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ABSTRACT

Large-scale vision-language models (VLMs) embedded with expansive represen-
tations and visual concepts have showcased significant potential in the computer
vision community. Efficiently adapting VLMs such as CLIP, to downstream tasks
has garnered growing attention, with prompt learning emerging as a representative
approach. However, most existing prompt-based adaptation methods, which rely
solely on coarse-grained textual prompts, suffer from limited performance and in-
terpretability when handling tasks that require domain-specific knowledge. This
results in a failure to satisfy the stringent trustworthiness requirements of Explain-
able Artificial Intelligence (XAI) in high-risk scenarios like healthcare. To address
this issue, we propose a Knowledge-Enhanced Explainable Prompting (KEEP)
framework that leverages fine-grained domain-specific knowledge to enhance the
adaptation process across various domains, facilitating bridging the gap between
the general domain and other specific domains. We present to our best knowledge
the first work to incorporate retrieval augmented generation and domain-specific
foundation models to provide more reliable image-wise knowledge for prompt
learning in various domains, alleviating the lack of fine-grained annotations, while
offering both visual and textual explanations. Extensive experiments and explain-
ability analyses conducted on eight datasets of different domains, demonstrate
that our method simultaneously achieves superior performance and interpretabil-
ity, shedding light on the effectiveness of the collaboration between foundation
models and XAI. The code will be made publically available.

1 INTRODUCTION

Recent studies in large-scale vision-language pre-trained models (VLMs), such as CLIP (Radford
et al., 2021), BLIP (Li et al., 2022), ALIGN (Jia et al., 2021), Flamingo (Alayrac et al., 2022) and
Coca (Yu et al., 2022) have highlighted the potential of foundation models (FMs) in vision and
language understanding. The effectiveness of large-scale image-text pairs and their alignment has
been demonstrated in enhancing vision-language models, enabling them to excel in tasks like image
classification, segmentation, and image-text retrieval (Lüddecke & Ecker, 2022; Fang et al., 2021).
However, the massive sizes and high training costs have prompted researchers to explore efficient
methods for adapting the pre-trained VLMs to downstream tasks.

Recently, prompt learning (Zhou et al., 2022a;b), which is introduced from the field of natural lan-
guage processing, has emerged as one of the representative approaches for efficiently adapting foun-
dation models to downstream tasks like image classification. These methods focus on learning the
prompts instead of training all the parameters of the models, achieving both promising performance
and much lower training cost. Traditional prompt learning methods only use one general sentence
as the input prompt (e.g., a photo of a [class name]) (Zhou et al., 2022b; Gao et al., 2021), which
demonstrates relatively low classification accuracy when handling fine-grained tasks. Some studies
tend to alleviate this issue by introducing knowledge into prompt learning (Yao et al., 2023; Bulat &
Tzimiropoulos, 2023). However, most existing knowledge-related methods use only coarse-grained
textual prompts (e.g., class-level prompts without fine-grained knowledge). This leads them to per-
form well in some natural image tasks but still exhibit limited performance in various domains due
to the lack of domain-specific knowledge. The coarse-grained and insufficient information em-
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“A photo of melanoma, with irregular 
dots and globules, blue whitish veil.”

“a photo of  [melanoma]”
𝑽𝑳𝑴“a photo of a [wild cat]”

𝑽𝑳𝑴“This [wild cat] is a striped gray 
and white cat with bright green eyes”

𝑪𝒐𝒂𝒓𝒔𝒆−𝒈𝒓𝒂𝒊𝒏𝒆𝒅
𝒉𝒂𝒏𝒅−	𝒄𝒓𝒂𝒇𝒕𝒆𝒅	𝒑𝒓𝒐𝒎𝒑𝒕𝒔

𝑭𝒊𝒏𝒆−	𝒈𝒓𝒂𝒊𝒏𝒆𝒅
𝒅𝒐𝒎𝒂𝒊𝒏−𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄	𝒑𝒓𝒐𝒎𝒑𝒕𝒔

𝑵𝒂𝒕𝒖𝒓𝒂𝒍	𝑰𝒎𝒂𝒈𝒆	
𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏

𝑴𝒆𝒅𝒊𝒄𝒂𝒍	𝑫𝒊𝒔𝒆𝒂𝒔𝒆	
𝑫𝒊𝒂𝒈𝒏𝒐𝒔𝒊𝒔

Label: wild cat
Predict: wild cat  

Label: wild cat
Predict: wild cat  

Label: Pneumonia
Predict: Normal

Label: Pneumonia
Predict: Pneumonia

❌

(b) Knowledge-Enhanced Explainable Prompting framework (KEEP)

(a) Previous prompt learning methods

Fine-grained 
local explanations

Hard to offer 
fine-grained explanations

a photo of melanoma.

𝑬𝒙𝒑𝒍𝒂𝒊𝒏𝒂𝒃𝒊𝒍𝒊𝒕𝒚

❌

Knowledge 
Enhancement

(c) Performance comparison on diverse domains.

𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏

Figure 1: Illustration of Knowledge-Enhanced Explainable Prompting framework (KEEP) for var-
ious domains: (a) Previous works adopt only coarse-grained general prompts and usually perform
well in limited domains. (b) KEEP utilizes domain knowledge-enhanced prompts to facilitate bridg-
ing the gap between the general domain and other specific domains while offering fine-grained ex-
planations. (c) Performance comparison with state-of-the-art methods on a diverse set of domains.

bedded in these models leads to unsatisfactory interpretability and cannot meet the trustworthiness
requirements of XAI, especially in high-stakes scenarios such as healthcare (Hulsen, 2023).

