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A ARCHITECTURE AND TRAINING DETAILS

In this section, we present the architecture and training hyper-parameters for the proposed CoRe
model in more detail.

A.1 GRU-RNN WITH STOCHASTIC AND DETERMINISTIC STATES

CoRe uses a recurrent state-space model (RSSM) that is based on GRUs (Cho et al., 2014) and similar
to the one used in Dreamer (Hafner et al., 2020), as shown in the figure below. Latent states at any
time-step consist of a (deterministic) recurrent hidden state and a stochastic state. The prior latent
state is ẑt = [ht, ŝt] and the posterior latent state is zt = [ht, st]. They share the same recurrent
hidden state ht but differ in the stochastic component. ŝt depends on ht, whereas st depends on ht

and the new observation features xt. The feed-forward operation is

ht = GRUCell(ht�1,GRU MLP(st�1,at�1)),

µ̂, �̂ = PriorMLP(ht),

ŝt = µ̂+ �̂ ⇤N (0, 1),

µ,� = PosteriorMLP(ht,ObsMLP(xt)),

st = µ+ � ⇤N (0, 1),
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where MLP stands for a fully-connected multi-layered neural network. The figure above illustrates
this operation. It can be seen as a more detailed view of the RSSM shown in Figure 1(b). Note that
the recurrent hidden state ht is propagated through time without sampling. This is important because
sampling can make it hard to retain information for long time-scales and destroys smoothness of
the latent state. However, information inserted into the RNN through st is stochastic, making the
RSSM capable of generating multiple futures. This prevents mode-averaging and allows the model to
generate diverse trajectories when doing rollouts.

A.2 ARCHITECTURE

The model consists of a number of components: observation encoder CNN, RSSM (which includes
PriorMLP, PosteriorMLP, GRU MLP, GRUCell, ObsMLP, along with the reward, inverse dynamics,
and observation representation decoder networks), and the actor and critic networks. Table 1 describes
the architecture of these networks. CNN layers are denotes as [num filters, kernel size, stride]. We
borrow the observation encoder architecture from previous work (Laskin et al., 2020a; Yarats et al.,
2019) and use it as-is to ensure an accurate comparison. ELU non-linearity (Clevert et al., 2016) is
used in all places except the observation encoder (which uses ReLU units).

A.3 TRAINING

The training is broken into iterations, where in each iteration one episode of data are collected, added
to the replay buffer, and a number of gradient steps are taken using mini-batches sampled from the
replay buffer.

Data Collection For the first 1000 steps, data are collected by taking actions sampled from a uniform
distribution in [�1, 1]. After that, data are collected by taking actions sampled from the learned actor
policy, which requires rolling out the RSSM. At each training iteration, an entire episode of data are
collected, where the length of the episode is 1000 steps of the underlying MuJoCo simulator. The
actual number of steps is 1000 divided by the number of times the same action is repeated, which is
standard based on the task (Table 3). We rollout an entire episode because we use a recurrent model
and it seemed natural to use the same model through time within an episode. Typically, model-free
RL algorithms collect data one environment step at a time. We did not explore per-step data collection
in this work, although that could work just as well. The data from the Distracting Control Suite is
rendered at a 320 ⇥ 240 resolution which is resized to 100 ⇥ 100. Pixels are normalized to [0, 1] by
dividing by 255. All actions are normalized to lie in [�1, 1] and are modeled using tanh-squashed
Gaussian distributions.
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Component Architecture
Observation Encoder CNN : [32, 3⇥3, 2], [32, 3⇥

3, 1]⇥3, 50 fully-connected,
layer norm

PriorMLP [400, 400, 400]
PosteriorMLP [400, 400]
GRUCell 200 hidden units
GRU MLP [400, 400]
ObsMLP [256, 256], layer norm
Reward prediction [128, 128, 1]
Inverse dynamics pre-
diction

[128, 128, adims]

Observation represen-
tation decoder

[256, 256, 50], layer-norm

Actor [1024, 1024, 1024, 2adims]
Critic [1024, 1024, 1024, 1]
Gating (optional) CNN :[16, 5 ⇥ 5, 1] ⇥ 3,

[1, 1⇥ 1, 1], sigmoid.

