

be reduced by that factor. This means that for the s = nr favored directions, the variance of the1298

average will be np−q−r−(1−t) each and for the essentially np unfavored directions, the variance of1299

the average will be nt−1 each.1300

On a test point, we are going to take the inner product of nt−1f̂m with an independent random1301

draw of xwtest. For classification to succeed, we need this inner product to be dominated by the true1302

44



m-th feature-defining direction. When that happens, the correct label will win the comparison. One1303

can easily see that the contribution from the true feature-defining direction will be a Gaussian with1304

mean 0 and variance λF · (n
p−q−r

2 )2 = λ2
F = n2p−2q−2r. Meanwhile, the s favored features will1305

have their scaled variances sum up in the score to give a total variance of nr · λF · np−q−r−(1−t) =1306

n2p−2q−r−(1−t). And finally, the unfavored features will also have their variances sum up in the1307

score to give a total variance of np · 1 · nt−1 = np+t−1.1308

For the true-feature-defining direction to dominate the contamination from other favored directions,1309

we need1310

2p− 2q − 2r > 2p− 2q − r − (1− t) (241)

which immediately gives the condition t < 1− r.1311

For the true-feature-defining direction to dominate the contamination from other unfavored directions,1312

we need1313

2p− 2q − 2r > p+ t− 1 (242)

which gives the condition t < p+ 1− 2(q + r).1314

Here, there is no difference between regimes in which regression works or does not work. The1315

condition for classification to asymptotically succeed is t < min(1− r, p+ r − 2(q + r)).1316

Notice that when MNI regression does not work q+r > 1, this is identical to the tight characterization1317

given for MNI classification in (13). But in the regime where MNI regression does work q + r < 1,1318

this is different. For MNI classification, (13) tells us that we require t < min(1− r, p− 1). Consider1319

q = 0.1, r = 0.5 and p = 1.1. MNI classification can only allow t < 0.1. Meanwhile, the non-1320

interpolating average-of-positive-examples classifier will work as long as t < 0.5. This demonstrates1321

the potential for significant suboptimality (in terms of the number of distinct classes that can be1322

learned) of MNI classifiers in this regime of benign overfitting for regression.1323
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