To address the above issues, we propose KEEP, a knowledge-enhanced explainable prompting
framework that incorporates the fine-grained knowledge priors eliciting from domain-specific foun-
dation models to enhance the adaption of VLMs. As shown in Figure 1, in order to alleviate the issue
that current methods can only perform well in certain areas, our method unifies the prompt creation
and prompt learning process for different domains, making full use of domain-specific knowledge
to handle various datasets while providing both visual and textual explanations.

We summarize our main contributions as follows: (i) We propose a knowledge-enhanced explainable
prompting framework that leverages fine-grained domain-specific knowledge to enhance the VLM
adaption. An image-prompt attention module is further proposed to learn and align the seman-
tic correspondences between images and knowledge-enhanced prompts. (ii) We demonstrate that
our method can be effectively and flexibly applied to various domains including different modali-
ties from medical and natural fields. (iii) Extensive experiments and explainability analyses show
that our method concurrently achieves promising performance and interpretability. To the best of
our knowledge, we are the first to explore using image-wise fine-grained knowledge elicited from
domain-specific foundation models and RAG for prompt learning in various fields including medical
and natural domains, highlighting the effectiveness of the collaboration between FMs and XAI.

2 RELATED WORK

2.1 FOUNDATIONAL VISION-LANGUAGE MODELS

Vision-language models (VLMs) such as CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021)
and Coca (Yu et al., 2022), are a fusion of vision and natural language models trained on large-scale
datasets, which ingest images and their respective textual descriptions as inputs and learn to associate
the knowledge from the two modalities. According to the objectives, VLMs can be categorized
as models with contrastive-only objectives (Radford et al., 2021; Li et al., 2021; Jia et al., 2021),
generative objectives (Li et al., 2022; 2023; Bao et al., 2021), and alignment objectives (Singh et al.,
2022; Dou et al., 2022). These models are usually built and extended from the following aspects:
adopting stronger visual encoders (typically ResNet (He et al., 2016) or ViT (Dosovitskiy et al.,
2020)) and textual encoders (typically transformer-based models (Vaswani, 2017)), e.g., BLIP2 (Li
et al., 2023), training on larger datasets with image-text pairs (Schuhmann et al., 2022; Jia et al.,
2021), and further fusing the visual and textual knowledge (Singh et al., 2022). Among existing
vision-language models, CLIP (Radford et al., 2021) is one of the most representative and commonly
used frameworks aligning the feature spaces of vision and text encoder via contrastive learning based
on around 400 million image-text pairs.
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Recently, the application of large-scale pre-trained vision-language models in other domains such
as healthcare attracts increasing attention. These domain-specific foundation models aim to intro-
duce the vision-language learning approach to medical vision and text understanding, facilitating
building potential models for disease diagnosis (Tiu et al., 2022; Zhang et al., 2023b), medical VQA
(Thawkar et al., 2023; Moor et al., 2023), and report generation (Pellegrini et al., 2023), etc. For ex-
ample, MedCLIP (Wang et al., 2022) adopts contrastive learning for diagnosing chest X-ray images.
KAD (Zhang et al., 2023b) introduces knowledge graphs with medical concepts into contrastive
learning between radiological images and reports. In this work, we elicit fine-grained knowledge
from domain-specific foundation models to handle tasks of different image modalities and domains.

2.2 PROMPT LEARNING

In order to address the challenge of the high computational cost of fully fine-tuning VLMs such as
CLIP to downstream tasks, prompt learning techniques (Gu et al., 2023; Zhou et al., 2022a;b; Yu
et al., 2023) have been introduced as efficient and effective adaption methods from the field of natural
language processing (Liu et al., 2023b). Prompt learning, especially soft prompt learning, aims to
improve the adaption ability of VLMs by inferring a set of learnable textual tokens combined with
the class tokens instead of fixing the input textual prompt such as the hand-crafted template of CLIP
(i.e., a photo of a [class name]). For instance, CoOp (Context Optimization) (Zhou et al., 2022b)
proposes to replace the fixed hand-crafted prompts with soft/learnable prompts and optimize the
textual tokens. CoCoOp (Conditional Context Optimization) (Zhou et al., 2022a) extends CoOp by
proposing image-conditional prompts fusing the visual features and the textual prompts. However,
these methods with only one simple and global sentence as the input prompt (e.g., a photo of a
[class name]) show low performance when handling fine-grained tasks. Some recent studies, e.g.,
KgCoOp (Yao et al., 2023), LASP (Bulat & Tzimiropoulos, 2023), TCP (Yao et al., 2024), introduce
knowledge to optimize context using more class-level textual templates, which still exhibit limited
performance in specific domains due to the lack of domain knowledge such as clinical knowledge.
Therefore, we propose leveraging image-wise domain-specific knowledge to enhance the adaptation
process, while improving model interpretability by providing prompt-based explanations.

2.3 KNOWLEDGE-BASED XAI

Bridging the understandability gap between humans and black-box AI models necessitates devel-
oping techniques that can answer the multifaceted problem of explainability, addressing the faith-
fulness (Lakkaraju et al., 2019) of the explanations representing the model’s behavior, while also
considering the capability of the human interpreter to understand it. Domain-specific knowledge,
which is derived from human knowledge in various fields, plays an important role in improving the
model performance and explainability (Tocchetti & Brambilla, 2022). For example, Concept Trans-
former (Rigotti et al., 2021) leverages concept-based knowledge such as tail, beak, and head when
classifying bird images and offers concept-based explanations. In healthcare, clinical knowledge is
crucial when diagnosing diseases, e.g., Xiang et al. (2024) propose using ovarian–adnexal reports,
data system scores, and routine clinical variables provided by radiologists to help predict ovarian
cancers and improve model interpretability. In addition, retrieval-augmented generation (RAG) has
emerged as an effective approach using large language models for knowledge-intensive tasks (Gao
et al., 2023; Lewis et al., 2020), which has been used in various domains (Xiong et al., 2024; Liu
et al., 2023a). We present to our best knowledge the first work to incorporate RAG and domain-
specific foundation models to provide more reliable image-wise knowledge for prompt learning in
various domains, e.g., we use elicited clinical-concept-based knowledge for disease diagnosis of
chest X-rays, and brain MRI, etc., achieving both performance and explainability improvement.

