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Abstract—We present a compact, deployable heart rate (HR)
estimation system using photoplethysmography (PPG) and
inertial measurement unit (IMU) data, combining TimeWeaver, a
conditional diffusion model for metadata-aware synthetic
augmentation, with progressive structured pruning of Temporal
Convolutional Networks (TCNs). Our smallest model, with 1.56k
parameters, achieves a mean absolute error (MAE) of 4.92 BPM
on the PPG-DaLiA dataset and supports real-time inference
(<40 ms latency) on a 64 MHz ARM Cortex-M4F microcontroller
(MCU) without requiring quantization. Synthetic data
conditioned on subject metadata, HR, and activity type
significantly enhances model generalization, enabling pruned
models to match or exceed the accuracy of larger baselines,
achieving over a 23% improvement compared to training on real
data alone. Our work establishes a new Pareto frontier for real-
time, on-device HR monitoring using diffusion-augmented
training and sub-2k parameter models.

Keywords—Heart Rate Estimation, Photoplethysmography,
PPG, Synthetic Data, Diffusion Models, Model Pruning, Edge Al,
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. INTRODUCTION

PPG sensors, often combined with IMU data, are widely
used in wrist-worn HR devices but suffer from motion artifacts

in real-world useeften-combined-with-HMU-data-are- widehrused
inwrist-worn-devices for HR estimation.yet suffer from-motion
artifacts duringreal-world-use. While deep Iearnmg models have

outperformed traditional signal-processing approaches on
benchmark datasets like PPG-DaLiA, the de facto benchmark
for HR estimation used in nearly all state-of-the-art (SOTA)
studies Ehallenges persist when deploying these models on
constrained MCUs. Most state-of-the-art—(SOTA)SOTA
methods compromise either accuracy, latency, or model size,
and performance often degrades sharply when compressed
below 10k parameters.

This work uses TimeWeaver [1], a conditional diffusion
model that introduces a novel approach to PPG data synthesis
by leveraging subject metadata, such as age, gender, body type,
activity level—type land skin tone to enhance training data
diversity. Our hypothesis is that targeted synthetic injection
helps compensate for performance degradation at higher
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pruning levels by populating underrepresented HR ranges and
activity classes, particularly for subjects and transitions poorly
represented in the real training distribution. We integrate these
synthetic signals with real PPG-DaLiA data to train a
structurally pruned TCN-based model with only 1.56k
parameters, achieving real-time inference on an ARM Cortex-
M4F in under 40 ms. Our system delivers SOTA accuracy
(4.92BPM MAE) among ultra-lightweight models without
requiring quantization or hardware-specific tuning thereby
establishing a new Pareto frontier for real-time HR estimation

(Fig. 1).
1. BACKGROUND & RELATED WORK

The PPG-DaLiA dataset (=36 hours of PPG and
accelerometer data from 15 subjects) has emerged as the

benchmark for HR  estimation under real-world
conditions| ; isti ~ i

eenéﬁmﬂs [2]. Tradmonal dlgltal S|gnal processmg (DSP)
pipelines were effective in lab settings but lack generalizability
on unconstrained datasets like PPG-DaLiA.

Deep learning methods now dominate [2-10]. Early efforts
like DeepPPG and NAS-PPG improved accuracy but were
impractical for deployment due to size [2, 3]Deeptearning
methods-have since become dominant[2-10}-Early efforts such

search to-improve accuracy but were impractical for deployment
due-to-theirsize{2,-3]. Q-PPG introduced quantized TCNs with
variants running on STM32 MCUSs, showing that sub-2 kB
models could achieve 7.73BPM MAE with real-time
performance [4]. EnhancePPG used self-supervised learning
and classical augmentation to achieve 3.54 BPM MAE, albeit at
the cost of higher latency and larger model size [5]. KID-PPG
demonstrated further gains using domain knowledge but omitted
deployability metrics [6]. Recent works like AugmentPPG
introduced synthetic augmentation via sensor fusion and
demonstrated efficient deployment on GAP8 [7]. However,
these methods either rely on handcrafted transformations or fail
to meet all constraints of low parameter count, high accuracy,
and real-time performance simultaneously.
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We would like to clarify that PPG-DaLiA is widely regarded
as the de facto benchmark for heart rate (HR) estimation
from PPG signals, and it is used in nearly all recent state-of-
the-art studies.

While we agree broader validation is important, establishing
results on this gold-standard dataset ensures comparability
and credibility. Furthermore, we chose to focus on PPG-
DaLiA because prior work on conventional DSP-based data
augmentation for HR estimation has primarily been
conducted using this dataset [5-7]. To ensure a fair and
meaningful comparison, we apply our proposed metadata-
aware diffusion-based augmentation method to PPG-DaLliA.
This choice allows us to directly evaluate the improvements
brought by our approach over existing augmentation
techniques, which is a central contribution of our work.
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We revised terminology throughout to “activity type,” which
accurately reflects metadata categories in PPG-DaLiA.




