
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

PPGWeaver: Diffusion-Augmented Models for Real-

Time Heart Rate Estimation on Microcontrollers 

Vinayak Narasimhan  

Samsung System LSI 

Samsung Semiconductor 

Pasadena, CA, USA 

v.narasim@samsung.com 

 

Raimi Shah  

Synthefy 

Austin, TX, USA 

raimi@synthefy.com 

 

 

Shubhankar Agarwal  

Synthefy 

Austin, TX, USA 

somi@synthefy.com 

 

 

Sai Shankar Narasimhan  

Synthefy 

Austin, TX, USA 

sai@synthefy.com 

 
Shailabh Kumar  

Samsung System LSI 

Samsung Semiconductor 

Pasadena, CA, USA 

shailabh.k@samsung.com 

Sang Kyu Kim  

Samsung System LSI 

Samsung Electronics 

Hwaseong, South Korea 

sangq.kim@samsung.com 

Sandeep Chinchali 

Synthefy 

Austin, TX, USA 

sandeep@synthefy.com 

 

 

Radwanul Hasan Siddique  

Samsung System LSI 

Samsung Semiconductor 

Pasadena, CA, USA 

r.siddique@samsung.com 

 

Abstract—We present a compact, deployable heart rate (HR) 

estimation system using photoplethysmography (PPG) and 

inertial measurement unit (IMU) data, combining TimeWeaver, a 

conditional diffusion model for metadata-aware synthetic 

augmentation, with progressive structured pruning of Temporal 

Convolutional Networks (TCNs). Our smallest model, with 1.56k 

parameters, achieves a mean absolute error (MAE) of 4.92 BPM 

on the PPG-DaLiA dataset and supports real-time inference 

(<40 ms latency) on a 64 MHz ARM Cortex-M4F microcontroller 

(MCU) without requiring quantization. Synthetic data 

conditioned on subject metadata, HR, and activity type 

significantly enhances model generalization, enabling pruned 

models to match or exceed the accuracy of larger baselines, 

achieving over a 23% improvement compared to training on real 

data alone. Our work establishes a new Pareto frontier for real-

time, on-device HR monitoring using diffusion-augmented 

training and sub-2k parameter models. 

Keywords—Heart Rate Estimation, Photoplethysmography, 

PPG, Synthetic Data, Diffusion Models, Model Pruning, Edge AI, 
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I. INTRODUCTION 

PPG sensors, often combined with IMU data, are widely 
used in wrist-worn HR devices but suffer from motion artifacts 
in real-world useoften combined with IMU data, are widely used 
in wrist-worn devices for HR estimation, yet suffer from motion 
artifacts during real-world use. While deep learning models have 
outperformed traditional signal-processing approaches on 
benchmark datasets like PPG-DaLiA, the de facto benchmark 
for HR estimation used in nearly all state-of-the-art (SOTA) 
studies, challenges persist when deploying these models on 
constrained MCUs. Most state-of-the-art (SOTA)SOTA 
methods compromise either accuracy, latency, or model size, 
and performance often degrades sharply when compressed 
below 10k parameters. 

This work uses TimeWeaver [1], a conditional diffusion 
model that introduces a novel approach to PPG data synthesis 
by leveraging subject metadata, such as age, gender, body type, 
activity level type and skin tone to enhance training data 
diversity.  Our hypothesis is that targeted synthetic injection 
helps compensate for performance degradation at higher 

pruning levels by populating underrepresented HR ranges and 
activity classes, particularly for subjects and transitions poorly 
represented in the real training distribution. We integrate these 
synthetic signals with real PPG-DaLiA data to train a 
structurally pruned TCN-based model with only 1.56 k 
parameters, achieving real-time inference on an ARM Cortex-
M4F in under 40 ms. Our system delivers SOTA accuracy 
(4.92 BPM MAE) among ultra-lightweight models without 
requiring quantization or hardware-specific tuning thereby 
establishing a new Pareto frontier for real-time HR estimation 
(Fig. 1). 