3 APPROACH

In this section, we first review the preliminaries (3.1) of CLIP (Radford et al., 2021). Then we
introduce our proposed framework KEEP, which mainly comprises two stages. The first stage is
Knowledge-Enhanced Prompt Creation (3.2), where we utilize domain-specific foundation models
and retrieval-augmented generation to obtain fine-grained image-wise knowledge. The second stage
is Knowledge-Enhanced Prompt Learning (3.3), which is the training pipeline of our explainable
prompting framework aligning the images and the generated knowledge via an attention mechanism.

3
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The {desert-rose} in this 
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in this image.
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𝑰𝒎𝒂𝒈𝒆
𝑬𝒏𝒄𝒐𝒅𝒆𝒓

Trainable
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Notations
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flower with long petals 
and a yellow center.

(a) VLM-based Image Caption
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distinguish {class} 
in a chest X-ray?

LLM

How to diagnose 
{class} from a 
chest X-ray?

TEXTBOOKS
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Relevant documents

Consolidation

Pleural effusion

Infiltration

(b) Domain-specific Concept Generation & Filtering

… radiological patterns found 
were consolidation and effusion … 

Domain-specific FM

present 
absent ❌

(c) Fine-grained Concept Labeling

...

...

𝓛𝑰𝑷𝑴
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×

𝑰𝟐

𝑰𝟏
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𝑪𝒓𝒐𝒔𝒔	𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏

Q

K V

Figure 2: The overall pipeline of KEEP. The proposed framework comprises two stages:
Knowledge-enhanced Prompt Creation and Knowledge-enhanced Prompt Learning. The key in-
sight of KEEP is improving both the performance and interpretability of the adaption process for
VLMs on various domains by introducing fine-grained knowledge elicited from domain-specific
foundation models and RAG, highlighting the collaboration between FMs and XAI.

3.1 PRELIMINARIES

CLIP (Contrastive Language-Image Pre-training (Radford et al., 2021)) is a representative founda-
tional vision-language model that creates a shared embedding space through vision-language con-
trastive learning. CLIP consists of two encoders: a vision encoder Ev(·) that takes images as input
and outputs the corresponding visual embeddings in the latent space, and a text encoder Et(·) that
maps the text input to the text embeddings. During inference, the input prompt of CLIP is a photo
of a [class name], and the prediction probability is computed by the image-text similarity:

P (y = m|I) = exp(cos(Ev(I), Et(Pm))/τ)∑M
j=1 exp(cos(Ev(I), Et(Pj))/τ)

, (1)

where I represents the input image, m stands for the m-th class, Pm denotes the prompt for class
m, M is the number of classes, cos(·, ·) is the cosine similarity, and τ is a temperature parameter.

3.2 KNOWLEDGE-ENHANCED PROMPT CREATION

Knowledge is essential for bridging the gap between humans and AI models (Tocchetti & Brambilla,
2022). It empowers users to gain deeper insights into the underlying reasoning by enabling models to
mimic the decision-making processes of human experts using domain-specific knowledge. However,
fine-grained annotating for specific data is very expensive and time-consuming, which needs human
experts’ efforts. To introduce domain-specific knowledge into the prompt learning process and
alleviate the challenge of the high cost of knowledge annotations, we propose eliciting knowledge
from expert foundation models, as illustrated in the upper part of Figure 2. Specifically, since
the development of foundational vision-language models and the image caption techniques for the
natural image domain is mature (Zhou et al., 2020; Zhang et al., 2024b;a), we query the foundation
models such as MiniGPT-4 (Zhu et al., 2023) and GPT-4 (Achiam et al., 2023) to generate the
description of a given natural image. For example, we can query the foundation model with a prompt
“Describe the [class name] in this image” and the model will generate corresponding descriptions.
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However, existing natural domain foundation models have limited performance in other domains
and it is hard for them to offer accurate information. To address this issue, we obtain knowledge by
incorporating retrieval augmented generation and domain-specific foundation models for specific
domains. For instance, in the medical domain, the fine-grained clinical concept-based prompt is
adopted instead of directly using image captions, as illustrated in Algorithm 1. Clinical concepts are
relevant attributes or symptoms of diseases, e.g., pleural effusion is a clinical concept for pneumonia
in chest X-rays. The clinical concepts of a given disease can be generated by prompting a large
language model (LLM) with queries such as “What are useful visual concepts to distinguish [disease
name] in a {chest X-ray, dermoscopic image, etc.}?” Then RAG is adopted to improve the quality
and reliability of the concepts. Given a corpus G covering various medical documents, e.g., PubMed
(Canese & Weis, 2013), Wikipedia, and medical textbooks (Jin et al., 2021), we use prompts with
specific disease names to retrieve relevant documents. The clinical concepts are extracted by an
LLM and used to filter the originally generated concepts. To achieve an explainable framework that
meticulously mimics the decision-making process of humans, we argue that class-level knowledge of
previous methods (Bulat & Tzimiropoulos, 2023; Yao et al., 2024) is insufficient and coarse-grained,
which cannot offer local explanations (Van der Velden et al., 2022). Medical experts diagnose
diseases with domain knowledge case by case instead of limiting to generic knowledge. Inspired by
this, we adopt domain-specific foundation models (e.g., the radiology domain) to give the predicted
presence results of given clinical concepts for each image. Specifically, given the clinical candidate
concepts C = {c1, c2, ..., cNc} (Nc is the number of concepts) generated by LLM and RAG, an
input image I , let Ev(·) and Et(·) denote the vision and text encoder of the domain-specific FM,
respectively, then the presence of a specific concept ci is calculated by

Preci = argmax{sim(Ev(I), Et(N
ci)), sim(Ev(I), Et(P

ci))}, (2)

where sim(·) stands for the similarity, Preci = 1 or Preci = 0 represent concept ci is present or ab-
sent in this image, P ci and N ci denote the positive and negative prompt for concept ci, respectively.
The image-wise knowledge-enhanced prompts R are created by concatenating the present clinical
concepts and category names of corresponding images, for example, a knowledge-enhanced prompt
for a given dermoscopic image can be “a photo of melanoma, with irregular dots and globules, blue
whitish veil”. The reliability of the elicited knowledge is improved and demonstrated by RAG and
knowledge intervention (Section 4.3). More details are in the appendix Section B.