[Recent notable studies have predominantly employed DSP-
based augmentation techniques, which offer limited signal
diversity and yield only modest performance gains (~5%) [5-7].
Theseis insights motivates our approach of using TimeWeaver
[1], a state-of-the-art diffusion model, to generate realistic,
metadata-conditioned synthetic data. By coupling this with
structured pruning, we address the dual challenge of improving
generalization and accuracy while reducing model size and
latency. This method vields a test performance improvement of
over 23% while producing ultra-compact models (<2K
parameters) suitable for deployment on resource-constrained

MCUs vvlthout compromlsmq full-precision accuracy and
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Fig. 1. PPGWeaver establishes a new Pareto frontier for PPG-based HR
estimation, achieving lower error at significantly smaller model sizes. Models
deployed on MCUs are annotated with reported runtime latencies.
[Deployability metrics are shown only for works with reported MCU results|

111. METHODS

A. Seed Architecture

Our starting model adopts a lightweight TCN inspired by the
seed TEMPONet [11] used in Q-PPG, which itself underpins a
design space exploration framework producing Pareto-optimal
tradeoffs between complexity and accuracy on the PPG-DaLiA
dataset [4]. bur modified 512k-parameter seed network, called
PPGNet-512k (Fig. 2a), consumes 256 sample windows from
four channels (PPG + 3-axis IMU), and applies three stacked
convolutional blocks featuring increasing dilation rates (1—2—
4), interleaved with pooling and SE attention modules to capture
temporal context while suppressing motion artifact noise.
Feature maps expand from 32 to 128 channels across blocks,
after which the representation is flattened and passed through
fully connected layers (256— 128 units with BatchNorm and
ReLU), culminating in a scalar regression head for HR output.
This over-parameterized archltecture prowdes chcnv for
pruning and augmentation?

augrmentation. We trained the seed on real PPG-DaLiA samples
using Log Cosh regression loss for smooth convergence, with

BatchNorm + ReLU ensuring stability during pruning and later
quantization.

B. Structured Pruning With Synthetic Injection

To reduce model size while maintaining predictive accuracy,
we applied structured pruning iteratively to the seed network
described in Section 3.1, generating a progressively smaller set
of architectures (PPGNet-512k —PPGNet-1.56k) by reducing
convolutional channel widths and dense layer sizes in a
controlled manner. Each pruned architecture was first trained
and evaluated using only the real PPG-DaLiA dataset following
a robust 4xLeave-One-Group-Out cross-validation protocol [2,
4]. In this setup, outer folds were created by grouping subjects,
with inner folds assigning individual subjects as held-out test
sets. Each model was trained on real windows and validated on

unseen subjects. Eaeh—medel—was—tr—amed—usmg—eﬂly—real

subjec—es ThIS real- data only evaluatlon deflned the basellne
accuracy of each pruned model. To improve performance, we
then incrementally introduced synthetic training windows
generated by a metadata-conditioned diffusion model,
TimeWeaver, into the same training folds, beginning with 5% of
available synthetic data and progressing up to 100%. Synthetic
windows were never included in validation or test sets. For a
given test subject, synthetic time-series data was generated using
the metadata of that subject. At each increment, models were
warm-started from previous weights, using the same
architecture, optimizer, and stopping strategy.At-each-training
increment, models were warm-started using weights from the

- The result is a series of Pareto-
efficient models whose size-performance trade-off improves
significantly with synthetic augmentation.

