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A SUPPLEMENTARY MATERIALS

A.1 TEXT ENCODER

Let fenc
text

(tu,mt,E,Ct, ⌧,�t) be the encoder of text channel in Figure 1. The input includes user
u’s associated text tu, a set of prototypes mt 2 RK⇥d, word embedding matrix E 2 RW⇥d, context
matrix Ct 2 RN⇥D, temperature hyper-parameter ⌧ , and hyper-parameter �t.

First, W words are grouped into J clusters in a soft manner, producing word assignment score
matrix At 2 RW⇥J .

At = ⌘(
E · (mt)T

⌧ · ||E||2 · ||mt||2
, axis = ‘J ‘) (15)

axis = ‘J ‘ means the operator is performed along axis of J prototypes. Similar to rating encoder,
we have ⌘ as Gumbel-Softmax trick Jang et al. (2017); Maddison et al. (2017). Next, we aggregate
user associated words belonging to cluster j to estimate the parameters µut

k
and �ut

k
.
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(16)

Here, gt : RD ! R2d is function parameterized by neural network. �t’s value is around 0.1, follow-
ing Ma et al. (2019b). Text factor j representation of user u is sampled from Gaussian distribution
with estimated parameters. Assuming the independence between text factors of user u, we have
q(zut|tu,At) =

Q
J

j=1 N (µut

j
, [diag(�ut

j
)]2), which is called variational distribution, approximat-

ing intractable posterior distribution p(zut|tu,At). q(zut|tu,At) is matched with prior distribution
p(zut) = N (0, (�t)2I) via Kullback-Leibler divergence (Dt

KL
). As p(zut) is factorized, Dt

KL
also

imposes micro-disentanglement, i.e., disentangled between dimensions of representation sampled
from q(zut|tu,At). Dt

KL
(q(zut|tu,At)||p(zut)) will be plug in Equation 12 for optimization.

A.2 IMPLEMENTATION

Training procedure of our proposed BANDVAE is presented in Algorithm 2.

For review purpose, we release code, data and related materials in the anonymized link
https://drive.google.com/file/d/1GlhMB54tJHev0X7XeFw2fWbapy6tP274/view?usp=share link

A.3 DATA PRE-PROCESSING

For Citeulike-a and Cell Phones datasets, we use the accompanying textual content, i.e., tile and
abstract on Citeulike-a and item descriptions on Cell Phones. Additional step is performed on Cell
Phones to retain users with at least 8 interactions and items with at least 5 interactions. For Movie-
Lens, we follow Zhu & Chen (2022) to extract a subset of users from ML-10M version. We keep
user ratings larger than 3 as interactions, following Ma et al. (2019b). We collect texts for items
in Movielens from IMDB 4. For all datasets, we remove stop words and only keep words with fre-
quency higher than 3 and appearing in less than 60% of item texts. Following Zhu & Chen (2022),
top 8k words with highest frequency are retained to construct vocabulary. Following Ma et al.
(2019b), we adopt strong generalization setting to construct training, validation and test sets by ran-
domly choosing 80% of users for training and 10% of users for each validation and test sets. For
validation and test sets, 20% of a user interactions is kept as ground truth (test data). To keep the
quality of datasets, we only retain items with at least 5 words in their textual content so that the
textual content brings semantic information. All cold-start items, i.e., those do no appear in training
set, are discarded since there is no parameters associating with them.

A.4 BASELINE DESCRIPTION

We compare BANDVAE against a series of VAE-based recommendation models
4https://datasets.imdbws.com/
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Algorithm 2: Training procedure of BANDVAE
Input:
• Rating vectors of M users {yu}Mu=1

• Text vectors of M users {tu}Mu=1

• Rating channel’s parameters ⇥y

– item matrix in decoder H 2 RN⇥d, context matrix Cy 2 RN⇥D

– prototype representations my 2 RK⇥d

– parameters neural network gy : RD ! R2d

• Text channel’s parameters ⇥t

– weight of decoder E 2 RW⇥d, context matrix Ct 2 RW⇥D

– prototype representations mt 2 RJ⇥d

– parameters neural network gt : RD ! R2d

• Parameter W 2 R2d⇥1 of fusion layer
• Hyper-parameters ⌧, ✏,�y,�t

Output:
• Updated ⇥y and ⇥t

1 for batch user B do
2 for user u 2 B do
3 {zuy

k
}Kk=1  fenc

rating(yu,my,H,Cy, ⌧,�y) // Rating encoder in Section 4.1
4 {zutj }Jj=1  fenc

text(tu,mt,E,Ct, ⌧,�t) // Text encoder in Section 4.1
5 ⇡u  Sinkhorn algorithm({zuy

k
}Kk=1, {zutj }Jj=1, ✏) // Alignment coupling

probability derivation in Algorithm 1
6 {ẑuy

k
}Kk=1  Barycentric mapping(⇡u, {zutj }Jj=1) // Equation 7

7 {ẑutj }Jj=1  Barycentric mapping(⇡u, {zuy
k
}Kk=1) // Equation 8

8 z̃uy  Fusion layer({zuy
k
}Kk=1, {ẑuy

k
}Kk=1) // Equation 9

9 z̃ut  Fusion layer({zutj }Jj=1, {ẑutj }Jj=1) // Equation 10
10 Ly

u  Calculate rating channel loss // Equation 12
11 Lt

u  Calculate text channel loss // Equation 14
12 Calculate regularization term LOT