Algorithm 1: KNOWLEDG-ENHANCED PROMPT CREATION

Input: A given image I and its class label YI , the domain-specific foundation model DSFM.
Output: The knowledge-enhanced promptRI for image I.
G: corpus (e.g., PubMed),Q: queries, C: set of candidate concepts, CI : labeled concepts for image I.
P: set of positive and negative prompts for DSFM, see Section B.2 for details.
C1 ← LLM(Q(YI)) // candidate concepts generated from LLM
G′ ← Retrieve(G,Q(YI)) // retrieve relevant documents
C2 ← LLM(G′) // candidate concepts generated from RAG
C ← Filtering(C1, C2) // filter the candidate concepts
for c in C do
CI ← CI +DSFM(I,P(c)) // image-wise concept labeling

end
RI ← Concat(YI , CI) // the knowledge-enhanced prompt

3.3 KNOWLEDGE-ENHANCED PROMPT LEARNING

In the prompt learning process of our framework, image-wise knowledge is used as the input to the
text encoder of the pre-trained vision-language model. The category of an object typically hinges
on various visual concepts observable within specific, localized regions in an image. For example,
in a chest X-ray of pneumonia, consolidation can be a distinguishable concept presented in some
regions. Given that different concepts may correspond to distinct sub-regions of an image, we
adopted an image-prompt attention module. Specifically, the embeddings of the input images are
linearly projected into the query matrix Q ∈ (N, dim) while the key matrix and value matrix K,V ∈
(N, dim) are the linear projections of the corresponding text embeddings, where N and dim denote
the number of samples and the dimension of embeddings, respectively. We can obtain the attention
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weight by normalizing the production of the query matrix and key matrix. The output of the image-
prompt attention module is the multiplication of the attention weights and the value matrix. A
projection matrix is adopted to map the original embedding dimension to the number of classes M :

logitIPA = Proj(softmax(
QKT

√
dim

)V ), (3)

where logitIPA denotes the logit output by the query-key-value image-prompt attention module,
and Proj(·) : dim → M stands for the linear projection layer. To explicitly preserve the prior
knowledge and learn the generic knowledge from the specific domain, we propose using a domain
adapter D instead of training the original input prompts. The domain adapter is a learnable matrix
added to the text embeddings of the original class-level prompts, avoiding destroying the knowl-
edge prior elicited from domain-specific foundation models, hence preserving the explainability of
prompts. Then the prompt embedding is used for image-text matching through contrastive learning.
A probability distribution over the class labels is given by :

P (y = m|I) = exp(cos(Ev(I), Fm)/τ)∑M
j=1 exp(cos(Ev(I), Fj)/τ)

, (4)

where Fm is the prompt embeddings added with domain adapter D for class m, and τ is a tem-
perature parameter. The final output logit of our framework is the fusion of the logitIPA out-
put by the image-prompt attention module and the image-prompt matching similarity logitIPM =
Ev(I)Et(R)T . The overall objective L is the average of image-prompt contrastive loss and the
cross-entropy classification loss LCLS which measures the discrepancy between the final fusion log-
its and the ground-truth labels y:

L =
1

2
[−

M∑
j=1

logP (y = j|I)︸ ︷︷ ︸
LIPM

+CE(β · logitIPA + (1− β) · logitIPM), y)︸ ︷︷ ︸
LCLS

], (5)

where β is a logit-balanced hyperparameter, and CE(·) denotes the cross-entropy loss.

4 EXPERIENTS

4.1 EXPERIMENTAL SETUPS

Datasets. Our framework was evaluated on a comprehensive benchmark of 8 datasets spanning a
diverse set of domains, including (1) Dermoscopic images: Derm7pt (Kawahara et al., 2018); (2)
Chest X-ray images: Pneumonia (Kermany et al., 2018), Open-i (Demner-Fushman et al., 2016);
(3) Brain magnetic resonance imaging (MRI): CCBTM (Hashemi, 2023); (4) Generic objects: Cal-
tech101 (Fei-Fei et al., 2004); (5) Fine-grained images of flowers: Oxford-Flowers102 (Nilsback
& Zisserman, 2008); (6) Fine-grained images of aircraft: FGVC-Aircraft (Maji et al., 2013) and
(7) Images of textures: DTD (Cimpoi et al., 2014). It should be noticed that to demonstrate that
our method can be flexibly applied to datasets with and without knowledge annotations, the clin-
ical concept annotations of Derm7pt were used to create the knowledge-enhanced prompts, while
knowledge of domain-specific foundation models was adopted for other datasets. The accuracy of
test sets was used for evaluation. Dataset and concept details are in the appendix Section A.

Baselines. We compared our model with classic and state-of-the-art adapter-based and prompt
learning methods, including CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al., 2022a), Tip-Adapter
(Zhang et al., 2022), Tip-Adapter-F (Zhang et al., 2022), KgCoOp (Yao et al., 2023), LASP (Bulat
& Tzimiropoulos, 2023), GraphAdapter (Li et al., 2024), and TCP (Yao et al., 2024).