Table 1: Architecture of model components.

Parameter Value
Replay Buffer 100,000
Initial steps 1000
Model Learning rate 3.e-4
Critic Learning rate 1.e-3
Actor Learning rate 1.e-3
Target entropy -adims
Actor update frequency 1
Target critic update frequency 1
Target critic update ⌧ 0.005
Action log std range [-10, 2]
KL-weight � 0.01
Reward prediction weight ↵r 1.0
Inverse Dynamics weight ↵a 1.0
Weight decay 0
Critic max grad norm clip 100
Actor max grad norm clip 10
Model max grad norm clip 10

Table 2: List of hyper-parameters.

Model updates Training is done with mini-batches of N = 32 sequences of length T = 32 each
sampled from the replay buffer. Data augmentation is done by taking random 84 ⇥ 84 crops. The
same crop position is used across the entire sequence. Each mini-batch is used to do three updates
sequentially corresponding to the three losses: JM , JQ and J⇡ . The number of updates is chosen to
be 0.5 times the number of steps in an episode. All training hyper-parameters are listed in Table 2.

Implementation The model is implemented using PyTorch (Paszke et al., 2019). The environment
is based on MuJoCo (Todorov et al., 2012). All training was done on single Nvidia A100 GPUs.
Training time for 500K updates varies from 12-24 hr depending on the task. Training times differ due
to different values of action repeat. Our implementation will be made public.

A.4 TRAINING CURVES FOR INDIVIDUAL LOSS TERMS

(a) Total loss JM (b) Contrastive loss Lc (c) Dynamics loss LKL (d) Inverse dynamics loss

(e) Reward loss (rt � r̂t)
2 (f) Actor loss J⇡ . (g) Critic loss JQ (h) Episode reward

Figure 1: Training curves for a typical run of CoRe training on cheetah, dynamic-medium setting.

There are a number of loss terms which are linearly combined to create the total model loss JM . In
this section, we present training curves that show how these individual terms optimize with training.
Figure 1 shows these loss terms, along with the RL training losses (JQ and J⇡) and the episode
reward. We can see that the total loss JM goes down as expected, along with the individual terms.
Note that the reward loss is low in the beginning because the agent gets zero rewards which is easy
for the model to predict. As the agent starts receiving better rewards, the reward error increases but
then eventually starts to come down. The KL-term has a similar behavior. At the very beginning, the
prior and posterior latent state distributions match each other (making their KL divergence small)
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Figure 2: Examples from the Distracting Control Suite (Stone et al., 2021). The top row shows the
clean versions of each of the six tasks. The subsequent rows show examples from the easy, medium,
and hard distraction settings.

but both are bad at modeling the data. As more training data is encountered, the KL rises sharply,
then eventually reduces with more training. The actor loss (which is dominated by the negative of the
Q-value of the actor’s chosen action) goes down as expected, indicating that the actor outputs actions
that have high Q-values. The critic loss appears to increase because the magnitude of the Q-values
increases with training, causing the magnitude of the Bellman residual to go up as well.

B COMPLETE RESULTS ON DISTRACTING CONTROL SUITE

In this section, we report the performance of CoRe on all the distraction settings in the Distracting
Control Suite. There are three difficulty levels: easy, medium, and hard1 as shown in Figure 2.
The difficulty is set by increasing the scale of the camera pose and color change and the number
of background distractions that are used (Table 4). For each difficulty level, there are two settings:
static, in which the distraction (a background image, or a particular choice of random camera pose)
is fixed throughout the episode, and dynamic in which the distraction changes smoothly. In the case
of background distractions, the video plays back-and-forth, ensuring no sharp cuts. In the case of the
camera distractions, the camera moves along a smooth trajectory.

Task Action repeat
Ball in cup catch 4
Cartpole swingup 8
Cheetah Run 4
Finger spin 2
Reacher easy 4
Walker walk 2

Table 3: Action repeat

Difficulty Train videos Val videos Camera and Color change scale
Easy 4 4 0.1

Medium 8 8 0.2
Hard 60 30 0.3

Table 4: Distraction settings in the Distracting Control Suite.