II. BACKGROUND & RELATED WORK 

The PPG-DaLiA dataset (~36 hours of PPG and 
accelerometer data from 15 subjects) has emerged as the 
benchmark for HR estimation under real-world 
conditionsdataset, consisting of ~36 hours of PPG and 3-axis 
accelerometer data across 15 subjects and varied activities, has 
emerged as the benchmark for HR estimation under real-world 
conditions [2]. Traditional digital-signal processing (DSP) 
pipelines were effective in lab settings but lack generalizability 
on unconstrained datasets like PPG-DaLiA. 

Deep learning methods now dominate [2-10]. Early efforts 
like DeepPPG and NAS-PPG improved accuracy but were 
impractical for deployment due to size [2, 3]Deep learning 
methods have since become dominant [2-10]. Early efforts such 
as DeepPPG and NAS-PPG leveraged CNNs and architecture 
search to improve accuracy but were impractical for deployment 
due to their size [2, 3]. Q-PPG introduced quantized TCNs with 
variants running on STM32 MCUs, showing that sub-2 kB 
models could achieve 7.73 BPM MAE with real-time 
performance [4]. EnhancePPG used self-supervised learning 
and classical augmentation to achieve 3.54 BPM MAE, albeit at 
the cost of higher latency and larger model size [5]. KID-PPG 
demonstrated further gains using domain knowledge but omitted 
deployability metrics [6]. Recent works like AugmentPPG 
introduced synthetic augmentation via sensor fusion and 
demonstrated efficient deployment on GAP8 [7]. However, 
these methods either rely on handcrafted transformations or fail 
to meet all constraints of low parameter count, high accuracy, 
and real-time performance simultaneously. 
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 Recent notable studies have predominantly employed DSP-
based augmentation techniques, which offer limited signal 
diversity and yield only modest performance gains (~5%) [5–7]. 
Theseis insights motivates our approach of using TimeWeaver 
[1], a state-of-the-art diffusion model, to generate realistic, 
metadata-conditioned synthetic data. By coupling this with 
structured pruning, we address the dual challenge of improving 
generalization and accuracy while reducing model size and 
latency. This method yields a test performance improvement of 
over 23% while producing ultra-compact models (<2K 
parameters) suitable for deployment on resource-constrained 
MCUs, without compromising full-precision accuracy. and 
coupling it with pruning to build a compact model that meets all 
three constraints. By leveraging heterogeneous, time-varying 
metadata, TimeWeaver achieves up to 40× better performance 
than GANs and conventional methods on real-world datasets 
[1]. 

 

Fig. 1. PPGWeaver establishes a new Pareto frontier for PPG-based HR 

estimation, achieving lower error at significantly smaller model sizes. Models 
deployed on MCUs are annotated with reported runtime latencies. 

Deployability metrics are shown only for works with reported MCU results. 

III. METHODS 

A. Seed Architecture 

Our starting model adopts a lightweight TCN inspired by the 
seed TEMPONet [11] used in Q-PPG, which itself underpins a 
design space exploration framework producing Pareto-optimal 
tradeoffs between complexity and accuracy on the PPG-DaLiA 
dataset [4]. Our modified 512k-parameter seed network, called 
PPGNet-512k (Fig. 2a), consumes 256 sample windows from 
four channels (PPG + 3-axis IMU), and applies three stacked 

convolutional blocks featuring increasing dilation rates (1→2→
4), interleaved with pooling and SE attention modules to capture 
temporal context while suppressing motion artifact noise. 
Feature maps expand from 32 to 128 channels across blocks, 
after which the representation is flattened and passed through 

fully connected layers (256→128 units with BatchNorm and 

ReLU), culminating in a scalar regression head for HR output. 
This over-parameterized architecture provides capacity for 
pruning and augmentationThis over-parameterized architecture 
provides sufficient capacity for pruning and synthetic data 
augmentation. We trained the seed on real PPG-DaLiA samples 
using Log Cosh regression loss for smooth convergence, with 

BatchNorm + ReLU ensuring stability during pruning and later 
quantization. 