Implementation Details. Our framework adopted the pre-trained visual (ViT-B/16) and text en-
coder of CLIP (Radford et al., 2021). We adopted the SGD optimizer with a learning rate of 0.032.
We used warm-up and cosine anneal as training strategies. All prompt learning methods imple-
mented in this paper adopted random crop and random flip for data augmentation. Grid search was
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Table 1: Quantitative comparison on disease diagnosis (classification) for medical image datasets
with the state-of-the-art methods. In this paper, our medical image datasets include dermoscopic
images, chest X-rays, and brain MRIs. The performance is reported as meanstd of three random
runs [%]. Our method is highlighted in light cyan. The best and the second-best results are shown
in bold and underlined, respectively.

METHOD Derm7pt Pneumonia Open-i CCBTM Average

CLIP 69.11 62.52 13.21 29.51 43.59
CoOp 75.19±0.36 85.88±0.56 71.93±0.71 79.31±0.84 78.08±0.62

CoCoOp 77.04±0.72 86.06±0.78 70.63±0.54 84.67±0.32 79.60±0.59

Tip-Adapter 69.11±0.00 62.50±0.00 68.98±0.00 50.78±0.08 62.84±0.02

Tip-Adapter-F 69.11±0.00 81.25±0.91 69.31±0.00 73.88±0.45 73.39±0.34

KgCoOp 73.84±1.37 82.64±0.30 70.74±1.21 67.41±0.38 73.66±0.82

GraphAdapter 75.27±1.86 86.05±0.13 73.81±0.41 82.38±0.11 79.38±0.63

LASP 76.20±1.56 92.41±0.08 76.46±0.68 90.73±0.33 83.95±0.66

TCP 77.47±0.20 79.86±0.40 71.95±0.47 70.09±0.18 74.84±0.31

KEEP (Ours) 80.67±0.31 93.75±0.26 77.01±0.31 95.14±0.11 86.64±0.24

Table 2: Quantitative comparison on image classification for natural image datasets with the state-
of-the-art methods. Natural image datasets here refer to images from normal RGB cameras, where
we include domains of generic objects, aircraft, flowers, and textures in this paper.

METHOD Caltech-101 Aircraft Flowers DTD Average

CLIP 92.94 24.60 71.34 44.44 58.33
CoOp 95.87±0.10 39.05±0.85 95.75±0.31 68.93±0.48 74.90±0.44

CoCoOp 95.22±0.28 36.03±0.21 93.84±0.21 65.60±0.42 72.67±0.28

Tip-Adapter 94.74±0.20 39.24±0.43 93.90±0.31 65.76±0.33 73.41±0.32

Tip-Adapter-F 95.74±0.03 45.04±0.77 96.73±0.20 72.22±0.35 77.43±0.34

KgCoOp 95.47±0.05 37.43±0.16 93.88±0.52 70.08±0.36 74.22±0.27

GraphAdapter 95.92±0.14 47.63±0.63 97.78±0.13 72.26±0.15 78.40±0.26

LASP 96.20±0.07 36.61±0.33 96.07±0.23 69.82±0.15 74.68±0.20

TCP 95.81±0.09 44.20±0.40 97.43±0.07 72.91±0.31 77.59±0.22

KEEP (Ours) 96.97±0.09 49.99±0.35 98.33±0.17 76.50±0.78 80.45±0.35

used to select hyperparameters, and β is set to 0.7. All comparison experiments were conducted on
an RTX 4090 GPU. Image caption for natural images was based on MiniGPT-4 (Zhu et al., 2023).
For retrieval-augmented generation, we adopted the corpus organized by MEDRAG (Xiong et al.,
2024), e.g., PubMed (Canese & Weis, 2013) and medical textbooks (Jin et al., 2021), for medical
datasets. We used PMC-LLaMA 13B (Wu et al., 2024) as the LLM and MedCPT (Jin et al., 2023a)
as the retriever for RAG. For domain-specific foundation models in the medical domain, we adopted
KAD (Zhang et al., 2023b) and BiomedCLIP (Zhang et al., 2023a) to generate domain knowledge.
More details can be found in the appendix Section B.2.

4.2 EXPERIMENTAL RESULTS.

In order to comprehensively demonstrate the competitive performance of our method in both clinical
disease diagnosis and natural image classification, comparison experiments with other state-of-the-
art methods and ablation experiments on eight datasets of diverse domains are conducted.
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Table 3: Experimental results on medical image datasets with different proportions of training data,
including 10%, 50%, and 100%. Our method is highlighted in bold.

METHOD Derm7pt Pneumonia Open-i CCBTM

10% 50% 100% 10% 50% 100% 10% 50% 100% 10% 50% 100%
KgCoOp 70.89 72.91 73.84 74.36 76.60 82.64 68.98 70.63 70.74 60.90 64.77 67.41

TCP 71.65 75.69 77.47 79.49 79.33 79.89 70.29 71.95 71.95 69.26 69.47 70.09
GraphAdapter 69.11 69.37 75.27 65.54 85.73 86.05 68.98 71.28 73.81 74.70 81.62 82.38

LASP 72.15 75.94 76.20 87.50 91.34 92.41 71.62 74.59 76.46 82.72 91.54 90.73
KEEP (Ours) 73.42 77.72 80.67 90.86 93.75 93.75 71.62 76.90 77.01 92.01 94.95 95.14

Figure 3: The few-shot learning results on four natural image datasets. All methods are evaluated
under 1, 2, 4, 8, and 16-shot settings.