Table 5 compares the performance of CoRe with model-free RL baselines such as SAC (Haarnoja
et al., 2018) and QT-Opt (Kalashnikov et al., 2018) combined with data augmentation techniques
RAD (Laskin et al., 2020b) and DrQ (Yarats et al., 2021) as reported in (Stone et al., 2021). We also
compare with a recurrent SAC+RAD baseline which uses the same recurrent architecture as CoRe, but

1The ‘hard’ level is described in the code but results are not reported in the main paper (Stone et al., 2021).
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Table 5: Results on the Distraction Control Suite benchmark. All results reported at 500K steps, unless
mentioned otherwise. Bold numbers indicate the results from the best performing models at 500K steps.

(a) Benchmark easy. Mean reward ± Standard Error. Bold indicates best results at 500K steps.

Method Mean BiC-Catch C-swingup C-run F-spin R-easy W-walk

St
at

ic

SAC+RAD 182 ± 24 129 ± 20 360 ± 25 72 ± 44 370 ± 114 102 ± 14 60 ± 31
QT-Opt+RAD 317 ± 8 218 ± 44 446 ± 23 220 ± 5 711 ± 27 181 ± 17 128 ± 14
QT-Opt+DrQ 299 ± 6 217 ± 35 416 ± 20 199 ± 8 695 ± 33 171 ± 25 93 ± 9
Recurrent SAC+RAD 231 ± 23 99 ± 23 432 ± 10 312 ± 9 18 ± 16 89 ± 5 436 ± 33
CURL 418 ± 32 165 ± 35 430 ± 30 357 ± 13 759 ± 19 142 ± 25 657 ± 47
CoRe 634 ± 29 854 ± 12 562 ± 15 459 ± 14 870 ± 39 319 ± 46 742 ± 30
CoRe (1M steps) 769 ± 18 876 ± 15 681 ± 15 596 ± 13 920 ± 32 666 ± 34 875 ± 9

D
yn

am
ic

SAC+RAD 270 ± 31 366 ± 59 297 ± 21 198 ± 39 338 ± 59 173 ± 11 249 ± 138
QT-Opt+RAD 343 ± 24 490 ± 64 467 ± 12 170 ± 8 393 ± 91 428 ± 68 109 ± 12
QT-Opt+DrQ 265 ± 5 395 ± 39 431 ± 18 126 ± 10 203 ± 33 343 ± 53 91 ± 3
Recurrent SAC+RAD 323 ± 30 279 ± 111 420 ± 27 304 ± 22 182 ± 88 228 ± 34 524 ± 35
CURL 391 ± 30 102 ± 20 432 ± 15 233 ± 13 648 ± 32 253 ± 40 678 ± 35
CoRe 586 ± 30 798 ± 30 499 ± 22 423 ± 22 713 ± 81 340 ± 60 744 ± 40
CoRe (1M steps) 722 ± 28 909 ± 10 590 ± 17 569 ± 19 823 ± 75 552 ± 83 889 ± 26
(b) Benchmark medium. Mean reward ± Standard Error. Bold indicates best results at 500K steps.

Method Mean BiC-Catch C-swingup C-run F-spin R-easy W-walk

St
at

ic

SAC+RAD 113 ± 12 96 ± 14 272 ± 11 21 ± 15 169 ± 92 93 ± 6 25 ± 1
QT-Opt+RAD 165 ± 15 172 ± 12 297 ± 7 130 ± 7 234 ± 67 94 ± 16 63 ± 3
QT-Opt+DrQ 170 ± 11 169 ± 25 283 ± 5 124 ± 9 266 ± 51 112 ± 16 64 ± 4
Recurrent SAC+RAD 211 ± 26 37 ± 21 394 ± 28 244 ± 24 124 ± 107 91 ± 7 378 ± 19
CURL 300 ± 28 124 ± 33 304 ± 20 277 ± 12 621 ± 21 74 ± 22 402 ± 78
CoRe 561 ± 29 762 ± 27 509 ± 14 402 ± 15 880 ± 9 219 ± 25 593 ± 26
CoRe (1M steps) 690 ± 26 743 ± 88 634 ± 11 526 ± 17 924 ± 5 543 ± 56 766 ± 30