B. Structured Pruning With Synthetic Injection 

 To reduce model size while maintaining predictive accuracy, 
we applied structured pruning iteratively to the seed network 
described in Section 3.1, generating a progressively smaller set 

of architectures (PPGNet-512k→PPGNet-1.56k) by reducing 

convolutional channel widths and dense layer sizes in a 
controlled manner. Each pruned architecture was first trained 
and evaluated using only the real PPG-DaLiA dataset following 
a robust 4×Leave-One-Group-Out cross-validation protocol [2, 
4]. In this setup, outer folds were created by grouping subjects, 
with inner folds assigning individual subjects as held-out test 
sets. Each model was trained on real windows and validated on 
unseen subjects.Each model was trained using only real 
windows from the training subjects and validated on unseen real 
subjects. This real-data-only evaluation defined the baseline 
accuracy of each pruned model. To improve performance, we 
then incrementally introduced synthetic training windows 
generated by a metadata-conditioned diffusion model, 
TimeWeaver, into the same training folds, beginning with 5% of 
available synthetic data and progressing up to 100%. Synthetic 
windows were never included in validation or test sets. For a 
given test subject, synthetic time-series data was generated using 
the metadata of that subject. At each increment, models were 
warm-started from previous weights, using the same 
architecture, optimizer, and stopping strategy.At each training 
increment, models were warm-started using weights from the 
previous stage, maintaining the same architecture, optimizer, 
and early-stopping strategy. The result is a series of Pareto-
efficient models whose size-performance trade-off improves 
significantly with synthetic augmentation. 

C. Synthetic Data Generation Via Conditional Diffusion 

 To generate high-fidelity synthetic PPG signals for data 
augmentation, we utilized TimeWeaver, a conditional diffusion 
model trained to synthesize PPG + IMU + ECG signals 
conditioned on rich metadata. Importantly, ECG signals are used 
only to generate ground-truth HR labels during training and are 
never inputs to the deployed predictor model. Unlike adversarial 
generative models, TimeWeaver follows a denoising score-
matching framework that iteratively learns to reverse a noise 
process applied to real time-series waveforms. By leveraging 
heterogeneous, time-varying metadata, TimeWeaver achieves 
up to 40× better performance than GANs and conventional 
methods on real-world datasets [1]. Each synthetic window is 
512 samples long, corresponding to an 8-second segment at 
64 Hz. These windows are later downsampled to 32 Hz during 
model training. Metadata including subject ID, activity type, 
target HR, skin tone (binned via Fitzpatrick scale), and session 
time are embedded and injected into both the conditioning and 
denoising paths of the model using a Conditional Score-based 
Diffusion Imputation (CSDI) architecture. Categorical variables 
are encoded through learned embeddings, while continuous 
metadata is projected via dense layers and fused with attention 
mechanisms. The model is trained end-to-end on PPG-DaLiA 
data using a linear noise schedule over 200 timesteps and was 
selected based on minimum validation loss. 
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D. MCU Deployment 

To enable MCU deployment, each trained TensorFlow 
model was converted to TFLite using four quantization 
strategies: FP32, FP16, INT8, and dynamic-range mixed 
precision. INT8 required a representative dataset from PPG-
DaLiA, while others used default optimizations. All variants 
were benchmarked on a CPU (13th Gen Intel i7-1360P, 
2.20 GHz) for latency, memory, and HR accuracy. Despite 
testing quantized models, the final deployment used FP32 
TFLite due to its small size and full-precision fidelity. Models 
were serialized into C arrays via xxd for ARM Cortex M4F 
toolchain compatibility. Note that TimeWeaver is used only 
offline during training to generate synthetic data; the deployed 
MCU runs solely the compact 1.56k-parameter predictor. 