Results of Medical Image Diagnosis & Natural Image Classification. In Table 1, we report the
disease diagnosis comparison results of our method on four medical datasets of different modalities,
including dermoscopy images, chest X-ray images, and brain MRIs. The image classification results
on natural image datasets are shown in Table 2, including performance comparison for generic
objects, fine-grained aircraft and flowers, and texture classification. Following previous methods
(Zhou et al., 2022b; Li et al., 2024), the results on natural image datasets are under the 16-shot
setting. CLIP baseline (Radford et al., 2021) without any tuning is included at the first row of the
two tables. Our method outperforms other state-of-the-art prompt learning methods by a significant
margin, achieving an average relative improvement of approximately 3.2% on four medical datasets
and 2.6% on four natural image datasets compared to the second-best results, which demonstrates
the effectiveness and robustness of our framework in handling tasks across diverse domains.

Data Efficiency. To demonstrate the effectiveness and efficiency of our proposed framework, we
conduct experiments to evaluate the data efficiency. Specifically, for the four medical image datasets,
we report the performance with different proportions of training data, including 10%, 50%, and
100%, as shown in Table 3. We compare our method KEEP with state-of-the-art methods and it
can be observed that the diagnosis performance of our method, while showing the best results when
using full data, does not exhibit significant declines when only 50% or 10% of the diagnosis labels
are used on most medical image datasets. For example, there is nearly no performance drop on
Pneumonia dataset when the training data proportion drops from 100% to 50%. In addition, the
diagnosis results of LASP (Bulat & Tzimiropoulos, 2023) drop from 91.5% to 82.7% on CCBTM
(Hashemi, 2023) dataset when the training data proportion reduces from 50% to 10%, while our
method exhibits much less performance gap (i.e., from 94.9% to 92.0%). For the four natural image
datasets, few-shot learning is adopted to evaluate the efficiency, including 1, 2, 4, 8, and 16 shots, as
shown in Figure 3. Our method can consistently outperform other methods by a significant margin
in most settings. For example, KEEP respectively gains 2.58%, 1.56%, 1.29%, 2.01%, 2.36%
performance boost over GraphAdapter (Li et al., 2024) and outperforms TCP (Yao et al., 2024) by
0.57%, 1.11%, 0.81%, 3.03%, 5.79% at 1, 2, 4, 8, and 16 shots on Aircraft dataset, respectively. The
consistent results in various domains indicate that our method encourages the model to learn the
correspondences between images and fine-grained domain knowledge effectively, thus facilitating
the adaptation and enabling the model to achieve promising performance and data efficiency.

Alabtion Study. We conduct ablation experiments for all eight datasets on the effectiveness of the
proposed image-prompt attention-based logit (i.e., logitIPA, which is used to fuse with the original

8
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Table 4: Ablation study of the fusion
logits and losses. MED. and NAT.
represents the medical field and nat-
ural field, respectively. The average
results of four datasets in each corre-
sponding field are reported.

METHOD MED. NAT. ∆

KEEP 86.64 80.45 -
w/o logitIPA 86.02 79.30 -0.9
w/o LIPM 84.50 80.14 -1.2
w/o LCLS 80.19 70.09 -8.4

Figure 4: Illustration of our framework’s faithfulness using
knowledge intervention.

similarity logit), and the proposed losses (i.e., the image-prompt matching contrastive loss LIPM and
the cross-entropy LCLS loss for fusion logits). As shown in Table 4, the overall performance drops
significantly when removing the proposed components during the prompt learning process. Our
method achieves the best overall performance across various domains with all designed components.
More ablation results are in the appendix Section C.

4.3 ANALYSIS OF EXPLAINBILITY

In this section, we evaluate and analyze the explainability of our method. Drawing inspiration from
prior research (Jin et al., 2023b; Hsiao et al., 2021; Guidotti et al., 2018; Johansson et al., 2004;
Rigotti et al., 2021), we assess our framework using several essential metrics for XAI techniques,
including faithfulness, understandability, and plausibility.

Faithfulness. Faithfulness is defined as the extent to which an explanation truthfully reflects the
model’s decision-making process, requiring the explanation to be highly faithful to the designed
model mechanism (Lakkaraju et al., 2019; Rigotti et al., 2021; Jin et al., 2023b). In this paper, we
evaluate faithfulness by intervening the input knowledge-enhanced prompts. Specifically, we use
five kinds of prompt settings, including prompts without knowledge, with random knowledge (i.e.,
random tokens as prompts), with general knowledge (i.e., prompts without domain-specific knowl-

Figure 5: Examples of image-prompt attention visualization in various domains. Darker (yellow) or
lighter (blue) colors indicate higher or lower relevance scores, respectively.
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Figure 6: The t-SNE visualization results of different domains, including Pneumonia, CCBTM,
Caltech101, and Oxford-Flowers datasets (from left to right). The six categories with the largest
number of samples are selected for Caltech101 and Oxford-Flowers datasets.

edge), with our fine-grained domain-specific knowledge and the intervened knowledge (intervened
knowledge means that the semantics of the prompts are modified, e.g., the descriptions of a normal
instance may be replaced by the descriptions of an abnormal one or do the opposite like replacing
“regular pigmentation” with “irregular pigmentation”). The left part of Figure 4 reports the over-
all performance of all eight datasets with different knowledge settings, while the right part shows
the knowledge intervention results for medical image datasets. These results show that not using
knowledge, using only random knowledge, coarse-grained general knowledge, or knowledge after
intervention as prompts may lead to performance degradation, which demonstrates that the adopted
domain knowledge faithfully explains the model’s decisions and the knowledge reliability.