D
yn

am
ic

SAC+RAD 89 ± 5 139 ± 7 192 ± 6 14 ± 2 63 ± 24 93 ± 6 31 ± 2
QT-Opt+RAD 103 ± 3 132 ± 20 241 ± 7 52 ± 3 25 ± 6 105 ± 10 64 ± 2
QT-Opt+DrQ 102 ± 5 114 ± 22 243 ± 5 54 ± 2 26 ± 5 108 ± 5 65 ± 1
Recurrent SAC+RAD 198 ± 20 257 ± 89 277 ± 19 244 ± 17 90 ± 47 112 ± 17 211 ± 15
CURL 223 ± 14 136 ± 24 320 ± 11 170 ± 10 163 ± 37 222 ± 37 328 ± 19
CoRe 480 ± 23 706 ± 39 354 ± 26 354 ± 10 540 ± 73 445 ± 48 479 ± 31
CoRe (1M steps) 684 ± 24 832 ± 22 483 ± 29 490 ± 13 810 ± 60 801 ± 32 686 ± 42

(c) Benchmark hard. Mean reward ± Standard Error. Bold indicates best results at 500K steps.

Method Mean BiC-Catch C-swingup C-run F-spin R-easy W-walk

St
at

ic

Recurrent SAC+RAD 168 ± 17 115 ± 26 369 ± 10 166 ± 8 20 ± 18 80 ± 20 258 ± 30
CURL 202 ± 16 163 ± 36 199 ± 30 239 ± 12 244 ± 53 121 ± 16 247 ± 53
CoRe 499 ± 28 710 ± 37 447 ± 10 339 ± 13 809 ± 14 197 ± 21 490 ± 15
CoRe (1M steps) 638 ± 27 875 ± 9 554 ± 11 469 ± 21 898 ± 12 386 ± 39 645 ± 29

D
yn

Recurrent SAC+RAD 157 ± 17 214 ± 60 193 ± 4 143 ± 9 131 ± 78 101 ± 7 162 ± 16
CURL 95 ± 9 103 ± 18 192 ± 6 78 ± 13 5 ± 2 73 ± 13 119 ± 25
CoRe 307 ± 22 436 ± 48 257 ± 18 200 ± 11 364 ± 83 234 ± 61 353 ± 25
CoRe (1M steps) 467 ± 29 562 ± 65 350 ± 26 345 ± 15 620 ± 97 419 ± 90 505 ± 17

does not contrastively predict the next observation, or model the dynamics and reward. Comparisons
are made at 500K environment steps, though we report our results at 1M environment steps as well to
show that our model continues to improve with more steps. Performance is averaged over 5 random
seeds, and 20 validation episodes at each checkpoint. On the easy benchmark (Table 5a), CoRe
outperforms other methods in all tasks, except reacher. As discussed in Section 3.3, this points to
a key limitation of contrastive learning-based methods, which is that they tend to remove constant
information (such as the goal location for reacher). However, at 1M steps, the performance on reacher
is much better, showing that the model is able to eventually solve the task.

On the medium benchmark (Table 5b) CoRe outperforms other methods across all tasks, showing that
it can deal with the presence of more distractions. The performance on the reacher tasks improves
slightly over the easy setting, which shows that having more variation in the distractions actually
helps training, whereas it hurts the baseline methods. We also report results on the hard setting
(Table 5c), which is documented in the DCS codebase. Stone et al. (2021) do not report model-free
baselines for this setting, presumably because the baseline models fail to train reasonable policies at
all. However, CoRe is able to get off the ground and get reasonable performance even in this setting.
Training to 1M steps continues to improve results.
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Figure 3: Progression of validation reward with training steps on all distraction settings in the
Distracting Control Suite. Top two rows are for the static setting and bottom two for dynamic. Each
plot shows easy, medium, and hard difficulty levels.