u // Equation 6

13 Calculate loss L = 1
||B||

P
u2B Ly

u + �t · Lt

u + �r · LOT

u

14 Update ⇥y,⇥t to minimize L
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Table 6: Effect of ✏ in Algorithm 1

✏
value

Citeulike-a Cell Phones MovieLens
R@10 N@10 R@10 N@10 R@10 N@10

0.01 22.78 23.68 6.18 5.00 14.01 12.81
0.02 22.84 23.71 6.11 4.96 13.97 12.74
0.05 23.20 24.11 6.18 5.01 14.00 12.76
0.1 23.46 24.24 6.14 5.00 14.03 12.92
0.2 23.80 24.55 6.18 4.99 13.97 12.87
0.5 23.54 24.44 6.21 5.06 14.25 13.04
1 23.48 24.41 6.19 5.06 14.40 13.15
2 23.58 24.50 6.19 5.02 14.20 13.01
5 23.53 24.46 6.17 5.03 14.21 13.00

• MacridVAE Ma et al. (2019b) introduces macro- and micro-disentanglement of user presentation
via multi-prototype representation and independence regularization.

• RecVAE Shenbin et al. (2020) proposes composite prior, rescaling regularization term and an
alternative training approach to improve VAE-based recommendation model.

• MDCVAE Zhu & Chen (2022) regularizes decoder weights of user-oriented autoencoder by
latent embeddings inferred from textual content.

• TopicVAE Guo et al. (2022) improves disentangling user representation by designing attention-
based topic extraction from textual content, topic-guided contrastive loss and heuristic method to
set value of regularization term.

• ADDVAE Tran & Lauw (2022) leverages two disentangled networks to model user’s ratings
and user associated texts then aligns disentangled factors from these two modalities using
compositional de-attention and regularization.

• SEM-MacridVAE Wang et al. (2023a) exploits semantic knowledge from side information to
improve disentangled recommendation model. We use tf-idf item-word matrix as side information
for fair comparison.

We follow the strong generalization setting in MacridVAE Ma et al. (2019b), i.e., validation and test
sets include users not appearing in training set. Thus, only VAE baselines are considered as they are
capable of predicting interactions for new users.

A.5 HYPER-PARAMETER TUNING

Regarding BANDVAE, the default settings are D = 300 for MovieLens and Cell Phones and D =
600 for Citeulike-a; embdding size d = 100 for all datasets; dropout rate applied for Ay and At is
0.5; number of factors/prototypes/interests K = 4; � = min(�0,

update

T
) where �0 is 1 for rating

channel and �0 = 0.2 for text channel, T is chosen from {1k, 5k, 10k, 20k}, and update is the
number parameter update; �y

0 and �t
0 are chosen from {0.05, 0.075, 0.1}; default choices of �t is

0.1 for Citeulike-a, 0.5 for MovieLens and 2 for Cell Phones; �r is 2 for Citeulike-a and �r = 1 for
the rest; ✏ 2 {0.2, 0.5, 1} in Sinkhorn algorithm. We train BANDVAE using Adam optimizer with
learning rate 0.001 on NVIDIA RTX 2080 Ti GPU machine. Training stops after 30 epochs without
improving performance on validation set.

A.6 EFFECT OF ✏ IN EQUATION 4.

✏ controls the sparsity of ⇡u, i.e., small ✏ results in highly skewed distribution in ⇡u while large ✏
leads to roughly uniform distribution in ⇡u. Thus, ✏ controls the trade-off between interpretability
and recommendation. That is, small ✏ generates a near one-to-one mapping between rating and
text factors. In this case, we can explain one factor from ratings by the matched one from texts.
Contrarily, large ✏ produces roughly one-to-many mapping between factors from two modalities,
which causes difficulties when one would like to explain rating factor in terms of text. Table 6
reports the results. There are two key takeaways. First, there is a trade-off between recommendation
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(a) ✏ = 0.05 (b) ✏ = 0.1

(c) ✏ = 1 (d) ✏ = 5

Figure 4: Alignment probability w.r.t ✏ of a user on Cell Phones dataset.

and interpretability. While recommendation task favors moderate ✏, i.e., larger than 0.2, small ✏
which benefits interpretability does negatively affect recommendation performance. Second, ✏’s
value is data-dependent and thus requiring careful analysis to achieve good performance.

Effect of ✏ on alignment probabilities. Theoretically, small ✏ results in sparse alignment distribu-
tion while large ✏ leads to roughly uniform alignment distribution of ⇡u in Equation 5. Note that
sparse alignment distribution is favorable to interpretability as it mimics approximately one-to-one
mapping between rating and text factors. To verify this, we visualize the alignment probability pro-
duced by our model BANDVAE w.r.t. various ✏ in Figure 4. Obviously, small ✏ results in staggered
pattern in alignment probability while large ✏ leads to roughly uniform distribution. Thus, there is
trade-off between interpretability and recommendation should be taken into account when aligning
interest factors from ratings and texts.