Understandability & Plausibility. Understandability requires explanations to be easily under-
standable to users without much technical knowledge (Jin et al., 2023b; Johansson et al., 2004),
while plausibility refers to how convincing the explanation appears (Hsiao et al., 2021; Jin et al.,
2023b). Our framework achieves understandability and plausibility by offering both visual and tex-
tual explanations, as shown in Figure 5. Specifically, we visualize the attention maps of images and
their corresponding word importance of the knowledge-enhanced prompts based on the predicted
image-prompt matching logits and back-propagated gradients during training. The results show that
our method can accurately focus on meaningful and discriminative image regions and knowledge.
For example, in the middle case of Figure 5 (i.e., the case of dermoscopic image), “melanoma” is
the correctly predicted disease label and is highlighted with the highest relevance score. Addition-
ally, meaningful clinical concepts such as “dots”, ”globules” and “veils” are also highlighted by our
method. Figure 6 presents the t-SNE visualization of sample embeddings for our method in vari-
ous datasets, where different colors represent different categories and the embeddings cluster well.
These results highlight the strong distinguishing ability of our model in diverse domains, benefiting
from the semantic correlations between images and fine-grained domain knowledge. The expla-
nations provided by our framework enhance human understanding of the model’s decision-making
process by clarifying the utilized knowledge and the specific areas of focus. This can potentially
assist domain experts in applying AI models to practical scenarios, such as helping medical profes-
sionals understand AI models for disease diagnosis.

5 CONCLUSION

In this paper, we propose KEEP, a knowledge-enhanced explainable prompting framework that
leverages fine-grained domain-specific knowledge to enhance the adaptation process for VLMs in
various domains, facilitating bridging the gap between the general domain and other specific do-
mains. By incorporating domain knowledge elicited from domain-specific foundation models and
meticulously learning the semantic correlations between images and knowledge-enhanced prompts
based on the attention mechanism, our framework achieves promising performance and data effi-
ciency, while improving interpretability by offering visual and textual explanations. The reliabil-
ity of the elicited knowledge is improved and demonstrated by RAG and knowledge intervention.
Extensive experiments and explainability analysis conducted on eight datasets of diverse domains
demonstrate the effectiveness of our framework and highlight the collaboration between foundation
models and explainable artificial intelligence.
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APPENDIX FOR “KEEP: TOWARDS A KNOWLEDGE-
ENHANCED EXPLAINABLE PROMPTING FRAMEWORK FOR
VISION-LANGUAGE MODELS”

A APPENDIX: DATASET DETAILS (WITH GENERATED CONCEPTS FOR
MEDICAL DOMAIN)

Derm7pt. Derm7pt (Kawahara et al., 2018) is a dermoscopic image dataset containing 1,011 images
with clinical concepts for melanoma skin lesions in dermatology. Only the dermoscopic images
are considered in this paper. We use the category classification of normal and melanoma, where
the melanoma scores and a threshold thres = 1 are used to categorize the images (Kawahara
et al., 2018). Clinical concepts for diagnosing melanoma include “Pigment Network”, “Dots and
Globules”, “Pigmentation”, “Streaks”, “Regression Structures”, “Blue-Whitish Veil” and “Vascular
Structures”.

Pneumonia. The Pneumonia dataset (Kermany et al., 2018) is a public dataset for classifying pneu-
monia cases from normal ones, which includes 5,863 chest X-ray images. The official dataset
splitting is adopted. The clinical concepts for diagnosing pneumonia include “Pleural Effusion”,
“Infiltration”, and “Consolidation”.

Open-i. Open-i (Demner-Fushman et al., 2016) is a chest X-ray dataset with 3,955 radiology re-
ports, corresponding to 7,470 frontal and lateral images. We filter out the lateral x-ray, leaving only
frontal images. Following previous work, we further filter out diseases and leave the three main cat-
egories, including normal, opacity, and cardiomegaly. The generated clinical concepts we adopted
are “Atelectasis”, “Pleural Effusion”, “Infiltration”, “Consolidation”, “Pneumonia”, and “Edema”.

CCBTM. CCBTM (Crystal Clean: Brain Tumors MRI Dataset (Hashemi, 2023)) is a brain tumor
MRI dataset containing 21,672 images. The categories cover the main tumor types, including glioma
tumor, meningioma tumor, pituitary tumor, and a normal class. The dataset is split into training
set, validation set, and test set according to the proportion of 70%, 15% and 15%, respectively.
The generated clinical concepts for diagnosing brain tumors include “Edema”, “Calcifications”, and
“Infiltration”.

Caltech101. The Caltech101 dataset (Fei-Fei et al., 2004) includes images of generic objects be-
longing to 101 categories, with about 40 to 800 images per category. We adopt the split following
CoOp (Zhou et al., 2022b), where 100 categories are selected with 8,242 images in total, and the
numbers of images in the training set, validation set, and testing set are 4,128, 1,649, and 2,465,
respectively.

FGVC-Aircraft. The FGVC-Aircraft dataset (Maji et al., 2013) contains 10,200 images of aircraft,
with 100 images for each of 102 different aircraft model variants, most of which are airplanes. The
(main) aircraft in each image is annotated with a tight bounding box and a hierarchical airplane
model label. To be consistent with previous works (Zhou et al., 2022b; Gao et al., 2021), 100
categories of aircraft are adopted, and the numbers of images in the training set, validation set, and
testing set are 3,334, 3,333, and 3,333, respectively.

Oxford-Flowers102. Oxford-Flowers102 (Nilsback & Zisserman, 2008) is a natural image dataset
for fine-grained classification of flowers, consisting of 102 flower categories with 8189 images in
total. Each class consists of between 40 and 258 images. The numbers of images in the training set,
validation set, and testing set are 4,093, 1,633, and 2,463, respectively.

DTD. DTD (Describable Textures Dataset (Cimpoi et al., 2014)) is a texture datasets containing
5,640 images collected “in the wild” jointly labeled with 47 describable texture attributes (cate-
gories). The numbers of images in the training set, validation set, and testing set are 2,820, 1,128,
and 1,692, respectively.
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B APPENDIX: KNOWLEDGE-ENHANCED PROMPT CREATION DETAILS

B.1 RAG EXAMPLES

Figure 7 shows an example of using retrieval-augmented generation for eliciting domain knowledge.
The retriever properly retrieves the relevant documents based on the query about pneumonia, which
improves the reliability and interpretability of the generated domain knowledge.