Figure 3 shows the progression of validation reward for CoRe over 1M environment steps for all
tasks and distractions settings. We can see that the hard-dynamic setting (green curves in the bottom
two rows) is the hardest to fit because the performance increases slowly. However, in most cases
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(a) Inverse dynamics and reward prediction. (b) Optimizing JQ(⇥, ✓i) vs JQ(✓i)

Figure 4: Additional ablation results. Left In addition to forward dynamics, inverse dynamics prediction
and reward prediction improve performance. Right: Optimizing model parameters ⇥ using the critic loss is
beneficial.

the performance for that setting is still improving at 1M steps, and is likely to get better with more
training. Our model struggles on the reacher task in terms of performance reported at 500K and
even 1M steps, but we can see from these plots that the model is likely to continue improving if
trained beyond 1M steps in both static and dynamic settings. In our experiments, we did not tune
hyper-parameters specifically for each task, so it is possible that some tasks can benefit from further
tuning. In particular, for the reacher task, a bigger batch-size can help since that is the only way to
get access to diverse target positions.

C ADDITIONAL ABLATIONS

C.1 IMPORTANCE OF INVERSE DYNAMICS AND REWARD PREDICTION

In addition to forward dynamics prediction, the proposed CoRe model includes reward prediction
and inverse dynamics prediction as auxiliary tasks. In this section, we present comparisons to ablated
versions of our model that remove one or both of these tasks. In Figure 4a we can see that removing
both tasks (Fwd only) is significantly worse than having both (Fwd + inv + reward). Having any one
of these alone is a big improvement on all tasks except reacher, where adding reward is much more
important than inverse dynamics. It is interesting to see that in the absence of reward, adding inverse
dynamics prediction (Fwd + inv) improves over having forward dynamics only. Asking the model to
predict the action that takes the agent from one state to the next is a different way of expressing the
model dynamics, compared to predicting the next state given the current state and action. The fact
that asking the model to do both simultaneously gives a boost in performance indicates that inverse
dynamics prediction shapes the latent state in ways that are complementary to forward dynamics.

C.2 IMPORTANCE OF UPDATING ⇥ USING CRITIC LOSS

In our model we optimize the parameters ⇥ of the world model (observation encoder and RSSM)
using the critic loss JQ. This is similar to the choice made in SLAC (Lee et al., 2020) and DBC (Zhang
et al., 2021). However, a reasonable alternative could be to optimize ⇥ only using JM and keep the
critic training separate. This would amount to separating the world model from the controller. As
shown in Figure 4b, when excluding ⇥ from the critic vs including it, exclusion performs comparably
on two tasks (ball in cup, cartpole), better on one (finger) and worse on three (cheetah, reacher,
and walker). Overall, the inclusion regime works better. Therefore, we chose to include ⇥ in the
critic. In future work, an important direction to explore is the exclusion regime, especially in the
multi-task setting, because separating the controller from the world model enables separating general
understanding of the world from task-specific control policies, which is key to generalization.

C.3 ROBUSTNESS TO � WHEN RECONSTRUCTING FROM PRIOR VS POSTERIOR

CoRe predicts the next observation’s feature from the prior latent state ẑt, making it different from
sequential VAE-based models like SLAC (Lee et al., 2020) and Dreamer (Hafner et al., 2020) where

7



Under review at the NeurIPS Deep RL Workshop 2021

Figure 5: Top: Performance of CoRe for different values of the KL-loss weight �. Bottom Performance of a
variant in which contrastive prediction is done from the posterior latent state, rather than the prior. We can see
higher performance variance across values of � when the posterior latent state is used.

the posterior latent state is used to reconstruct the observation. We argued in the paper that doing
so makes the model more robust to the choice of �, the weight applied to the KL-term during
optimization. In this experiment, we verify this argument by comparing CoRe with a variant where
the posterior latent state is decoded to contrastively match the true observation’s representation. We
train both models with five values of � and 5 different seeds each. In Figure 5 we can see that the
posterior version (bottom row) has more variance in performance across different values of �. The
proposed CoRe model (top row) is more stable, and hence, easier to train.
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