A.7 ANALYSIS ON THE NUMBER OF FACTORS

Thanks to the pair-wise alignment between interest factors, BANDVAE can deal with the case when
the number of user interests between two modalities differ. As users might demonstrate different
behaviors in different modalities, this capability makes BANDVAE more applicable. We report
recommendation accuracy w.r.t. various number of rating factors K and number of text factors J in
Figure 5. There are three data-dependent observations. First, on Citeulike-a, setting the number of
rating and text factors both to 4 generally results in better recommendation accuracy. More than 6
interest factors lead to negative effect. Second, on Cell Phones, it requires at least 4 factors to model
user interests from ratings. While increasing the number of rating factors does benefit, adding more
text factors generally does not help much. Adding more rating factors brings benefits to Recall at
top 10 and NDCG at top 10 and top 50 yet causes negative effect on Recall at top 50. Third, on
MovieLens, while adding more rating factors generally brings benefits, the number of text factors
is around 3 or 4 to achieve highest accuracy. Exaggerated number of text factors negatively affects
performance.
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(a) Recall@10 on Citeulike-a (b) Recall@10 on Cell Phones (c) Recall@10 on MovieLens

(d) NDCG@10 on Citeulike-a (e) NDCG@10 on Cell Phones (f) NDCG@10 on MovieLens

(g) Recall@50 on Citeulike-a (h) Recall@50 on Cell Phones (i) Recall@50 on MovieLens

(j) NDCG@50 on Citeulike-a (k) NDCG@50 on Cell Phones (l) NDCG@50 on MovieLens

Figure 5: BANDVAE’s performance w.r.t. K and J .
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Table 7: Effect of �r on recommendation accuracy

�r

value
Citeulike-a Amazon Cell Phones MovieLens

R@10 R@50 N@10 N@50 R@10 R@50 N@10 N@50 R@10 R@50 N@10 N@50

0 23.31 44.38 24.28 30.51 6.10 13.05 4.95 6.93 14.19 32.63 12.97 19.82
0.1 23.42 44.38 24.32 30.53 6.20 12.89 5.03 6.93 14.18 32.59 12.98 19.82
0.2 23.48 44.44 24.39 30.61 6.20 12.93 5.03 6.95 14.15 32.60 13.00 19.83
0.5 23.54 44.53 24.34 30.61 6.24 12.99 5.02 6.93 14.31 32.82 13.07 19.93
1 23.51 44.47 24.41 30.62 6.21 13.05 5.06 7.00 14.40 32.92 13.15 20.01
2 23.80 44.70 24.55 30.72 6.11 12.98 5.00 6.94 14.21 32.74 12.92 19.81
5 23.52 44.66 24.39 30.68 6.04 13.00 4.94 6.93 14.14 32.91 12.96 19.91

Table 8: Effect of �t on recommendation accuracy

�t

value
Citeulike-a Cell Phones MovieLens

R@10 R@50 N@10 N@50 R@10 R@50 N@10 N@50 R@10 R@50 N@10 N@50

0 23.52 44.68 24.36 30.64 6.19 12.69 4.98 6.83 14.07 32.59 12.82 19.69
0.1 23.80 44.70 24.55 30.72 6.27 12.90 5.07 6.95 14.16 32.78 12.98 19.86
0.2 23.46 44.50 24.27 30.53 6.16 12.84 4.95 6.86 14.11 32.74 12.89 19.77
0.5 23.24 44.47 24.20 30.51 6.22 12.81 5.02 6.90 14.40 32.92 13.15 20.01
1 23.10 44.41 24.04 30.40 6.21 12.94 5.03 6.95 14.19 32.58 12.96 19.78
2 22.95 44.31 23.93 30.31 6.21 13.05 5.06 7.00 13.99 32.76 12.79 19.77
5 22.97 44.42 23.97 30.38 6.07 13.05 5.01 7.00 13.70 32.70 12.34 19.44

A.8 EFFECT OF �r IN EQUATION 4.3

Table 7 presents the recommendation accuracy w.r.t. various values of �r, which controls the
effect of regularization term for interest transfer between disentangled factors of two modalities.
Generally, we observe that setting �r to 1 or 2 results in highest accuracy on chosen datasets. These
values boost model performance more than smaller ones do, showing that our proposed alignment
probability guided regularization-based interest transfer is indeed beneficial to capture user interests
from two modalities.

A.9 EFFECT OF �t IN EQUATION 4.3

Table 8 presents the influence of �t, which controls the effect of text reconstruction objective, on
recommendation accuracy. The key observation is the effect of �t is data-dependent, i.e., Citeulike-a
prefers small �t (0.1), MovieLens favors a slightly bigger one (0.5) and Cell Phones needs larger
value (2) to achieve competitive accuracy. Thus, �t should be chosen carefully to obtain the good
performance.
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