Query: What are useful visual features for diagnosing pneumonia in a chest X-ray?

Retrieved Documents:
… evidence of an infiltrate on chest radiography warrants a diagnosis of pneumonia, …
Viral pneumonia characteristically shows diffuse, streaky infiltrates of bronchopneumonia…
The radiographic appearance of pneumococcal pneumonia is varied; it classically consists 
of lobar or segmental consolidation (Fig. 171-6) but in some cases is patchy …
Bacterial pneumonia characteristically shows lobar consolidation, or a round pneumonia, 
with pleural effusion in 10% to 30% of cases…
Pleural effusion is an abnormal collection of fluid in the pleural space. It can be seen in 
pneumonia due to the inflammatory process involving the pleura.

Figure 7: Examples of the retrieval for pneumonia diagnosis. MedCPT (Jin et al., 2023a) is used as
the retriever.

B.2 DETAILS OF UTILIZING DOMAIN-SPECIFIC FOUNDATION MODELS

For disease diagnosis for medical image datasets, we utilized several domain-specific foundation
models to generate fine-grained domain knowledge, as illustrated in Section 3.2. Specifically, for
chest X-ray images (i.e., Pneumonia and Open-i datasets), KAD (Zhang et al., 2023b) is adopted for
image-wise concept labeling, which leverages existing medical domain knowledge to guide vision-
language pre-training using paired chest X-rays and radiology reports. Specifically, to leverage the
knowledge of KAD to annotate concept ci for a given image I with the vision encoder Ev(·) and
text encoder Et(·), we first need to calculate the similarities for image with positive prompt P ci and
negative prompt N ci :

simp = EDQN(Ev(I), Et(P
ci)),

simn = EDQN(Ev(I), Et(N
ci)), (6)

where simp and simn denote the similarities of the input image with the positive prompt and neg-
ative prompt, respectively. EDQN(·) is an extra proposed disease query network of KAD. Take the
concept ci =“pleural effusion” as an example, the positive prompt P ci is “pleural effusion”, while
the used negative prompt N ci is “no pleural effusion”. Finally, the absence of concept ci for image
I is decided on the larger one of simp and simn, for example, if simp > simn, then concept ci is
present in image i (i.e., Preci = 1, as mentioned in Section 3.2). In addition, BiomedCLIP (Zhang
et al., 2023a) is adopted for brain MRI concept labeling. The way to annotate clinical concepts
is almost the same as using KAD except that BiomedCLIP only uses the vision and text encoders
without the disease query network. The positive and negative prompts we used in BiomedCLIP for
brain tumor concept labeling are “[concept name] presented in this image” and “this is an image of
a normal brain”, respectively.

B.3 MORE KNOWLEDGE-ENHANCED PROMPT EXAMPLES

More image samples and their corresponding generated knowledge-enhanced prompts are shown in
Figure 8.
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A photo of melanoma, 
with atypical pigment network, 
diffuse irregular pigmentation, 
irregular dots and globules.

A photo of melanoma, 
with atypical pigment network, 
irregular streaks, localized irregular 
pigmentation, irregular dots and 
globules, blue whitish veil.

A photo of pneumonia, 
with pleural effusion 
and consolidation.

A photo of a pituitary tumor, 
with edema, calcifications, 
and infiltration.

The mayfly in this image is a 
small, white insect with two 
large, translucent wings and 
long, slender antennae.

The rose in this image is pink 
with yellow petals and red 
stamen.

The 707-320 in this image is 
a large commercial airplane 
with a distinctive white and 
blue livery.

The image shows a red and 
green polka-dotted design 
on a white background.

Figure 8: More examples of the images from different domains and their corresponding generated
knowledge-enhanced prompts. The category name of each image is underlined.

C APPENDIX: MORE ABLATION STUDY RESULTS

More ablation study results are shown in Figure 9. Specifically, we display the complete version
of ablation for fusion logits and losses in the medical domain and natural domain in Figure 9(a),
which demonstrates the effectiveness of our proposed components. Moreover, ablation results of
the scale factors of the domain adapter are presented in Figure 9(b). It can be observed that the
overall performance increases and gets stable when the scale factor increases. Since the domain
adapter is a learnable matrix that adds to the original text embeddings, a greater scale factor means
learning more from the specific domain, where the results are in line with expectations.

(a) Ablation study of the fusion logits and losses. (b) Ablation of the scale factors of the domain adapter.

Figure 9: Ablation study results. (a) The complete ablation study of fusion logits and losses, the
detailed version of Table 4. (b) The ablation study of the scale factors of the domain adapters for
each dataset from various domains.

D APPENDIX: COMPUTATIONAL EFFICIENCY

To evaluate the computational efficiency of our method, we report the training and inference compute
cost in Table 5. The results demonstrate that our method achieves the best model performance while
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showing promising computational efficiency, with the best inference time and FPS compared to
CoCoOp (Zhou et al., 2022a) and LASP (Bulat & Tzimiropoulos, 2023).

Table 5: Computational efficiency comparison using Penumonia dataset. Evaluation of average
training (per epoch) and inference time (second) for all methods is conducted on a single RTX4090
GPU. PERFORMANCE is the average classification accuracy on eight considered datasets.

METHOD TRAINING TIME ↓ INFERENCE TIME↓ FPS ↑ PERFORMANCE↑
CoCoOp 109.21 5.62 121 76.14
LASP 20.38 0.86 732 79.32
KEEP 22.82 0.72 912 83.55
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