The final pruned FP32 TensorFlow Lite model was deployed 
to an Arduino Nano 33 BLE Rev 2, which features a Nordic 

nRF52840 MCU with a 32 bit ARM Cortex M4F core running 
at 64 MHz, along with 256 kB SRAM and 1 MB flash. Model 
inference is implemented in an Arduino sketch, which receives 
one 8-second (256 samples × 4 channels) window over serial, 
runs inference using TFLite Micro, and sends back a predicted 
HR and measured latency. The code allocates a 20 kB tensor 
arena, resolves all necessary ops, and invokes the TFLite 
interpreter on the input window stored in the flat float tensor. 
End-to-end evaluation on the MCU yielded window-level 
latencies of ~37 ms consistently and HR MAE consistent with 
CPU-based validation. These real time metrics confirm viability 
of performing live inference on the ARM Cortex M4F with 
limited memory while maintaining accuracy fidelity to the 
original model. 

 

 

Fig. 2. a) PPGNet-512. b), c) Synthetic augmentation to improve test MAE maintaining pareto efficiency

HR and measured latency. The code allocates a 20 kB tensor 
arena, resolves all necessary ops, and invokes the TFLite 
interpreter on the input window stored in the flat float tensor. 

IV. RESULTS 

A. Traversing The Pareto Frontier With TimeWeaver 

To explore the trade-off between model compactness and 
predictive accuracy, we evaluated eight structurally pruned 
architectures under progressive synthetic data augmentation 
using the TimeWeaver generator. For each model, we 
performed end-to-end training on real-only data (129,369 
windows), then repeated training with synthetic windows 
added in increasing proportions up to 100% (an additional 
107,238 windows), maintaining the same cross-validation 
protocol. 

Across all model variants, adding even a small fraction (5–
10%) of synthetic data significantly improved performance, 
with the strongest gains (> 23%) observed in mid-size models. 
For instance, PPGNet-436k (not shown) improved from 
5.29 BPM MAE to 4.06 BPM with just 5% synthetic 
augmentation. Similarly, PPGNet-110k improved from 5.16 
to 4.21 BPM MAE at 60% augmentation. Notably, compact 
models such as PPGNet-1.56k-Dilated saw MAE drop from 
5.82 to 4.80 BPM with 80% synthetic data, a substantial gain 
despite limited capacity (Fig. 2b, c).Notably, highly compact 

models such as PPGNet-1.56k-Dilated saw their MAE drop 
from 5.82 to 4.80 BPM with 80% synthetic data, a substantial 
improvement despite their limited capacity (Fig. 2b, c). 

The benefit of synthetic augmentation plateaued between 
60%–80% for most architectures, beyond which 
improvements plateaued or reversed slightly. These results 
suggest diminishing marginal returns at high augmentation 
ratios. Overall, synthetic injection helped recover or even 
surpass baseline performance levels for models that had been 
heavily pruned, effectively shifting the accuracy–efficiency 
Pareto frontier upward. 

B. Synthetic Data Generated With TimeWeaver 

To evaluate the fidelity and utility of synthetic data 
generated by TimeWeaver, we conducted a series of statistical 
and downstream analyses. First, we assessed signal realism by 
comparing the distributions of amplitude and spectral energy 
between real PPG and synthetic data. As shown in Fig. 3a, b, 
TimeWeaver-generated samples align closely with ground-
truth distributions in both time and frequency domains, while 
GAN baselines fail to capture multimodal or skewed 
properties under high-motion or high-HR 
conditions.TimeWeaver-generated samples align closely with 
the empirical distributions of ground-truth data across both 
time and frequency domains, whereas a GAN-based baseline 
fails to recover the multimodal or skewed properties observed 
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in physiological signals, especially under high-motion or 
high-HR conditions. 