C. Synthetic Data Generation Via Conditional Diffusion

To generate high-fidelity synthetic PPG signals for data
augmentation, we utilized TimeWeaver, a conditional diffusion
model trained to synthesize PPG + IMU + ECG signals
conditioned on rich metadata. Importantly, ECG signals are used
only to generate ground-truth HR labels during training and are
never inputs to the deployed predictor model. [Unlike adversarial
generative models, TimeWeaver follows a denoising score-
matching framework that iteratively learns to reverse a noise
process applied to real time-series waveforms. By leveraging
heterogeneous, time-varying metadata, TimeWeaver achieves
up to 40x better performance than GANs and conventional
methods on real-world datasets [1]. Each synthetic window is
512 samples long, corresponding to an 8-second segment at
64 Hz. These windows are later downsampled to 32 Hz during
model training. Metadata including subject ID, activity type,
target HR, skin tone (binned via Fitzpatrick scale), and session
time are embedded and injected into both the conditioning and
denoising paths of the model using a Conditional Score-based
Diffusion Imputation (CSDI) architecture. Categorical variables
are encoded through learned embeddings, while continuous
metadata is projected via dense layers and fused with attention
mechanisms. The model is trained end-to-end on PPG-DaLiA
data using a linear noise schedule over 200 timesteps and was
selected based on minimum validation loss.
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We appreciate the reviewer’s comments. In addition to the
integration aspect, a key novelty of our work lies in the
generation of synthetic data using subject-specific metadata
through a diffusion-based process. This approach produces
significantly richer and higher-quality synthetic samples
compared to previously explored conventional DSP-based
augmentation methods. As a result, our method achieves
over a 20% performance improvement, whereas
conventional augmentation techniques yield gains of only
around 5%. We have strengthened novelty positioning in
Background & Related Work (Sec. I1)
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We excluded KID-PPG because deployability metrics were
not reported. To avoid ambiguity, we clarified this in the Fig.
1 caption
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To avoid confusion, we have summarized the pipeline here
and also clarified in the revised manuscript.
Summary of our Pipeline:
oOffline (Training Phase): TimeWeaver synthesizes
PPG, IMU, and ECG data. ECG is only used to label
data - not as model input.
oModel Training: A small TCN is trained on both real
and synthetic PPG/IMU data.
oDeployment: Only the compact predictor is deployed
to the MCU. No diffusion model is ever run on-device.
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We clarified that our seed architecture is derived from
TEMPONEt/Q-PPG, which underpin prior design space
explorations for MCU deployment, ensuring fairness of
comparison




D. MCU Deployment

To enable MCU deployment, each trained TensorFlow
model was converted to TFLite using four quantization
strategies: FP32, FP16, INT8, and dynamic-range mixed
precision. INT8 required a representative dataset from PPG-
DaLiA, while others used default optimizations. All variants
were benchmarked on a CPU (13th Gen Intel i7-1360P,
2.20 GHz) for latency, memory, and HR accuracy. Despite
testing quantized models, the final deployment used FP32
TFLite due to its small size and full-precision fidelity. Models
were serialized into C arrays via xxd for ARM Cortex M4F
toolchain compatibility. [Note that TimeWeaver is used only
offline during training to generate synthetic data; the deployed
MCU runs solely the compact 1.56k-parameter predictor.

The final pruned FP32 TensorFlow Lite model was deployed
to an Arduino Nano 33 BLE Rev 2, which features a Nordic

a)  SeedArchitecture: PPGNet-512k b)

nRF52840 MCU with a 32 bit ARM Cortex M4F core running
at 64 MHz, along with 256 kB SRAM and 1 MB flash. Model
inference is implemented in an Arduino sketch, which receives
one 8-second (256 samples x 4 channels) window over serial,
runs inference using TFLite Micro, and sends back a predicted
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Fig. 2. a) PPGNet-512. b), c) Synthetic augmentation to improve test MAE maintaining pareto efficiency

HR and measured latency. The code allocates a 20 kB tensor
arena, resolves all necessary ops, and invokes the TFLite
interpreter on the input window stored in the flat float tensor.

IV. RESULTS

A. Traversing The Pareto Frontier With TimeWeaver

To explore the trade-off between model compactness and
predictive accuracy, we evaluated eight structurally pruned
architectures under progressive synthetic data augmentation
using the TimeWeaver generator. For each model, we
performed end-to-end training on real-only data (129,369
windows), then repeated training with synthetic windows
added in increasing proportions up to 100% (an additional
107,238 windows), maintaining the same cross-validation
protocol.

Across all model variants, adding even a small fraction (5—
10%) of synthetic data significantly improved performance,
with the strongest gains (> 23%) observed in mid-size models.
For instance, PPGNet-436k (not shown) improved from
529BPM MAE to 4.06 BPM with just 5% synthetic
augmentation. Similarly, PPGNet-110k improved from 5.16
to 4.21 BPM MAE at 60% augmentation. Notably, compact
models such as PPGNet-1.56k-Dilated saw MAE drop from
5.82 to 4.80 BPM with 80% synthetic data, a substantial gain

despite limited capacity (Fig. 2b, c).Netably-highly-compact
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The benefit of synthetic augmentation plateaued between
60%-80% for most architectures, beyond which
improvements plateaued or reversed slightly. These results
suggest diminishing marginal returns at high augmentation
ratios. Overall, synthetic injection helped recover or even
surpass baseline performance levels for models that had been
heavily pruned, effectively shifting the accuracy—efficiency
Pareto frontier upward.