Next, to assess whether TimeWeaver can generate 
physiologically plausible PPG signals, we performed 
qualitative analysis on held-out metadata conditions. In one 
set of experiments, we aimed to simulate subjects with high 
resting HRs. For example, Subject S5 in PPG-DaLiA naturally 
exhibits a baseline HR of approximately 125 BPM. As shown 
in Fig. 3c, the synthesized waveform from Subject S11, 
conditioned on a target HR of 125 BPM, closely resembled 
the ground-truth waveform of Subject S5 in both periodic 
structure and amplitude morphology. 

C. MCU Deployment 

We evaluated the full inference pipeline from TensorFlow 
to TFLite conversion and final deployment on a resource-
constrained MCU. The smallest pruned model, PPGNet-
1.56k, trained with 80% synthetic dataaugmentation, was 
converted to TFLite using four quantization configurations: 
FP32, FP16, INT8, and mixed precision. Notably, all TFLite 
variants of PPGNet-1.56k achieved sub-0.025 ms average 
latency per 256-sample window on a 13th Gen Intel i7 CPU, 
with FP32 executing in just 0.019 ms. Due to its extremely 
small size, PPGNet-1.56k exhibited minimal memory and 
latency overhead even at full-precision (FP32), enabling real-
time inference (~37 ms latency) without requiring INT8 
quantization on resource-constrained MCUs like the ARM 
Cortex-M4. In contrast, INT8 quantization, despite being 
theoretically optimal for edge deployment showed degraded 
MAE across all models. This is likely due to suboptimal INT8 
inference support on general-purpose CPUs, which lack the 
specialized integer compute pathways available on MCUs. 
This suggests that, in certain cases, model compression and 
data-driven regularization can eliminate the need for 
aggressive quantization, even for deployment on low-power 
devices. 

Given these findings, the FP32 variant of PPGNet-1.56k 
was selected for deployment on a 64 MHz Arm Cortex-M4F 
MCU with 256 KB SRAM. Inference results across all 15 
PPG-DaLiA test subjects revealed identical performance to 
the parent TensorFlow model, with an overall MAE of 
4.92 BPM (Figs. 4a-c). Importantly, this confirms that the 
MCU deployment retained full numerical fidelity without 
requiring quantization, made possible by an extremely 
compact Pareto-efficient model enabled by TimeWeaver-
generated synthetic data. This establishes the feasibility of 
real-time HR estimation directly on MCU-class wearables 
without compromising on accuracy or throughput. 

 

Fig. 3. a), b) TimeWeaver-generated PPG signals (orange) closely match 

unseen ground truth (blue), outperforming GANs (green) in both time and 

frequency domains. c) Comparison of real PPG from Subject S5 (blue) and 

TimeWeaver-generated data by increasing Subject S11’s HR.  

V. CONCLUSION 

This work presents a complete pipeline for real-time, 
MCU-based HR estimation using PPG and IMU data, 
addressing the longstanding trade-off between accuracy, 
model size, and deployability. Through progressive structured 
pruning and novel synthetic augmentation via TimeWeaver, 
we achieve over 23% performance gains and show that ultra-
lightweight sub-2 k parameter models a conditional diffusion 
model trained on rich metadata, we demonstrate that ultra-
lightweight models (< 2 k parameters) can match or surpass 
SOTA accuracy. Our smallest model, with only 1.56k 
parameters, achieved  4.92 BPM MAE and maintained 
identical performance when deployed on a 64 MHz ARM 
Cortex M4F MCU without requiring quantization. This 
underscores the strength of combining generative 
augmentation with hardware-aware compression. 

Future work will focus on applying TimeWeaver to 
proprietary datasets with richer sensing modalities and more 
diverse activities and user populations. Our goal is to extend 
this approach toward commercial-grade wearable algorithms 
capable of robust HR estimation on edge platforms, paving the 
way for scalable, low-power, on-device health monitoring. 
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Fig. 4. a) Correlation (R2 = 0.86) between MCU-predicted HR from PPGNet-1.56k and ground-truth HR (color-coded by subject). b) MCU accuracy matches parent 

TensorFlow model via full-precision deployment. c) Real-time inference on Subject S7 with <40 ms per-window latency.

 