B. Synthetic Data Generated With TimeWeaver

To evaluate the fidelity and utility of synthetic data
generated by TimeWeaver, we conducted a series of statistical
and downstream analyses. First, we assessed signal realism by
comparing the distributions of amplitude and spectral energy
between real PPG and synthetic data. As shown in Fig. 3a, b,
TimeWeaver-generated samples align closely with ground-
truth distributions in both time and frequency domains, while
GAN baselines fail to capture multimodal or skewed
properties under high-motion or high-HR

conditions. TimeWeaver-generated samples-align closely with
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We sincerely thank the reviewer for raising this concern.
However, we believe this is a misunderstanding of our
pipeline. The diffusion model (TimeWeaver) is used
exclusively offline during the training phase to generate
synthetic data. At inference time, only the compact task
predictor (e.g., TCN) runs on the microcontroller (MCU).
There is no requirement for raw signals to be transmitted
externally for synthesis, nor is the generative model
deployed on the edge.
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Next, to assess whether TimeWeaver can generate
physiologically plausible PPG signals, we performed
qualitative analysis on held-out metadata conditions. In one
set of experiments, we aimed to simulate subjects with high
resting HRs. For example, Subject S5 in PPG-DaLiA naturally
exhibits a baseline HR of approximately 125 BPM. As shown
in Fig. 3c, the synthesized waveform from Subject S11,
conditioned on a target HR of 125 BPM, closely resembled
the ground-truth waveform of Subject S5 in both periodic
structure and amplitude morphology.

C. MCU Deployment

We evaluated the full inference pipeline from TensorFlow
to TFLite conversion and final deployment on a resource-
constrained MCU. The smallest pruned model, PPGNet-
1.56k, trained with 80% synthetic dataaugmentation, was
converted to TFLite using four quantization configurations:
FP32, FP16, INT8, and mixed precision. Notably, all TFLite
variants of PPGNet-1.56k achieved sub-0.025ms average
latency per 256-sample window on a 13th Gen Intel i7 CPU,
with FP32 executing in just 0.019 ms. Due to its extremely
small size, PPGNet-1.56k exhibited minimal memory and
latency overhead even at full-precision [(FP32), enabling real-
time inference (=37 ms latency) without requiring INT8
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with HR + 30 BPM
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Fig. 3. a), b) TimeWeaver-generated PPG signals (orange) closely match
unseen ground truth (blue), outperforming GANs (green) in both time and
frequency domains. ¢) Comparison of real PPG from Subject S5 (blue) and
TimeWeaver-generated data by increasing Subject S11°s HR.

V. CONCLUSION

This work presents a complete pipeline for real-time,
MCU-based HR estimation using PPG and IMU data,
addressing the longstanding trade-off between accuracy,
model size, and deployability. Through progressive-structured
pruning and novel synthetic augmentation via TimeWeaver,
we achieve over 23% performance gains and show that ultra-
lightweight sub-2 k parameter models a-conditional-diffusion

quantization on_resource-constrained MCUs like the ARM
Cortex-M4. izati i i

T g
heore mal-for-e howed-deara

This suggests that, in certain cases, model compression and
data-driven reqgularization can eliminate the need for
aggressive quantization, even for deployment on low-power
devices ]|

Given these findings, the FP32 variant of PPGNet-1.56k
was selected for deployment on a 64 MHz Arm Cortex-M4F
MCU with 256 KB SRAM. Inference results across all 15
PPG-DaLiA test subjects revealed identical performance to
the parent TensorFlow model, with an overall MAE of
4.92 BPM (Figs. 4a-c). Importantly, this confirms that the
MCU deployment retained full numerical fidelity without
requiring quantization, made possible by an extremely
compact Pareto-efficient model enabled by TimeWeaver-
generated synthetic data. This establishes the feasibility of
real-time HR estimation directly on MCU-class wearables
without compromising on accuracy or throughput.

rrodel-trained-on—rich-metadata,—we-demonstratethat-ultra-
lightweight-models(<2k-parameters)-can match or surpass
SOTA accuracy. Our smallest model, with only 1.56k
parameters, achieved_ —4.92 BPM MAE and maintained
identical performance when deployed on a 64 MHz ARM
Cortex M4F MCU without requiring quantization. This
underscores the strength of combining generative
augmentation with hardware-aware compression.

Future work will focus on applying TimeWeaver to
proprietary datasets with richer sensing modalities and more
diverse activities and user populations. Our goal is to extend
this approach toward commercial-grade wearable algorithms
capable of robust HR estimation on edge platforms, paving the
way for scalable, low-power, on-device health monitoring.
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Fig. 4. a) Correlation (R?=0.86) between MCU-predicted HR from PPGNet-1.56k and ground-truth HR (color-coded by subject). b) MCU accuracy matches parent
TensorFlow model via full-precision deployment. c) Real-time inference on Subject S7 with <40 ms per-window latency.



